metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­chloridodi­methyl­phenyltin(IV)–15-crown-5 (2/1)

aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran, bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 30 January 2008; accepted 20 April 2008; online 26 April 2008)

The SnIV atom in the title compound, 2[Sn(CH3)2(C6H5)Cl(H2O)]·C10H20O5, exists in a trans-C3SnClO trigonal bipyramidal geometry in which the organo substituents occupy the equatorial sites. The coordinated water mol­ecule forms two hydrogen bonds to the 15-crown-5 mol­ecule, which is disordered about a center of inversion.

Related literature

For `outer-sphere coordination' organotin complexes with 15-crown-5, see: Amini et al. (1994[Amini, M. M., Zuckerman, J. J., Rheingold, A. L. & Ng, S. W. (1994). Z. Kristallogr. 209, 613-614.]); Chee et al. (2003[Chee, C. F., Lo, K. M. & Ng, S. W. (2003). Acta Cryst. E59, m202-m204.]); Yap et al. (1996[Yap, G. P. A., Counterman, A. E., Amini, M. M., Ng, S. W. & Rheingold, A. L. (1996). Main Group Chem. 1, 359-363.]). For the refinement of 15-crown-5 type crystal structures that are disordered about a center of inversion, see: Ng (2005[Ng, S. W. (2005). Chin. J. Struct. Chem. 24, 1425-1439.]). For the analogous adduct of SnCl(CH3)2(C6H5)(H2O) with 18-crown-6, see: Amini et al. (2002[Amini, M. M., Azadmehr, A., Abadi, S. H. & Ng, S. W. (2002). Acta Cryst. E58, m484-m485.]).

[Scheme 1]

Experimental

Crystal data
  • 2[Sn(CH3)2(C6H5)Cl(H2O)]·C10H20O5

  • Mr = 778.91

  • Monoclinic, P 21 /n

  • a = 9.8700 (3) Å

  • b = 18.9814 (5) Å

  • c = 9.8770 (3) Å

  • β = 113.636 (1)°

  • V = 1695.2 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 295 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.534, Tmax = 0.732

  • 16379 measured reflections

  • 3869 independent reflections

  • 3433 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.128

  • S = 1.06

  • 3869 reflections

  • 159 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C1 2.115 (5)
Sn1—C2 2.122 (5)
Sn1—C3 2.139 (4)
Sn1—O1w 2.472 (3)
Sn1—Cl1 2.485 (1)
C1—Sn1—C2 120.2 (2)
C1—Sn1—C3 121.1 (2)
C2—Sn1—C3 116.0 (2)
O1w—Sn1—Cl1 176.1 (1)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Water-coordinated triorganotin salts form "outer-sphere coordination" complexes with crown ethers. In these, the water molecules interact with the crown ether through hydrogen bonds (Amini et al., 1994; Chee et al., 2003; Yap et al., 1996). The refinement of such crystal structures present special difficulties when the odd-numbered crown ether is disordered about a center of inversion. The refinement of such crystal structures has been described in detail (Ng, 2005). The mixed-organo SnIV title compound, (I), has the tin atom in a trans-C3SnClO trigonal bipyramidal geometry, Fig. 1 & Table 1, in which the electronegative substituents occupy the axial sites. The coordinated water molecule forms two hydrogen bonds to the 15-crown-5, which is disordered about a center-of-inversion; Table 2.

Related literature top

For `outer-sphere coordination' organotin complexes with 15-crown-5, see: Amini et al. (1994); Chee et al. (2003); Yap et al. (1996). For the refinement of 15-crown-5 type crystal structures that are disordered about a center of inversion, see: Ng (2005). For the analogous adduct of aqua Sn(CH3)2(C6H5)Cl with 18-crown-6, see: Amini et al. (2002).

Experimental top

ChlorodimethylphenylSnIV was synthesized by the cleavage of dimethyldiphenyltin with hydrogen chloride in a methanol/carbon tetrachloride mixture at 283 K and was purified by distillation at 363 K/1 Torr. ChlorodimethylphenylSnIV (0.26 g, 1 mmol) and 15-crown-5 (0.22 g, 1 mmol) were dissolved in ethanol (20 ml). The co-crystal (I), m.p. 347–349 K, separated when the solvent was allowed to evaporate. 1H-NMR in CDCl3: 0.90 (CH3), 1.60 (H2O), 3.72 (CH2), 7.27–7.70 (C6H5) p.p.m. 119Sn NMR 115.7 p.p.m. 2J(119Sn–1H) = 60 Hz.

Refinement top

The 15-crown-5 lies about a center of inversion and the molecule was refined as a 15-atom species of half site-occupancy. All 1,2-related atoms were restrained to 1.45±0.01 Å and 1,3-related atoms to 2.35±0.01 Å. The displacement factors of the O atoms were restrained to be equal, as were those of the C atoms.

The carbon-bound H atoms were placed in calculated positions with C–H 0.93 to 0.97 Å, and with Uiso(H) 1.2–1.5Ueq(C), and were included in the refinement in the riding-model approximation. The water H-atoms were placed in chemically sensible positions on the basis of hydrogen bonds but were not refined [O–H 0.82 Å and Uiso(H) 1.5Ueq(O)].

The final difference Fourier map had a relatively large peak/deep hole in the vicinity of the crown ether.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I); ellipsoids are drawn at the 30% probability level, and H atoms as spheres of arbitrary radius. The 15-crown-5 is disordered about a center of inversion, only one orientation is shown for reasons of clarity. Dashed lines denote the water···crown-ether hydrogen bonds. Unlabelled atoms are related by the symmetry operation -x + 2, -y + 1, -z + 2.
Aquachloridodimethylphenyltin(IV)–15-crown-5 (2/1) top
Crystal data top
2[Sn(CH3)2(C6H5)Cl(H2O)]·C10H20O5F(000) = 784
Mr = 778.91Dx = 1.526 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13887 reflections
a = 9.8700 (3) Åθ = 3.1–27.4°
b = 18.9814 (5) ŵ = 1.67 mm1
c = 9.8770 (3) ÅT = 295 K
β = 113.636 (1)°Block, colorless
V = 1695.2 (1) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3869 independent reflections
Radiation source: fine-focus sealed tube3433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 1012
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2424
Tmin = 0.534, Tmax = 0.732l = 1212
16379 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0816P)2 + 1.7228P]
where P = (Fo2 + 2Fc2)/3
3869 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 1.29 e Å3
30 restraintsΔρmin = 1.14 e Å3
Crystal data top
2[Sn(CH3)2(C6H5)Cl(H2O)]·C10H20O5V = 1695.2 (1) Å3
Mr = 778.91Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.8700 (3) ŵ = 1.67 mm1
b = 18.9814 (5) ÅT = 295 K
c = 9.8770 (3) Å0.30 × 0.25 × 0.20 mm
β = 113.636 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3869 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3433 reflections with I > 2σ(I)
Tmin = 0.534, Tmax = 0.732Rint = 0.023
16379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04230 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 1.29 e Å3
3869 reflectionsΔρmin = 1.14 e Å3
159 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.55993 (3)0.385283 (13)0.73184 (3)0.04272 (13)
Cl10.31360 (13)0.32890 (8)0.60646 (14)0.0700 (3)
O1w0.7986 (3)0.44517 (17)0.8682 (4)0.0634 (8)
H1w0.79200.48660.84310.095*
H2w0.86360.42600.84950.095*
C10.6070 (6)0.3380 (3)0.9397 (6)0.0719 (14)
H1A0.64380.37301.01590.108*
H1B0.68020.30190.95710.108*
H1C0.51840.31750.94060.108*
C20.4774 (6)0.4899 (3)0.6902 (7)0.0696 (13)
H2A0.55120.52020.68130.104*
H2B0.45370.50560.77040.104*
H2C0.39010.49100.60000.104*
C30.6535 (4)0.34520 (18)0.5860 (4)0.0448 (8)
C40.5616 (6)0.3317 (2)0.4393 (5)0.0584 (10)
H40.45990.33740.40720.070*
C50.6219 (7)0.3095 (3)0.3396 (6)0.0741 (14)
H50.55920.29990.24220.089*
C60.7687 (7)0.3019 (3)0.3827 (6)0.0749 (14)
H60.80730.28810.31500.090*
C70.8608 (6)0.3144 (3)0.5261 (7)0.0719 (13)
H70.96230.30870.55630.086*
C80.8038 (5)0.3356 (3)0.6281 (5)0.0602 (11)
H80.86780.34350.72590.072*
O10.8394 (11)0.5945 (5)0.8704 (10)0.0982 (12)0.50
O21.0758 (10)0.5345 (4)0.8227 (10)0.0982 (12)0.50
O31.0975 (10)0.4055 (5)0.9549 (9)0.0982 (12)0.50
O41.1086 (10)0.4378 (5)1.2332 (10)0.0982 (12)0.50
O50.9190 (10)0.5479 (5)1.1592 (10)0.0982 (12)0.50
C90.9218 (17)0.6312 (6)0.8003 (17)0.0922 (11)0.50
H9A0.85970.66610.73170.111*0.50
H9B1.00620.65500.87390.111*0.50
C100.9708 (14)0.5796 (6)0.7224 (12)0.0922 (11)0.50
H10A0.88690.55230.65740.111*0.50
H10B1.01400.60340.66220.111*0.50
C111.1043 (16)0.4717 (5)0.7580 (12)0.0922 (11)0.50
H11A1.15980.48290.69900.111*0.50
H11B1.01180.44980.69430.111*0.50
C121.1889 (15)0.4240 (7)0.8775 (15)0.0922 (11)0.50
H12A1.21590.38210.83790.111*0.50
H12B1.27880.44690.94430.111*0.50
C131.1716 (15)0.3633 (6)1.0805 (11)0.0922 (11)0.50
H13A1.27270.37971.13040.111*0.50
H13B1.17440.31501.04970.111*0.50
C141.1003 (19)0.3657 (6)1.1805 (15)0.0922 (11)0.50
H14A1.14920.33401.26290.111*0.50
H14B0.99780.35121.13080.111*0.50
C151.0198 (14)0.4487 (6)1.3105 (12)0.0922 (11)0.50
H15A0.97830.40361.32000.111*0.50
H15B1.08310.46411.40940.111*0.50
C160.9041 (13)0.4965 (6)1.2534 (15)0.0922 (11)0.50
H16A0.89250.51991.33530.111*0.50
H16B0.81380.47041.19990.111*0.50
C170.7917 (15)0.5900 (8)1.0850 (13)0.0922 (11)0.50
H17A0.77200.61891.15610.111*0.50
H17B0.70660.55991.03570.111*0.50
C180.8149 (16)0.6343 (6)0.9783 (12)0.0922 (11)0.50
H18A0.72890.66410.93080.111*0.50
H18B0.89950.66451.02830.111*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04543 (19)0.04251 (18)0.03998 (18)0.00211 (9)0.01686 (13)0.00193 (8)
Cl10.0538 (6)0.0880 (8)0.0622 (7)0.0244 (6)0.0171 (5)0.0039 (6)
O1w0.0542 (16)0.0637 (18)0.068 (2)0.0146 (14)0.0198 (14)0.0190 (15)
C10.072 (3)0.082 (3)0.052 (3)0.010 (3)0.015 (2)0.019 (2)
C20.067 (3)0.053 (2)0.087 (4)0.007 (2)0.029 (3)0.007 (2)
C30.0526 (19)0.0369 (16)0.0439 (19)0.0036 (15)0.0183 (16)0.0006 (14)
C40.066 (3)0.062 (2)0.041 (2)0.004 (2)0.0158 (18)0.0013 (17)
C50.097 (4)0.076 (3)0.049 (3)0.005 (3)0.028 (3)0.006 (2)
C60.110 (4)0.061 (3)0.074 (3)0.003 (3)0.058 (3)0.008 (2)
C70.071 (3)0.071 (3)0.086 (4)0.006 (2)0.044 (3)0.006 (3)
C80.058 (2)0.069 (3)0.055 (2)0.006 (2)0.024 (2)0.013 (2)
O10.094 (3)0.106 (3)0.088 (3)0.004 (3)0.031 (2)0.003 (2)
O20.094 (3)0.106 (3)0.088 (3)0.004 (3)0.031 (2)0.003 (2)
O30.094 (3)0.106 (3)0.088 (3)0.004 (3)0.031 (2)0.003 (2)
O40.094 (3)0.106 (3)0.088 (3)0.004 (3)0.031 (2)0.003 (2)
O50.094 (3)0.106 (3)0.088 (3)0.004 (3)0.031 (2)0.003 (2)
C90.092 (2)0.104 (3)0.090 (3)0.007 (2)0.046 (2)0.005 (2)
C100.092 (2)0.104 (3)0.090 (3)0.007 (2)0.046 (2)0.005 (2)
C110.092 (2)0.104 (3)0.090 (3)0.007 (2)0.046 (2)0.005 (2)
C120.092 (2)0.104 (3)0.090 (3)0.007 (2)0.046 (2)0.005 (2)
C130.092 (2)0.104 (3)0.090 (3)0.007 (2)0.046 (2)0.005 (2)
C140.092 (2)0.104 (3)0.090 (3)0.007 (2)0.046 (2)0.005 (2)
C150.092 (2)0.104 (3)0.090 (3)0.007 (2)0.046 (2)0.005 (2)
C160.092 (2)0.104 (3)0.090 (3)0.007 (2)0.046 (2)0.005 (2)
C170.092 (2)0.104 (3)0.090 (3)0.007 (2)0.046 (2)0.005 (2)
C180.092 (2)0.104 (3)0.090 (3)0.007 (2)0.046 (2)0.005 (2)
Geometric parameters (Å, º) top
Sn1—C12.115 (5)O4—C151.389 (8)
Sn1—C22.122 (5)O4—C141.454 (9)
Sn1—C32.139 (4)O5—C161.397 (8)
Sn1—O1w2.472 (3)O5—C171.420 (9)
Sn1—Cl12.485 (1)C9—C101.442 (9)
O1w—H1w0.8200C9—H9A0.9700
O1w—H2w0.8200C9—H9B0.9700
C1—H1A0.9600C10—H10A0.9700
C1—H1B0.9600C10—H10B0.9700
C1—H1C0.9600C11—C121.455 (9)
C2—H2A0.9600C11—H11A0.9700
C2—H2B0.9600C11—H11B0.9700
C2—H2C0.9600C12—H12A0.9700
C3—C81.383 (6)C12—H12B0.9700
C3—C41.390 (6)C13—C141.425 (8)
C4—C51.404 (7)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.345 (8)C14—H14A0.9700
C5—H50.9300C14—H14B0.9700
C6—C71.362 (8)C15—C161.388 (8)
C6—H60.9300C15—H15A0.9700
C7—C81.396 (7)C15—H15B0.9700
C7—H70.9300C16—H16A0.9700
C8—H80.9300C16—H16B0.9700
O1—C181.404 (9)C17—C181.437 (8)
O1—C91.442 (9)C17—H17A0.9700
O2—C101.402 (8)C17—H17B0.9700
O2—C111.433 (9)C18—H18A0.9700
O3—C131.410 (9)C18—H18B0.9700
O3—C121.441 (9)
C1—Sn1—C2120.2 (2)O2—C10—C9110.4 (8)
C1—Sn1—C3121.1 (2)O2—C10—H10A109.6
C2—Sn1—C3116.0 (2)C9—C10—H10A109.6
C1—Sn1—O1w82.9 (2)O2—C10—H10B109.6
C2—Sn1—O1w83.3 (2)C9—C10—H10B109.6
C3—Sn1—O1w87.5 (1)H10A—C10—H10B108.1
C1—Sn1—Cl195.2 (2)O2—C11—C12107.9 (8)
C2—Sn1—Cl194.8 (2)O2—C11—H11A110.1
C3—Sn1—Cl196.4 (1)C12—C11—H11A110.1
O1w—Sn1—Cl1176.1 (1)O2—C11—H11B110.1
Sn1—O1w—H1w109.5C12—C11—H11B110.1
Sn1—O1w—H2w109.5H11A—C11—H11B108.4
H1w—O1w—H2w109.5O3—C12—C11107.7 (8)
Sn1—C1—H1A109.5O3—C12—H12A110.2
Sn1—C1—H1B109.5C11—C12—H12A110.2
H1A—C1—H1B109.5O3—C12—H12B110.2
Sn1—C1—H1C109.5C11—C12—H12B110.2
H1A—C1—H1C109.5H12A—C12—H12B108.5
H1B—C1—H1C109.5O3—C13—C14111.5 (8)
Sn1—C2—H2A109.5O3—C13—H13A109.3
Sn1—C2—H2B109.5C14—C13—H13A109.3
H2A—C2—H2B109.5O3—C13—H13B109.3
Sn1—C2—H2C109.5C14—C13—H13B109.3
H2A—C2—H2C109.5H13A—C13—H13B108.0
H2B—C2—H2C109.5C13—C14—O4107.7 (8)
C8—C3—C4117.5 (4)C13—C14—H14A110.2
C8—C3—Sn1123.0 (3)O4—C14—H14A110.2
C4—C3—Sn1119.3 (3)C13—C14—H14B110.2
C3—C4—C5120.2 (5)O4—C14—H14B110.2
C3—C4—H4119.9H14A—C14—H14B108.5
C5—C4—H4119.9C16—C15—O4118.2 (8)
C6—C5—C4121.1 (5)C16—C15—H15A107.8
C6—C5—H5119.5O4—C15—H15A107.8
C4—C5—H5119.5C16—C15—H15B107.8
C5—C6—C7119.7 (5)O4—C15—H15B107.8
C5—C6—H6120.1H15A—C15—H15B107.1
C7—C6—H6120.1C15—C16—O5116.0 (8)
C6—C7—C8120.4 (5)C15—C16—H16A108.3
C6—C7—H7119.8O5—C16—H16A108.3
C8—C7—H7119.8C15—C16—H16B108.3
C3—C8—C7121.0 (5)O5—C16—H16B108.3
C3—C8—H8119.5H16A—C16—H16B107.4
C7—C8—H8119.5O5—C17—C18109.8 (8)
C18—O1—C9114.0 (8)O5—C17—H17A109.7
C10—O2—C11114.5 (8)C18—C17—H17A109.7
C13—O3—C12113.0 (7)O5—C17—H17B109.7
C15—O4—C14112.3 (8)C18—C17—H17B109.7
C16—O5—C17115.4 (8)H17A—C17—H17B108.2
C10—C9—O1107.7 (8)O1—C18—C17111.6 (8)
C10—C9—H9A110.2O1—C18—H18A109.3
O1—C9—H9A110.2C17—C18—H18A109.3
C10—C9—H9B110.2O1—C18—H18B109.3
O1—C9—H9B110.2C17—C18—H18B109.3
H9A—C9—H9B108.5H18A—C18—H18B108.0
C1—Sn1—C3—C854.1 (4)C18—O1—C9—C10165.5 (11)
C2—Sn1—C3—C8107.3 (4)C11—O2—C10—C9165.4 (11)
O1w—Sn1—C3—C826.0 (4)O1—C9—C10—O267.6 (15)
Cl1—Sn1—C3—C8154.1 (3)C10—O2—C11—C12167.9 (11)
C1—Sn1—C3—C4129.8 (3)C13—O3—C12—C11175.6 (11)
C2—Sn1—C3—C468.8 (4)O2—C11—C12—O363.6 (15)
O1w—Sn1—C3—C4150.1 (3)C12—O3—C13—C14160.1 (12)
Cl1—Sn1—C3—C429.7 (3)O3—C13—C14—O463.5 (16)
C8—C3—C4—C50.2 (7)C15—O4—C14—C13169.2 (11)
Sn1—C3—C4—C5176.1 (4)C14—O4—C15—C16117.0 (15)
C3—C4—C5—C61.1 (8)O4—C15—C16—O524 (2)
C4—C5—C6—C71.4 (9)C17—O5—C16—C15171.3 (13)
C5—C6—C7—C80.6 (9)C16—O5—C17—C18172.7 (12)
C4—C3—C8—C71.1 (7)C9—O1—C18—C17155.4 (12)
Sn1—C3—C8—C7175.1 (4)O5—C17—C18—O161.1 (16)
C6—C7—C8—C30.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O10.822.092.86 (1)156
O1w—H1w···O4i0.822.052.74 (1)143
O1w—H2w···O30.822.152.82 (1)139
O1w—H2w···O5i0.822.242.91 (1)139
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula2[Sn(CH3)2(C6H5)Cl(H2O)]·C10H20O5
Mr778.91
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.8700 (3), 18.9814 (5), 9.8770 (3)
β (°) 113.636 (1)
V3)1695.2 (1)
Z2
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.534, 0.732
No. of measured, independent and
observed [I > 2σ(I)] reflections
16379, 3869, 3433
Rint0.023
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.128, 1.06
No. of reflections3869
No. of parameters159
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 1.14

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Sn1—C12.115 (5)Sn1—O1w2.472 (3)
Sn1—C22.122 (5)Sn1—Cl12.485 (1)
Sn1—C32.139 (4)
C1—Sn1—C2120.2 (2)C2—Sn1—C3116.0 (2)
C1—Sn1—C3121.1 (2)O1w—Sn1—Cl1176.1 (1)
 

Acknowledgements

We thank Shahid Beheshti University, Heilongjiang University and the University of Malaya for supporting this work.

References

First citationAmini, M. M., Azadmehr, A., Abadi, S. H. & Ng, S. W. (2002). Acta Cryst. E58, m484–m485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmini, M. M., Zuckerman, J. J., Rheingold, A. L. & Ng, S. W. (1994). Z. Kristallogr. 209, 613–614.  CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationChee, C. F., Lo, K. M. & Ng, S. W. (2003). Acta Cryst. E59, m202–m204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNg, S. W. (2005). Chin. J. Struct. Chem. 24, 1425–1439.  CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationYap, G. P. A., Counterman, A. E., Amini, M. M., Ng, S. W. & Rheingold, A. L. (1996). Main Group Chem. 1, 359–363.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds