organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[2-(deuterio­methyl­sulfan­yl)­phen­yl]­phosphine deuterio­chloro­form 0.125-solvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bResearch Center for Molecular Nanoscience, Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 February 2008; accepted 18 April 2008; online 23 April 2008)

The title deuterated tripodal phosphine, C21H12D9PS3·0.125CDCl3, crystallizes as two independent mol­ecules, one of which lies on a general position and the other about a threefold rotation axis, and as a deuteriochloro­form solvate. The solvent mol­ecule is disordered about a site of symmetry 3, so that the ratio of phosphine to solvent is 8:1. The P atom adopts a pyramidal coordination geometry.

Related literature

For the synthesis and crystal structure of tris­[(2-methyl­sulfan­yl)phen­yl]phosphine, see: Meek et al. (1976[Meek, D. W., Dyer, G. & Workman, M. O. (1976). Inorg. Synth. 16, 168-174.]); Uttecht et al. (2005[Uttecht, J.-G., Tuczek, F. & Näther, C. (2005). Acta Cryst. E61, o2916-o2917.]).

[Scheme 1]

Experimental

Crystal data
  • C21H12D9PS3·0.125CDCl3

  • Mr = 424.63

  • Hexagonal, [R \overline 3]

  • a = 23.090 (1) Å

  • c = 25.144 (1) Å

  • V = 11610 (1) Å3

  • Z = 24

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 100 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.925, Tmax = 1.000 (expected range = 0.878–0.949)

  • 36814 measured reflections

  • 5929 independent reflections

  • 4200 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.194

  • S = 1.18

  • 5929 reflections

  • 329 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Tris[(2-methylsulfanyl)phenyl]phosphine is a tripodal ligand that yields a number of adducts with transition metals. The compound crystallizes without any solvent (Uttecht et al., 2005). We intended to synthesize the deuterated title compound to examine their coordination patterns. The present deuteriochloroform solvate (Scheme I, Fig. 1) is isostructural with the reported solvent-free compound, whose crystal structure has been described in detail. The deuterated chloroform molecule is disordered, and appears to occupy a only small portion of the unit cell. Its presence is not sufficient to cause much change in the unit cell volume.

Related literature top

For the synthesis and crystal structure of tris[(2-methylsulfanyl)phenyl]phosphine, see: Meek et al. (1976); Uttecht et al. (2005).

Experimental top

The procedure was adapted from a reported procedure (Meek et al., 1976). d3-2-Bromothioanisole (2.50 g, 0.012 mol) was dissolved in dry ether (13 ml) at 273 K. To the solution was added over 2 h 1.6 M n-butyllithium in n-hexane (8 ml). A white precipitate separated after half the n-butyllithium was added. After the full quantity of the reagent was added, stirring was continued for another hour. Phosphorus trichloride (0.56 g, 0.004 mol) in ether (8 ml) was added over 3 h. The mixture was then allowed to warm up to room temperature before being hydrolyzed with 0.2 N hydrochloric acid (8 ml). The white solid was collected and washed with distilled water, ethanol and ether. The compound (1.216 g, 0.003 mol, 70% yield) was recrystallized from deuterated chloroform.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). Scattering factors used for deuterium were those of hydrogen.

The CDCl3 molecule was refined as a complete molecule of 1/8 occupancy about a site of symmetry, 3. The displacement factors of the three chloride atoms were restrained to be identical. The three C–Cl distances were restrained to within 0.01 Å of each other as were the Cl···Cl distances; the anisotropic temperature factors of the carbon atom were restrained to be nearly isotropic.

The final difference Fourier map had a peak 1 Å from P1 but was otherwise featureless.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the two independent (CD3S-2-C6H4)3P molecules showing atom labelling; the P2-molecule is located on a threefold axis of symmetry. Displacement ellipsoids are drawn at the 70% probability level. The disordered solvent molecule is omitted for clarity, and H and D atoms are shown as spheres of arbitrary radii.
Tris[2-(deuteriomethylsulfanyl)phenyl]phosphine deuteriochloroform 0.125-solvate top
Crystal data top
C21H12D9PS3·0.125CDCl3Dx = 1.458 Mg m3
Mr = 424.63Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 2990 reflections
Hall symbol: -R 3θ = 2.6–21.9°
a = 23.090 (1) ŵ = 0.52 mm1
c = 25.144 (1) ÅT = 100 K
V = 11610 (1) Å3Diamondoid, colorless
Z = 240.20 × 0.15 × 0.10 mm
F(000) = 5214
Data collection top
Bruker SMART APEX
diffractometer
5929 independent reflections
Radiation source: fine-focus sealed tube4200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ϕ and ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2929
Tmin = 0.925, Tmax = 1.000k = 2930
36814 measured reflectionsl = 3032
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
5929 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 1.14 e Å3
12 restraintsΔρmin = 0.49 e Å3
Crystal data top
C21H12D9PS3·0.125CDCl3Z = 24
Mr = 424.63Mo Kα radiation
Hexagonal, R3µ = 0.52 mm1
a = 23.090 (1) ÅT = 100 K
c = 25.144 (1) Å0.20 × 0.15 × 0.10 mm
V = 11610 (1) Å3
Data collection top
Bruker SMART APEX
diffractometer
5929 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4200 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 1.000Rint = 0.089
36814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06212 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.18Δρmax = 1.14 e Å3
5929 reflectionsΔρmin = 0.49 e Å3
329 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.3613 (6)0.7404 (8)0.1620 (5)0.0398 (13)0.17
Cl20.2520 (7)0.6046 (7)0.1699 (7)0.0398 (13)0.17
Cl30.3839 (7)0.6288 (7)0.1538 (7)0.0398 (13)0.17
S10.23386 (5)0.27581 (5)0.07002 (4)0.0297 (3)
S20.07625 (5)0.35610 (5)0.07921 (4)0.0307 (3)
S30.22138 (5)0.41664 (5)0.09462 (4)0.0308 (3)
S40.03527 (5)0.10870 (5)0.16513 (4)0.0260 (2)
P10.21057 (5)0.38934 (5)0.02920 (4)0.0231 (2)
P20.00000.00000.13345 (6)0.0185 (3)
C10.29317 (18)0.39837 (19)0.02368 (14)0.0241 (8)
C20.34626 (18)0.45189 (19)0.00033 (15)0.0268 (8)
H20.34150.48840.01210.032*
C30.4062 (2)0.4540 (2)0.00774 (15)0.0302 (9)
H30.44170.49100.02550.036*
C40.41479 (19)0.4038 (2)0.01014 (16)0.0304 (9)
H40.45670.40620.00550.036*
C50.36333 (19)0.3492 (2)0.03509 (15)0.0286 (9)
H50.37010.31430.04800.034*
C60.30210 (18)0.34504 (18)0.04128 (14)0.0243 (8)
C70.2637 (2)0.2188 (2)0.07750 (18)0.0359 (10)
H7A0.22670.17490.08800.054*
H7B0.29850.23530.10490.054*
H7C0.28240.21470.04370.054*
C80.20467 (18)0.39982 (18)0.10092 (15)0.0233 (8)
C90.2594 (2)0.4248 (2)0.13414 (16)0.0347 (10)
H90.30290.44250.11940.042*
C100.2520 (2)0.4246 (3)0.18775 (17)0.0403 (11)
H100.29040.43990.20980.048*
C110.1919 (3)0.4032 (2)0.21056 (17)0.0413 (11)
H110.18810.40500.24810.050*
C120.1353 (2)0.3784 (2)0.17813 (16)0.0316 (9)
H120.09220.36190.19340.038*
C130.14268 (19)0.37816 (18)0.12409 (16)0.0257 (8)
C140.0046 (2)0.3277 (2)0.1209 (2)0.0464 (13)
H14A0.03570.30980.09890.070*
H14B0.00870.36520.14210.070*
H14C0.00150.29260.14470.070*
C150.22337 (17)0.46852 (18)0.00343 (15)0.0243 (8)
C160.22705 (18)0.51897 (19)0.03555 (16)0.0279 (9)
H160.22790.51410.07300.034*
C170.2295 (2)0.5742 (2)0.01652 (17)0.0376 (10)
H170.23040.60670.04020.045*
C180.2308 (2)0.5838 (2)0.03719 (17)0.0327 (9)
H180.23370.62350.05090.039*
C190.22791 (19)0.53560 (19)0.07160 (17)0.0290 (9)
H190.22900.54220.10900.035*
C200.22342 (17)0.47825 (18)0.05158 (15)0.0241 (8)
C210.1884 (2)0.4301 (2)0.15450 (15)0.0305 (9)
H21A0.17740.39320.17920.046*
H21B0.22190.47230.17080.046*
H21C0.14800.43220.14640.046*
C220.06906 (16)0.00245 (17)0.10086 (14)0.0181 (7)
C230.10721 (17)0.04262 (17)0.06167 (14)0.0209 (7)
H230.09510.07390.04910.025*
C240.16278 (17)0.04311 (17)0.04031 (14)0.0202 (7)
H240.18870.07480.01370.024*
C250.17988 (18)0.00197 (18)0.05765 (14)0.0225 (8)
H250.21780.00200.04300.027*
C260.14256 (17)0.04786 (18)0.09647 (14)0.0223 (8)
H260.15500.07920.10810.027*
C270.08693 (17)0.04882 (17)0.11873 (14)0.0204 (7)
C280.08728 (19)0.13719 (19)0.19390 (15)0.0273 (8)
H28A0.06310.16860.22280.041*
H28B0.12800.09890.20800.041*
H28C0.09930.15970.16670.041*
C290.3291 (7)0.6581 (8)0.1414 (7)0.032 (5)0.17
H290.32250.65700.10200.038*0.17
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.055 (4)0.037 (5)0.028 (5)0.024 (3)0.006 (3)0.003 (2)
Cl20.055 (4)0.037 (5)0.028 (5)0.024 (3)0.006 (3)0.003 (2)
Cl30.055 (4)0.037 (5)0.028 (5)0.024 (3)0.006 (3)0.003 (2)
S10.0303 (5)0.0261 (5)0.0302 (6)0.0122 (4)0.0060 (4)0.0036 (4)
S20.0232 (5)0.0291 (5)0.0390 (6)0.0125 (4)0.0012 (4)0.0026 (4)
S30.0447 (6)0.0364 (6)0.0198 (5)0.0268 (5)0.0003 (4)0.0004 (4)
S40.0226 (5)0.0253 (5)0.0301 (6)0.0121 (4)0.0043 (4)0.0102 (4)
P10.0226 (5)0.0268 (5)0.0186 (5)0.0114 (4)0.0006 (4)0.0006 (4)
P20.0195 (5)0.0195 (5)0.0166 (8)0.0097 (2)0.0000.000
C10.0242 (19)0.031 (2)0.0183 (19)0.0145 (16)0.0002 (14)0.0035 (15)
C20.026 (2)0.026 (2)0.023 (2)0.0084 (16)0.0042 (15)0.0034 (15)
C30.031 (2)0.032 (2)0.025 (2)0.0142 (18)0.0017 (17)0.0015 (17)
C40.0223 (19)0.034 (2)0.031 (2)0.0114 (17)0.0014 (16)0.0081 (17)
C50.030 (2)0.035 (2)0.024 (2)0.0191 (18)0.0000 (16)0.0044 (16)
C60.028 (2)0.0250 (19)0.0163 (19)0.0112 (16)0.0056 (15)0.0038 (15)
C70.036 (2)0.029 (2)0.041 (3)0.0158 (19)0.0034 (19)0.0022 (18)
C80.0282 (19)0.0280 (19)0.0192 (19)0.0181 (17)0.0027 (15)0.0035 (15)
C90.029 (2)0.055 (3)0.026 (2)0.025 (2)0.0013 (17)0.0074 (19)
C100.043 (3)0.078 (3)0.026 (2)0.050 (3)0.0058 (19)0.003 (2)
C110.074 (3)0.055 (3)0.018 (2)0.050 (3)0.001 (2)0.0003 (19)
C120.048 (2)0.036 (2)0.022 (2)0.029 (2)0.0137 (18)0.0120 (17)
C130.031 (2)0.0224 (19)0.029 (2)0.0171 (16)0.0040 (16)0.0039 (15)
C140.031 (2)0.035 (2)0.074 (4)0.016 (2)0.019 (2)0.002 (2)
C150.0212 (18)0.0258 (19)0.027 (2)0.0123 (16)0.0007 (15)0.0003 (15)
C160.030 (2)0.029 (2)0.020 (2)0.0112 (17)0.0014 (16)0.0098 (16)
C170.043 (3)0.033 (2)0.033 (3)0.017 (2)0.000 (2)0.0094 (19)
C180.034 (2)0.029 (2)0.036 (2)0.0163 (18)0.0002 (18)0.0026 (18)
C190.030 (2)0.033 (2)0.025 (2)0.0169 (18)0.0003 (16)0.0043 (17)
C200.0192 (18)0.0257 (19)0.027 (2)0.0110 (15)0.0006 (15)0.0027 (16)
C210.035 (2)0.038 (2)0.022 (2)0.0209 (19)0.0017 (17)0.0005 (17)
C220.0165 (16)0.0204 (17)0.0174 (18)0.0092 (14)0.0027 (13)0.0026 (14)
C230.0232 (18)0.0244 (18)0.0173 (19)0.0135 (15)0.0037 (14)0.0009 (14)
C240.0208 (17)0.0188 (17)0.0174 (18)0.0072 (14)0.0005 (14)0.0008 (14)
C250.0216 (18)0.0274 (19)0.0178 (19)0.0117 (15)0.0020 (14)0.0002 (15)
C260.0232 (18)0.0216 (18)0.023 (2)0.0118 (15)0.0017 (15)0.0010 (15)
C270.0187 (17)0.0180 (17)0.0198 (19)0.0058 (14)0.0022 (14)0.0009 (14)
C280.032 (2)0.031 (2)0.024 (2)0.0200 (18)0.0015 (16)0.0055 (16)
C290.035 (8)0.027 (9)0.035 (7)0.018 (7)0.004 (10)0.018 (8)
Geometric parameters (Å, º) top
Cl1—C291.737 (9)C10—H100.9500
Cl2—C291.736 (9)C11—C121.398 (6)
Cl3—C291.736 (9)C11—H110.9500
S1—C71.776 (4)C12—C131.370 (5)
S1—C61.744 (4)C12—H120.9500
S2—C141.783 (4)C14—H14A0.9800
S2—C131.762 (4)C14—H14B0.9800
S3—C211.783 (4)C14—H14C0.9800
S3—C201.769 (4)C15—C161.385 (5)
S4—C271.745 (4)C15—C201.401 (5)
S4—C281.786 (4)C16—C171.337 (6)
P1—C11.817 (4)C16—H160.9500
P1—C151.819 (4)C17—C181.367 (6)
P1—C81.834 (4)C17—H170.9500
P2—C22i1.819 (3)C18—C191.385 (6)
P2—C221.819 (3)C18—H180.9500
P2—C22ii1.819 (3)C19—C201.371 (5)
C1—C21.371 (5)C19—H190.9500
C1—C61.417 (5)C21—H21A0.9800
C2—C31.373 (5)C21—H21B0.9800
C2—H20.9500C21—H21C0.9800
C3—C41.346 (6)C22—C231.383 (5)
C3—H30.9500C22—C271.400 (5)
C4—C51.378 (5)C23—C241.386 (5)
C4—H40.9500C23—H230.9500
C5—C61.377 (5)C24—C251.357 (5)
C5—H50.9500C24—H240.9500
C7—H7A0.9800C25—C261.380 (5)
C7—H7B0.9800C25—H250.9500
C7—H7C0.9800C26—C271.391 (5)
C8—C131.387 (5)C26—H260.9500
C8—C91.378 (5)C28—H28A0.9800
C9—C101.358 (6)C28—H28B0.9800
C9—H90.9500C28—H28C0.9800
C10—C111.347 (6)C29—H291.0000
C7—S1—C6102.45 (19)H14A—C14—H14C109.5
C14—S2—C13104.0 (2)H14B—C14—H14C109.5
C21—S3—C20102.65 (18)C16—C15—C20116.5 (3)
C27—S4—C28104.09 (17)C16—C15—P1123.3 (3)
C1—P1—C15102.93 (17)C20—C15—P1120.0 (3)
C1—P1—C8101.70 (16)C17—C16—C15123.3 (4)
C15—P1—C8101.72 (17)C17—C16—H16118.3
C22i—P2—C22101.27 (14)C15—C16—H16118.3
C22i—P2—C22ii101.27 (14)C16—C17—C18119.7 (4)
C22—P2—C22ii101.27 (14)C16—C17—H17120.1
C2—C1—C6117.9 (3)C18—C17—H17120.1
C2—C1—P1123.4 (3)C17—C18—C19119.9 (4)
C6—C1—P1118.5 (3)C17—C18—H18120.1
C3—C2—C1121.5 (4)C19—C18—H18120.1
C3—C2—H2119.2C20—C19—C18119.8 (4)
C1—C2—H2119.2C20—C19—H19120.1
C4—C3—C2120.3 (4)C18—C19—H19120.1
C4—C3—H3119.9C19—C20—C15120.7 (4)
C2—C3—H3119.9C19—C20—S3120.7 (3)
C3—C4—C5120.6 (4)C15—C20—S3118.5 (3)
C3—C4—H4119.7S3—C21—H21A109.5
C5—C4—H4119.7S3—C21—H21B109.5
C4—C5—C6120.0 (4)H21A—C21—H21B109.5
C4—C5—H5120.0S3—C21—H21C109.5
C6—C5—H5120.0H21A—C21—H21C109.5
C5—C6—C1119.7 (4)H21B—C21—H21C109.5
C5—C6—S1122.4 (3)C23—C22—C27118.9 (3)
C1—C6—S1117.9 (3)C23—C22—P2122.4 (3)
S1—C7—H7A109.5C27—C22—P2118.5 (3)
S1—C7—H7B109.5C24—C23—C22121.4 (3)
H7A—C7—H7B109.5C24—C23—H23119.3
S1—C7—H7C109.5C22—C23—H23119.3
H7A—C7—H7C109.5C25—C24—C23119.5 (3)
H7B—C7—H7C109.5C25—C24—H24120.2
C13—C8—C9117.5 (4)C23—C24—H24120.2
C13—C8—P1119.8 (3)C24—C25—C26120.4 (3)
C9—C8—P1122.6 (3)C24—C25—H25119.8
C10—C9—C8120.8 (4)C26—C25—H25119.8
C10—C9—H9119.6C25—C26—C27120.9 (3)
C8—C9—H9119.6C25—C26—H26119.5
C11—C10—C9121.9 (4)C27—C26—H26119.5
C11—C10—H10119.0C26—C27—C22118.8 (3)
C9—C10—H10119.0C26—C27—S4122.8 (3)
C10—C11—C12118.9 (4)C22—C27—S4118.3 (3)
C10—C11—H11120.5S4—C28—H28A109.5
C12—C11—H11120.5S4—C28—H28B109.5
C11—C12—C13119.2 (4)H28A—C28—H28B109.5
C11—C12—H12120.4S4—C28—H28C109.5
C13—C12—H12120.4H28A—C28—H28C109.5
C8—C13—C12121.6 (4)H28B—C28—H28C109.5
C8—C13—S2115.3 (3)Cl1—C29—Cl3112.2 (7)
C12—C13—S2123.0 (3)Cl1—C29—Cl2112.4 (7)
S2—C14—H14A109.5Cl3—C29—Cl2109.7 (7)
S2—C14—H14B109.5Cl1—C29—H29107.5
H14A—C14—H14B109.5Cl3—C29—H29107.5
S2—C14—H14C109.5Cl2—C29—H29107.5
C15—P1—C1—C26.0 (4)C1—P1—C15—C16104.6 (3)
C8—P1—C1—C2111.1 (3)C8—P1—C15—C160.5 (4)
C15—P1—C1—C6179.1 (3)C1—P1—C15—C2081.7 (3)
C8—P1—C1—C674.0 (3)C8—P1—C15—C20173.2 (3)
C6—C1—C2—C30.6 (6)C20—C15—C16—C171.0 (6)
P1—C1—C2—C3174.3 (3)P1—C15—C16—C17172.9 (3)
C1—C2—C3—C42.1 (6)C15—C16—C17—C182.3 (6)
C2—C3—C4—C51.3 (6)C16—C17—C18—C191.5 (6)
C3—C4—C5—C60.9 (6)C17—C18—C19—C200.3 (6)
C4—C5—C6—C12.4 (6)C18—C19—C20—C151.6 (6)
C4—C5—C6—S1177.3 (3)C18—C19—C20—S3178.7 (3)
C2—C1—C6—C51.6 (5)C16—C15—C20—C190.9 (5)
P1—C1—C6—C5176.7 (3)P1—C15—C20—C19175.0 (3)
C2—C1—C6—S1178.1 (3)C16—C15—C20—S3178.1 (3)
P1—C1—C6—S13.0 (4)P1—C15—C20—S37.8 (4)
C7—S1—C6—C57.1 (4)C21—S3—C20—C1925.5 (4)
C7—S1—C6—C1172.6 (3)C21—S3—C20—C15157.3 (3)
C1—P1—C8—C13161.9 (3)C22i—P2—C22—C23103.4 (2)
C15—P1—C8—C1392.1 (3)C22ii—P2—C22—C230.7 (3)
C1—P1—C8—C913.9 (4)C22i—P2—C22—C2781.1 (4)
C15—P1—C8—C992.2 (4)C22ii—P2—C22—C27174.9 (3)
C13—C8—C9—C103.6 (6)C27—C22—C23—C240.6 (5)
P1—C8—C9—C10172.2 (3)P2—C22—C23—C24174.9 (3)
C8—C9—C10—C113.3 (7)C22—C23—C24—C250.8 (5)
C9—C10—C11—C122.3 (7)C23—C24—C25—C260.3 (5)
C10—C11—C12—C131.7 (6)C24—C25—C26—C270.2 (5)
C9—C8—C13—C123.1 (6)C25—C26—C27—C220.3 (5)
P1—C8—C13—C12172.8 (3)C25—C26—C27—S4176.2 (3)
C9—C8—C13—S2172.8 (3)C23—C22—C27—C260.1 (5)
P1—C8—C13—S211.3 (4)P2—C22—C27—C26175.6 (3)
C11—C12—C13—C82.2 (6)C23—C22—C27—S4176.0 (3)
C11—C12—C13—S2173.4 (3)P2—C22—C27—S48.3 (4)
C14—S2—C13—C8177.7 (3)C28—S4—C27—C2623.3 (4)
C14—S2—C13—C126.5 (4)C28—S4—C27—C22160.7 (3)
Symmetry codes: (i) x+y, x, z; (ii) y, xy, z.

Experimental details

Crystal data
Chemical formulaC21H12D9PS3·0.125CDCl3
Mr424.63
Crystal system, space groupHexagonal, R3
Temperature (K)100
a, c (Å)23.090 (1), 25.144 (1)
V3)11610 (1)
Z24
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.925, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
36814, 5929, 4200
Rint0.089
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.194, 1.18
No. of reflections5929
No. of parameters329
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.49

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

 

Acknowledgements

We thank the ScienceFund MOSTI (03-01-03-SF0209) for funding the study, and the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMeek, D. W., Dyer, G. & Workman, M. O. (1976). Inorg. Synth. 16, 168–174.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUttecht, J.-G., Tuczek, F. & Näther, C. (2005). Acta Cryst. E61, o2916–o2917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds