organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-chloro­phen­yl)urea

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 March 2008; accepted 20 April 2008; online 26 April 2008)

The carbonyl unit of the title compound, C13H10Cl2N2O, lies on a twofold rotation axis. The ring is aligned at 51.6 (1)° with respect to the N—C(=O)—N fragment. The two –NH– fragments of one mol­ecule form hydrogen bonds [2.845 (2) Å] to the C=O fragment of an adjacent mol­ecule, giving rise to the formation of a linear hydrogen-bonded chain.

Related literature

For isostructural N,N′-bis­(4-bromo­phen­yl)urea, see: Lin et al. (2004[Lin, Q., Zhang, Y.-M., Wei, T.-B. & Wang, H. (2004). Acta Cryst. E60, o696-o698.]). N,N′-Bis-(4-chloro­phen­yl)urea has been isolated as a co-crystal with a phthalazinium chloride; see: Wamhoff et al. (1994[Wamhoff, H., Bamberg, C., Hermann, S. & Nieger, M. (1994). J. Org. Chem. 59, 3985-3993.]). For the self-condensation of 4-chloro­phenyl isocyanate to yield the title symmetrical urea, see: Fu et al. (2007[Fu, J.-L., Wang, Z. & Zhu, H. (2007). Huaxue Shiji, 29, 187-188.]); Jimenez Blanco et al. (1999[Jimenez Blanco, J. L., Saitz Barria, C., Benito, J. M., Ortiz Mellet, C., Fuentes, J., Santoyo-Gonzalez, F. & Garcia Fernandez, J. (1999). Synthesis, pp. 1907-1914.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10Cl2N2O

  • Mr = 281.13

  • Monoclinic, C 2/c

  • a = 27.093 (3) Å

  • b = 4.5768 (5) Å

  • c = 9.901 (1) Å

  • β = 96.389 (2)°

  • V = 1220.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 100 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.862, Tmax = 0.950

  • 3703 measured reflections

  • 1386 independent reflections

  • 1210 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.096

  • S = 1.11

  • 1386 reflections

  • 87 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (1) 2.05 (1) 2.845 (2) 152 (2)
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The title compound, a symmetrical urea derivative, was the unexpected product from the reaction of 4-chlorophenyl isocyanate with p-tolylsulfonic acid in ethanol. The carbonyl unit of (Cl-4-C6H4)NH–C(=O)–NH(C6H4-4-Cl) lies on a twofold rotation axis, Fig. 1, that relates one aromatic ring to the other. The ring is aligned at 51.6 (1) ° with respect to the N–C(=O)–N fragment. The two –NH– fragments of one molecule forms hydrogen bonds to the C=O fragment of an adjacent molecule, giving rise to the formation of a linear hydrogen-bonded chain (Table 1). The compound has previously been synthesized from the self-condensation of 4-chlorophenyl isocyanate in acetone (Fu et al., 2007) and in water catalyzed by pyridine (Jimenez Blanco et al., 1999).

Related literature top

For isostructural N,N'-bis(4-bromophenyl)urea, see: Lin et al. (2004). N,N'-Bis-(4-chlorophenyl)urea has been isolated as a co-crystal with a phthalazinium chloride; see: Wamhoff et al. (1994). For the self-condensation of 4-chlorophenyl isocyanate to yield the title symmetrical urea, see: Fu et al. (2007); Jimenez Blanco et al. (1999).

Experimental top

4-Chlorophenyl isocyanate (1.0 g, 6.5 mmol) and p-toluenesulfonic acid (1.2 g, 6.5 mmol) were heated in ethanol (100 ml) for 1 h. The solution was filtered; evaporation of the solvent gave plates of the symmetrical urea.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme and 70% probability displacement ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlablled atoms related by a 2-fold axis of symmetry.
N,N'-Bis(4-chlorophenyl)urea top
Crystal data top
C13H10Cl2N2OF(000) = 576
Mr = 281.13Dx = 1.530 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1510 reflections
a = 27.093 (3) Åθ = 3.0–28.2°
b = 4.5768 (5) ŵ = 0.52 mm1
c = 9.901 (1) ÅT = 100 K
β = 96.389 (2)°Block, colorless
V = 1220.1 (2) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
1386 independent reflections
Radiation source: fine-focus sealed tube1210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3427
Tmin = 0.862, Tmax = 0.950k = 55
3703 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0445P)2 + 1.607P]
where P = (Fo2 + 2Fc2)/3
1386 reflections(Δ/σ)max < 0.001
87 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C13H10Cl2N2OV = 1220.1 (2) Å3
Mr = 281.13Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.093 (3) ŵ = 0.52 mm1
b = 4.5768 (5) ÅT = 100 K
c = 9.901 (1) Å0.20 × 0.20 × 0.10 mm
β = 96.389 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
1386 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1210 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.950Rint = 0.020
3703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.31 e Å3
1386 reflectionsΔρmin = 0.29 e Å3
87 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.293344 (15)0.99597 (10)0.33207 (4)0.02417 (17)
O10.50000.9101 (4)0.75000.0163 (4)
N10.46380 (5)0.4789 (3)0.67795 (15)0.0149 (3)
H10.4640 (8)0.292 (2)0.691 (2)0.024 (5)*
C10.50000.6399 (5)0.75000.0130 (4)
C20.42311 (6)0.6073 (3)0.59591 (15)0.0131 (3)
C30.43093 (6)0.8150 (4)0.49760 (16)0.0152 (3)
H30.46380.87300.48540.018*
C40.39102 (6)0.9373 (4)0.41754 (17)0.0175 (4)
H40.39631.08230.35200.021*
C50.34334 (6)0.8455 (4)0.43438 (16)0.0162 (3)
C60.33491 (6)0.6357 (4)0.52957 (17)0.0183 (4)
H60.30210.57290.53910.022*
C70.37498 (6)0.5180 (4)0.61096 (17)0.0176 (4)
H70.36950.37540.67740.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0159 (2)0.0299 (3)0.0249 (3)0.00200 (17)0.00584 (17)0.00510 (17)
O10.0173 (8)0.0094 (8)0.0207 (8)0.0000.0037 (6)0.000
N10.0146 (7)0.0082 (6)0.0208 (7)0.0002 (5)0.0028 (6)0.0007 (5)
C10.0128 (10)0.0123 (11)0.0141 (10)0.0000.0025 (8)0.000
C20.0141 (7)0.0104 (7)0.0142 (7)0.0001 (6)0.0006 (6)0.0027 (6)
C30.0124 (7)0.0162 (8)0.0167 (8)0.0028 (6)0.0004 (6)0.0013 (6)
C40.0184 (8)0.0178 (8)0.0159 (8)0.0013 (6)0.0001 (6)0.0016 (6)
C50.0138 (8)0.0189 (8)0.0152 (8)0.0018 (6)0.0023 (6)0.0017 (6)
C60.0118 (8)0.0233 (9)0.0199 (8)0.0016 (6)0.0024 (6)0.0009 (7)
C70.0176 (8)0.0174 (8)0.0178 (8)0.0019 (6)0.0026 (6)0.0026 (6)
Geometric parameters (Å, º) top
Cl1—C51.741 (2)C3—C41.386 (2)
O1—C11.237 (3)C3—H30.9500
N1—C11.363 (2)C4—C51.386 (2)
N1—C21.422 (2)C4—H40.9500
N1—H10.87 (1)C5—C61.382 (2)
C1—N1i1.363 (2)C6—C71.387 (2)
C2—C71.390 (2)C6—H60.9500
C2—C31.393 (2)C7—H70.9500
C1—N1—C2122.9 (1)C5—C4—C3119.2 (2)
C1—N1—H1118 (1)C5—C4—H4120.4
C2—N1—H1119 (1)C3—C4—H4120.4
O1—C1—N1122.7 (1)C4—C5—C6121.3 (2)
O1—C1—N1i122.7 (1)C4—C5—Cl1119.0 (1)
N1—C1—N1i114.6 (2)C6—C5—Cl1119.65 (13)
C7—C2—C3119.5 (2)C7—C6—C5119.21 (15)
C7—C2—N1119.6 (1)C7—C6—H6120.4
C3—C2—N1120.8 (1)C5—C6—H6120.4
C4—C3—C2120.4 (2)C6—C7—C2120.42 (15)
C4—C3—H3119.8C6—C7—H7119.8
C2—C3—H3119.8C2—C7—H7119.8
C2—N1—C1—O10.4 (2)C3—C4—C5—C60.3 (3)
C2—N1—C1—N1i179.6 (2)C3—C4—C5—Cl1179.1 (1)
C1—N1—C2—C7129.4 (2)C4—C5—C6—C70.9 (3)
C1—N1—C2—C352.6 (2)Cl1—C5—C6—C7179.8 (1)
C7—C2—C3—C41.6 (2)C5—C6—C7—C20.8 (3)
N1—C2—C3—C4179.6 (2)C3—C2—C7—C60.5 (2)
C2—C3—C4—C51.5 (2)N1—C2—C7—C6178.5 (2)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.87 (1)2.05 (1)2.845 (2)152 (2)
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H10Cl2N2O
Mr281.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)27.093 (3), 4.5768 (5), 9.901 (1)
β (°) 96.389 (2)
V3)1220.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.862, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
3703, 1386, 1210
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.096, 1.11
No. of reflections1386
No. of parameters87
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)2.05 (1)2.845 (2)152 (2)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, J.-L., Wang, Z. & Zhu, H. (2007). Huaxue Shiji, 29, 187–188.  CAS Google Scholar
First citationJimenez Blanco, J. L., Saitz Barria, C., Benito, J. M., Ortiz Mellet, C., Fuentes, J., Santoyo-Gonzalez, F. & Garcia Fernandez, J. (1999). Synthesis, pp. 1907–1914.  CrossRef Google Scholar
First citationLin, Q., Zhang, Y.-M., Wei, T.-B. & Wang, H. (2004). Acta Cryst. E60, o696–o698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWamhoff, H., Bamberg, C., Hermann, S. & Nieger, M. (1994). J. Org. Chem. 59, 3985–3993.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds