metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m724-m725

catena-Poly[[cyclo­hexyl­di­phenyl­tin(IV)]-μ-hydroxido-κ2O:O]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 March 2008; accepted 20 April 2008; online 26 April 2008)

The title polymeric mixed-organyl tin hydroxide, [Sn(C6H5)2(C6H11)(OH)]n, hass a hydroxide-bridged chain structure; the tin center shows trans-C3SnO2 trigonal bipyramidal coordination. The Sn atom lies on a special position of site symmetry m; the symmetry element relates one phenyl ring to the other and also relates one half of the cyclo­hexyl ring to the other half.

Related literature

For background literature on mixed alk­yl/diaryltin(IV) compounds, see: Koshy et al. (2001[Koshy, J., Ansary, A., Lo, K. M. & Kumar Das, V. G. (2001). Met.-Based Drugs, 8, 107-111.]). For the synthesis of cyclo­hexyl­diphenyl­tin hydroxide, see: Teo et al. (2007[Teo, Y. Y., Lo, K. M. & Ng, S. W. (2007). Acta Cryst. E63, m1365-m1367.]). For the structure of triethyl­tin hydroxide, see: Deacon et al. (1993[Deacon, G. B., Lawrenz, E., Nelson, K. T. & Tiekink, E. R. T. (1993). Main Group Met. Chem. 16, 265-269.]). For the structure of tribenzyl­tin hydroxide, see: Chen et al. (2005[Chen, Z.-M., Wang, J.-Q., Kuang, D.-Z., Feng, Y.-L. & Zhang, F.-X. (2005). Chin. J. Inorg. Chem. 21, 1186-1190.]); Reuter (2004[Reuter, H. (2004). Z. Kristallogr. New Cryst. Struct. 219, 487-488.]). For the structure of triphenyl­tin hydroxide, see: Fu et al. (2003[Fu, C.-X., Zhang, J.-H., Ma, C.-L. & Zhang, Z.-T. (2003). Chin. J. Synth. Chem. 11, 189-193.]); Glidewell & Liles (1978[Glidewell, C. & Liles, D. C. (1978). Acta Cryst. B34, 129-134.]); Glidewell et al. (2002[Glidewell, C., Low, J. N., Bomfim, J. A. S., Filgueiras, C. A. L. & Wardell, J. L. (2002). Acta Cryst. C58, m199-m201.]). For the structure of the mixed organyl compound, benzyl­dimethyl­tin hydroxide, see: Wannagat et al. (1993[Wannagat, U., Dmarath, V., Huch, V., Veith, M. & Harder, U. (1993). J. Organomet. Chem. 443, 153-165.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C6H11)(OH)]

  • Mr = 373.05

  • Orthorhombic, C m c 21

  • a = 18.3830 (2) Å

  • b = 10.2801 (1) Å

  • c = 8.1762 (1) Å

  • V = 1545.13 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.65 mm−1

  • T = 100 (2) K

  • 0.22 × 0.09 × 0.08 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.771, Tmax = 0.880

  • 9651 measured reflections

  • 1711 independent reflections

  • 1637 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.071

  • S = 1.28

  • 1711 reflections

  • 97 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 650 Friedel pairs

  • Flack parameter: 0.02 (4)

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.201 (4)
Sn1—C1 2.159 (4)
Sn1—C5 2.139 (3)
C1—Sn1—C5 118.4 (1)
C1—Sn1—O1 94.1 (2)
C1—Sn1—O1i 89.8 (2)
C5—Sn1—C5ii 122.9 (2)
C5—Sn1—O1 90.7 (1)
C5—Sn1—O1i 87.5 (1)
O1—Sn1—O1i 176.1 (1)
Sn1—O1—Sn1iii 133.7 (2)
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) -x+1, y, z; (iii) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Mixed alkyl/diaryltin compounds possess much more useful activity against plant pathogens than the symmetrical triorganotin homologs, particularly if one of the alkyl substituent is a cyclic unit (Koshy et al., 2001). The title compound (I) is the starting reactant for the synthesis of mixed organotin carboxylates.

The compound adopts a zigzag chain motif that propagates along the c-axis of the orthorhombic unit cell; the tin center shows trans-C3SnO2 trigonal bipyramidal coordination (Figs 1 and 2 & Table 1).

Related literature top

For background literature on mixed alkyl/diarytin compounds, see: Koshy et al. (2001). For the synthesis of cyclohexyldiphenyltin hydroxide, see: Teo et al. (2007). For the structure of triethyltin hydroxide, see: Deacon et al. (1993). For the structure of tribenzyltin hydroxide, see: Chen et al. (2005); Reuter (2004). For the structure of triphenyltin hydroxide, see: Fu et al. (2003); Glidewell & Liles (1978); Glidewell et al. (2002). For the structure of the mixed organyl compound, benzyldimethyltin hydroxide, see: Wannagat et al. (1993).

Experimental top

The compound was synthesized as described previously (Teo et al., 2007). Crystals were obtained by recrystallization from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The hydroxo H atom (O–H 0.84 Å) was similarly treated.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. 70% Probability thermal ellipsoid plot of the asymmetric unit in Sn(C6H11)(C6H5)2(OH) (I) extended to show the trans-C3SnO2 trigonal bipyramidal coordination geometry. Hydrogen atoms are drawn as spheres of arbitrary radius; symmetry-related atoms are not labeled.
[Figure 2] Fig. 2. Hydroxo-bridged chain motif in (I).
catena-Poly[[cyclohexyldiphenyltin(IV)]-µ-hydroxido- κ2O:O] top
Crystal data top
[Sn(C6H5)2(C6H11)(OH)]F(000) = 752
Mr = 373.05Dx = 1.604 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 8850 reflections
a = 18.3830 (2) Åθ = 2.2–28.3°
b = 10.2801 (1) ŵ = 1.65 mm1
c = 8.1762 (1) ÅT = 100 K
V = 1545.13 (3) Å3Prism, colorless
Z = 40.22 × 0.09 × 0.08 mm
Data collection top
Bruker SMART APEXII
diffractometer
1711 independent reflections
Radiation source: fine-focus sealed tube1637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.771, Tmax = 0.880k = 1313
9651 measured reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.0692P]
where P = (Fo2 + 2Fc2)/3
S = 1.28(Δ/σ)max = 0.001
1711 reflectionsΔρmax = 0.57 e Å3
97 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: Flack (1983), 650 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
[Sn(C6H5)2(C6H11)(OH)]V = 1545.13 (3) Å3
Mr = 373.05Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 18.3830 (2) ŵ = 1.65 mm1
b = 10.2801 (1) ÅT = 100 K
c = 8.1762 (1) Å0.22 × 0.09 × 0.08 mm
Data collection top
Bruker SMART APEXII
diffractometer
1711 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1637 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.880Rint = 0.024
9651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.57 e Å3
S = 1.28Δρmin = 0.31 e Å3
1711 reflectionsAbsolute structure: Flack (1983), 650 Friedel pairs
97 parametersAbsolute structure parameter: 0.02 (4)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.494121 (18)0.50000 (18)0.01298 (10)
O10.50000.5850 (3)0.2563 (4)0.0165 (6)
H1O0.50000.66660.25980.025*
C10.50000.2980 (4)0.4053 (6)0.0189 (9)
H10.50000.30710.28360.023*
C20.43184 (16)0.2226 (3)0.4465 (5)0.0234 (7)
H2A0.38880.27210.40840.028*
H2B0.42810.21320.56670.028*
C30.4313 (2)0.0883 (3)0.3681 (5)0.0260 (8)
H3A0.38850.03920.40780.031*
H3B0.42680.09770.24800.031*
C40.50000.0125 (4)0.4074 (8)0.0248 (13)
H4A0.50000.01020.52510.030*
H4B0.50000.06960.34420.030*
C50.60222 (16)0.5831 (3)0.5558 (4)0.0170 (6)
C60.62261 (15)0.7060 (2)0.5004 (5)0.0227 (6)
H60.58970.75480.43520.027*
C70.69028 (19)0.7587 (3)0.5387 (4)0.0296 (8)
H70.70230.84410.50360.036*
C80.74004 (18)0.6867 (4)0.6280 (5)0.0308 (8)
H80.78670.72160.65140.037*
C90.72163 (17)0.5644 (4)0.6826 (5)0.0256 (7)
H90.75530.51490.74490.031*
C100.6529 (3)0.5133 (3)0.6458 (7)0.0247 (9)
H100.64070.42870.68360.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01281 (14)0.01401 (14)0.01211 (16)0.0000.0000.0003 (2)
O10.0227 (14)0.0168 (15)0.0101 (15)0.0000.0000.0008 (11)
C10.022 (2)0.0167 (19)0.018 (2)0.0000.0000.0005 (17)
C20.0200 (15)0.0215 (14)0.0288 (19)0.0023 (11)0.0003 (13)0.0006 (12)
C30.0306 (19)0.0193 (15)0.028 (2)0.0044 (13)0.0033 (14)0.0001 (14)
C40.038 (4)0.019 (2)0.017 (3)0.0000.0000.0032 (17)
C50.0168 (13)0.0194 (13)0.0147 (15)0.0006 (12)0.0029 (11)0.0018 (11)
C60.0268 (14)0.0242 (12)0.0171 (16)0.0042 (10)0.0025 (17)0.001 (2)
C70.0366 (18)0.0302 (16)0.022 (2)0.0150 (14)0.0004 (14)0.0036 (13)
C80.0213 (16)0.043 (2)0.028 (2)0.0107 (14)0.0009 (15)0.0088 (16)
C90.0174 (15)0.0343 (19)0.0250 (18)0.0007 (13)0.0047 (13)0.0072 (15)
C100.023 (2)0.0195 (17)0.032 (3)0.0007 (11)0.0051 (18)0.0014 (14)
Geometric parameters (Å, º) top
Sn1—O12.201 (4)C8—C91.377 (5)
Sn1—C12.159 (4)C9—C101.400 (5)
Sn1—C52.139 (3)O1—H1O0.8400
Sn1—C5i2.139 (3)C1—H11.0000
Sn1—O1ii2.248 (4)C2—H2A0.9900
O1—Sn1iii2.248 (4)C2—H2B0.9900
C1—C21.511 (4)C3—H3A0.9900
C1—C2i1.511 (4)C3—H3B0.9900
C2—C31.522 (4)C4—H4A0.9900
C3—C41.518 (4)C4—H4B0.9900
C4—C3i1.518 (4)C6—H60.9500
C5—C101.388 (6)C7—H70.9500
C5—C61.394 (4)C8—H80.9500
C6—C71.393 (4)C9—H90.9500
C7—C81.385 (5)C10—H100.9500
C1—Sn1—C5118.4 (1)C2—C1—H1105.6
C1—Sn1—O194.1 (2)Sn1—C1—H1105.6
C1—Sn1—O1ii89.8 (2)C1—C2—H2A109.2
C5—Sn1—C5i122.9 (2)C3—C2—H2A109.2
C5—Sn1—O190.7 (1)C1—C2—H2B109.2
C5—Sn1—O1ii87.5 (1)C3—C2—H2B109.2
C5i—Sn1—C1118.4 (1)H2A—C2—H2B107.9
C5i—Sn1—O190.7 (1)C4—C3—H3A109.3
C5i—Sn1—O1ii87.5 (1)C2—C3—H3A109.3
O1—Sn1—O1ii176.1 (1)C4—C3—H3B109.3
Sn1—O1—Sn1iii133.7 (2)C2—C3—H3B109.3
C2—C1—C2i112.0 (3)H3A—C3—H3B107.9
C2—C1—Sn1113.5 (2)C3i—C4—H4A109.1
C2i—C1—Sn1113.5 (2)C3—C4—H4A109.1
C1—C2—C3112.1 (3)C3i—C4—H4B109.1
C4—C3—C2111.8 (3)C3—C4—H4B109.1
C3i—C4—C3112.5 (4)H4A—C4—H4B107.8
C10—C5—C6117.4 (3)C7—C6—H6119.3
C10—C5—Sn1118.8 (2)C5—C6—H6119.3
C6—C5—Sn1123.7 (2)C8—C7—H7120.0
C7—C6—C5121.3 (3)C6—C7—H7120.0
C8—C7—C6120.0 (3)C9—C8—H8120.1
C9—C8—C7119.8 (3)C7—C8—H8120.1
C8—C9—C10119.6 (4)C8—C9—H9120.2
C5—C10—C9121.7 (3)C10—C9—H9120.2
Sn1—O1—H1O113.2C5—C10—H10119.1
Sn1iii—O1—H1O113.2C9—C10—H10119.1
C5—Sn1—O1—Sn1iii118.53 (8)C1—Sn1—C5—C1047.4 (4)
C5i—Sn1—O1—Sn1iii118.53 (8)O1—Sn1—C5—C10142.4 (3)
C1—Sn1—O1—Sn1iii0.0O1ii—Sn1—C5—C1041.0 (3)
C5—Sn1—C1—C2151.7 (2)C5i—Sn1—C5—C656.7 (4)
C5i—Sn1—C1—C222.3 (3)C1—Sn1—C5—C6129.6 (3)
O1—Sn1—C1—C2115.3 (3)O1—Sn1—C5—C634.5 (3)
O1ii—Sn1—C1—C264.7 (3)O1ii—Sn1—C5—C6142.0 (3)
C5—Sn1—C1—C2i22.3 (3)C10—C5—C6—C72.2 (5)
C5i—Sn1—C1—C2i151.7 (2)Sn1—C5—C6—C7179.2 (3)
O1—Sn1—C1—C2i115.3 (3)C5—C6—C7—C82.6 (5)
O1ii—Sn1—C1—C2i64.7 (3)C6—C7—C8—C91.8 (6)
C2i—C1—C2—C353.8 (5)C7—C8—C9—C100.7 (6)
Sn1—C1—C2—C3176.0 (3)C6—C5—C10—C91.0 (6)
C1—C2—C3—C452.9 (5)Sn1—C5—C10—C9178.2 (3)
C2—C3—C4—C3i52.3 (6)C8—C9—C10—C50.3 (7)
C5i—Sn1—C5—C10126.3 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1/2; (iii) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C6H11)(OH)]
Mr373.05
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)100
a, b, c (Å)18.3830 (2), 10.2801 (1), 8.1762 (1)
V3)1545.13 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.22 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.771, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
9651, 1711, 1637
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.071, 1.28
No. of reflections1711
No. of parameters97
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.31
Absolute structureFlack (1983), 650 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Sn1—O12.201 (4)Sn1—C52.139 (3)
Sn1—C12.159 (4)
C1—Sn1—C5118.4 (1)C5—Sn1—O190.7 (1)
C1—Sn1—O194.1 (2)C5—Sn1—O1i87.5 (1)
C1—Sn1—O1i89.8 (2)O1—Sn1—O1i176.1 (1)
C5—Sn1—C5ii122.9 (2)Sn1—O1—Sn1iii133.7 (2)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z1/2.
 

Acknowledgements

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-M., Wang, J.-Q., Kuang, D.-Z., Feng, Y.-L. & Zhang, F.-X. (2005). Chin. J. Inorg. Chem. 21, 1186–1190.  CAS Google Scholar
First citationDeacon, G. B., Lawrenz, E., Nelson, K. T. & Tiekink, E. R. T. (1993). Main Group Met. Chem. 16, 265–269.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, C.-X., Zhang, J.-H., Ma, C.-L. & Zhang, Z.-T. (2003). Chin. J. Synth. Chem. 11, 189–193.  CAS Google Scholar
First citationGlidewell, C. & Liles, D. C. (1978). Acta Cryst. B34, 129–134.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGlidewell, C., Low, J. N., Bomfim, J. A. S., Filgueiras, C. A. L. & Wardell, J. L. (2002). Acta Cryst. C58, m199–m201.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoshy, J., Ansary, A., Lo, K. M. & Kumar Das, V. G. (2001). Met.-Based Drugs, 8, 107–111.  CrossRef CAS Google Scholar
First citationReuter, H. (2004). Z. Kristallogr. New Cryst. Struct. 219, 487–488.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeo, Y. Y., Lo, K. M. & Ng, S. W. (2007). Acta Cryst. E63, m1365–m1367.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWannagat, U., Dmarath, V., Huch, V., Veith, M. & Harder, U. (1993). J. Organomet. Chem. 443, 153–165.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m724-m725
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds