organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3S,4R)-4-(4-Fluoro­phen­yl)-3-(hy­droxy­meth­yl)piperidinium chloride

aDepartment of Analytical Research, Discovery Research, Dr Reddy's Laboratories Ltd, Miyapur, Hyderabad 500 049, India, and bCentre for Atmospheric Science, Jawaharlal Nehru Technological University, Hyderabad 500 072, India
*Correspondence e-mail: vishweshwarp@drreddys.com

(Received 26 March 2008; accepted 31 March 2008; online 4 April 2008)

The title compound, C12H17FNO+·Cl, is a degradation impurity of paroxetine hydro­chloride hemihydrate (PAXIL), an anti­depressant belonging to the group of drugs called selective serotonin reuptake inhibitors (SSRIs). Similar to the paroxetine hydro­chloride salt with protonation having taken place on the basic piperidine ring, the degradation impurity also exists as the hydro­chloride salt. The cyclic six-membered piperidinium ring adopts a chair conformation with the hydroxy­methyl and 4-fluoro­phenyl groups in the equatorial positions. The ions form a tape along the b axis through charge-assisted N+—H⋯Cl hydrogen bonds; these tapes are connected by O—H⋯Cl hydrogen bonds along the a axis.

Related literature

For related literature, see: Bower et al. (2007[Bower, J. F., Johannessen, T. R., Szeto, P., Whitehead, A. J. & Gallagher, T. (2007). Chem. Commun. pp. 728-730.]); de Gonzalo et al. (2001[Gonzalo de, G., Brieva, R., Sanchez, V. M., Bayod, M. & Gotor, V. (2001). J. Org. Chem. 66, 8947-8953.]); Barnes et al. (1988[Barnes, R. D., Wood-Kaczmar, M. W., Curzons, A. D., Lynch, I. R., Richardson, J. E. & Buxton, P. C. (1988). US Patent No. 4 721 723.]); Ibers (1999[Ibers, J. A. (1999). Acta Cryst. C55, 432-434.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17FNO+·Cl

  • Mr = 245.72

  • Monoclinic, P 21

  • a = 7.697 (4) Å

  • b = 5.958 (3) Å

  • c = 13.393 (8) Å

  • β = 95.505 (5)°

  • V = 611.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.863, Tmax = 0.939

  • 6813 measured reflections

  • 2421 independent reflections

  • 2163 reflections with F2 > 2σ(F2)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.203

  • S = 1.13

  • 2421 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 938 Friedel Pairs

  • Flack parameter: −0.11 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1i 0.81 (7) 2.35 (7) 3.114 (4) 160 (6)
N1—H11⋯Cl1 0.83 (5) 2.56 (5) 3.234 (5) 140 (4)
N1—H12⋯Cl1ii 0.84 (5) 2.41 (5) 3.144 (5) 147 (6)
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.

Data collection: CrystalClear (Pflugrath, 1999[Pflugrath, J. W. (1999). Acta Cryst. D55, 1718-1725.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The title compound (I), is a degradation impurity of paroxetine hydrochloride hemihydrate, an orally administered psychotropic drug (PAXIL) (Barnes et al., 1988). The crystal structure of paroxetine hydrochloride hemihydrate has been reported (Ibers, 1999). Herein, we report the synthesis and crystal structure of (I).

Compound (I) was isolated during degradation studies of paroxetine hydrochloride hemihydrate. The paroxetine drug is available in the market as hemihydrate. However, compound (I) is in the anhydrous form, Fig. 1. Similar to the paroxetine hydrochloride salt with protonation having taken place on the basic piperidine ring, the degradation impurity also exists as a hydrochloride salt. The absolute configurations of C7 and C8 atoms were established as R and S, respectively, consistent with paroxetine hydrochloride hemihydrate. The six-membered piperidinium ring is in the usual chair conformation with the hydroxylmethyl and 4-fluorophenyl in equatorial positions. The crystal packing shows the formation of a molecular tape along the b axis through the charge-assisted N+—H···Cl hydrogen bonds (Fig. 2 and Table 1). The tapes thus formed are connected by O—H···Cl- hydrogen bonds along the a axis.

Related literature top

For related literature, see: Bower et al. (2007); de Gonzalo et al. (2001); Barnes et al. (1988); Ibers (1999)

Experimental top

Paroxetine hydrochloride hemihydrate (1.5 gr, 3.5 mmol) was taken in a conical flask and dissolved in acetonitrile and tetrahydrofuran solvent mixture (1:1, 20 ml v/v). About 80 ml of 3% hydrogen peroxide was added to the solution and stirred at 60 °C for 48 h. Chloroform and water was added to the solution and the organic and aqueous layers were separated using separating flask. Benzene was added to the aqueous layer and the product (I) was isolated by drying the solution. Single crystals were obtained during purification of (I) from chloroform and methanol. The product was characterized by mass spectroscopy (M+1 at m/z 210) and NMR.

Refinement top

The H atoms bonded to the N and O atoms were located in a difference map and refined isotropically, see Table 1 for distances. The remaining H atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.93 - 0.97 Å, and with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Pflugrath, 1999); cell refinement: CrystalClear (Pflugrath, 1999); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing for (I). The molecular tape is sustained through the charge-assisted N+—H···Cl hydrogen bonds, shown as dashed lines.
(3S,4R)-4-(4-Fluorophenyl)-3-(hydroxymethyl)piperidinium chloride top
Crystal data top
C12H17FNO+·ClF(000) = 260.00
Mr = 245.72Dx = 1.335 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 3399 reflections
a = 7.697 (4) Åθ = 1.5–27.4°
b = 5.958 (3) ŵ = 0.30 mm1
c = 13.393 (8) ÅT = 298 K
β = 95.505 (5)°Block, colorless
V = 611.4 (6) Å30.50 × 0.40 × 0.20 mm
Z = 2
Data collection top
Rigaku Mercury
diffractometer
2163 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1Rint = 0.036
ω scansθmax = 27.4°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 99
Tmin = 0.863, Tmax = 0.939k = 57
6813 measured reflectionsl = 1717
2421 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.1198P)2 + 0.1259P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.203(Δ/σ)max = 0.006
S = 1.13Δρmax = 0.54 e Å3
2421 reflectionsΔρmin = 0.37 e Å3
158 parametersAbsolute structure: Flack (1983), 938 Friedel Pairs
0 restraintsAbsolute structure parameter: 0.11 (13)
Crystal data top
C12H17FNO+·ClV = 611.4 (6) Å3
Mr = 245.72Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.697 (4) ŵ = 0.30 mm1
b = 5.958 (3) ÅT = 298 K
c = 13.393 (8) Å0.50 × 0.40 × 0.20 mm
β = 95.505 (5)°
Data collection top
Rigaku Mercury
diffractometer
2421 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2163 reflections with F2 > 2σ(F2)
Tmin = 0.863, Tmax = 0.939Rint = 0.036
6813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.203Δρmax = 0.54 e Å3
S = 1.13Δρmin = 0.37 e Å3
2421 reflectionsAbsolute structure: Flack (1983), 938 Friedel Pairs
158 parametersAbsolute structure parameter: 0.11 (13)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.4169 (4)1.0551 (8)0.5003 (3)0.1111 (13)
O10.1239 (4)0.4486 (7)0.1385 (3)0.0778 (11)
N10.3679 (4)0.7472 (8)0.1251 (2)0.0576 (10)
C10.2900 (5)0.9849 (10)0.4441 (4)0.0738 (16)
C20.2390 (6)1.1230 (9)0.3728 (4)0.0764 (14)
C30.1118 (5)1.0490 (8)0.3135 (3)0.0651 (12)
C40.0374 (4)0.8397 (6)0.3271 (2)0.0505 (10)
C50.0914 (5)0.7080 (9)0.4028 (2)0.0584 (11)
C60.2175 (5)0.7774 (10)0.4632 (3)0.0715 (16)
C70.0988 (3)0.7497 (7)0.2628 (2)0.0460 (9)
C80.0506 (4)0.7783 (6)0.1502 (2)0.0504 (10)
C90.1889 (4)0.6685 (7)0.0934 (2)0.0545 (11)
C100.4156 (4)0.7361 (10)0.2348 (2)0.0583 (10)
C110.2796 (4)0.8529 (7)0.2909 (2)0.0545 (10)
C120.1260 (5)0.6790 (8)0.1137 (3)0.0607 (14)
Cl10.50505 (12)0.23916 (19)0.10014 (7)0.0599 (3)
H10.216 (9)0.388 (14)0.144 (5)0.11 (2)*
H20.287901.265100.363500.0910*
H30.076401.142600.263700.0780*
H50.041200.567000.413700.0700*
H60.251600.687000.514500.0860*
H70.109100.588200.275900.0550*
H80.048300.939100.134700.0600*
H110.432 (6)0.658 (9)0.099 (3)0.062 (14)*
H120.378 (10)0.869 (7)0.095 (5)0.12 (2)*
H910.183900.507300.102900.0650*
H920.162700.698600.022300.0650*
H1010.528200.807100.251000.0700*
H1020.425300.580300.255700.0700*
H1110.276901.011400.274300.0650*
H1120.310300.838300.362500.0650*
H1210.217600.755000.145500.0730*
H1220.148300.697800.041600.0730*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0734 (18)0.145 (3)0.120 (2)0.001 (2)0.0353 (17)0.061 (2)
O10.0611 (19)0.076 (2)0.094 (2)0.0245 (16)0.0043 (17)0.0047 (18)
N10.0510 (15)0.0604 (19)0.0638 (17)0.0101 (18)0.0179 (13)0.010 (2)
C10.050 (2)0.095 (4)0.078 (2)0.005 (2)0.0143 (19)0.031 (2)
C20.065 (2)0.066 (2)0.097 (3)0.009 (2)0.002 (2)0.026 (2)
C30.064 (2)0.057 (2)0.074 (2)0.0021 (19)0.0046 (19)0.002 (2)
C40.0491 (17)0.0488 (19)0.0537 (17)0.0014 (15)0.0063 (14)0.0020 (15)
C50.0510 (17)0.069 (2)0.0563 (18)0.0044 (18)0.0103 (14)0.0036 (19)
C60.058 (2)0.097 (4)0.062 (2)0.010 (2)0.0187 (16)0.010 (2)
C70.0420 (14)0.0472 (16)0.0491 (15)0.0047 (16)0.0056 (11)0.0011 (16)
C80.0494 (16)0.052 (2)0.0494 (16)0.0049 (14)0.0024 (12)0.0050 (14)
C90.055 (2)0.060 (2)0.0492 (17)0.0112 (15)0.0088 (14)0.0045 (15)
C100.0421 (15)0.070 (2)0.0624 (19)0.004 (2)0.0035 (13)0.011 (2)
C110.0438 (17)0.067 (2)0.0523 (17)0.0049 (16)0.0025 (13)0.0104 (18)
C120.052 (2)0.072 (3)0.057 (2)0.0043 (17)0.0006 (15)0.0019 (18)
Cl10.0573 (4)0.0551 (5)0.0682 (5)0.0063 (4)0.0106 (3)0.0025 (4)
Geometric parameters (Å, º) top
F1—C11.355 (6)C8—C121.520 (5)
O1—C121.412 (6)C10—C111.515 (5)
O1—H10.81 (7)C2—H20.9300
N1—C101.481 (4)C3—H30.9300
N1—C91.479 (5)C5—H50.9300
N1—H120.84 (5)C6—H60.9300
N1—H110.83 (5)C7—H70.9800
C1—C61.370 (8)C8—H80.9800
C1—C21.347 (8)C9—H910.9700
C2—C31.390 (6)C9—H920.9700
C3—C41.377 (6)C10—H1010.9700
C4—C51.377 (5)C10—H1020.9700
C4—C71.517 (4)C11—H1110.9700
C5—C61.385 (6)C11—H1120.9700
C7—C111.535 (4)C12—H1210.9700
C7—C81.528 (4)C12—H1220.9700
C8—C91.515 (5)
C12—O1—H1118 (6)C4—C5—H5119.00
C9—N1—C10114.0 (3)C6—C5—H5119.00
C9—N1—H12105 (5)C1—C6—H6121.00
C10—N1—H11107 (3)C5—C6—H6121.00
H11—N1—H12106 (6)C4—C7—H7107.00
C10—N1—H12119 (5)C8—C7—H7107.00
C9—N1—H11105 (3)C11—C7—H7107.00
F1—C1—C2118.7 (5)C7—C8—H8108.00
F1—C1—C6118.5 (5)C9—C8—H8108.00
C2—C1—C6122.8 (4)C12—C8—H8108.00
C1—C2—C3118.7 (5)N1—C9—H91109.00
C2—C3—C4121.2 (4)N1—C9—H92109.00
C3—C4—C7123.1 (3)C8—C9—H91109.00
C5—C4—C7119.4 (3)C8—C9—H92109.00
C3—C4—C5117.5 (3)H91—C9—H92108.00
C4—C5—C6122.5 (5)N1—C10—H101109.00
C1—C6—C5117.1 (4)N1—C10—H102109.00
C8—C7—C11109.0 (2)C11—C10—H101109.00
C4—C7—C11112.3 (3)C11—C10—H102110.00
C4—C7—C8113.9 (2)H101—C10—H102108.00
C9—C8—C12108.7 (3)C7—C11—H111110.00
C7—C8—C9109.4 (2)C7—C11—H112110.00
C7—C8—C12113.5 (3)C10—C11—H111110.00
N1—C9—C8113.5 (3)C10—C11—H112110.00
N1—C10—C11110.7 (3)H111—C11—H112108.00
C7—C11—C10110.4 (3)O1—C12—H121110.00
O1—C12—C8108.3 (3)O1—C12—H122110.00
C1—C2—H2121.00C8—C12—H121110.00
C3—C2—H2121.00C8—C12—H122110.00
C2—C3—H3119.00H121—C12—H122108.00
C4—C3—H3119.00
C10—N1—C9—C851.5 (5)C5—C4—C7—C11103.8 (4)
C9—N1—C10—C1152.1 (6)C4—C5—C6—C10.8 (6)
F1—C1—C2—C3178.5 (4)C4—C7—C8—C9176.0 (3)
C6—C1—C2—C32.4 (8)C4—C7—C8—C1254.5 (4)
F1—C1—C6—C5178.4 (4)C11—C7—C8—C957.7 (4)
C2—C1—C6—C52.5 (7)C11—C7—C8—C12179.3 (3)
C1—C2—C3—C40.5 (7)C4—C7—C11—C10172.4 (3)
C2—C3—C4—C51.1 (6)C8—C7—C11—C1060.4 (4)
C2—C3—C4—C7178.6 (4)C7—C8—C9—N153.7 (4)
C3—C4—C5—C61.0 (5)C12—C8—C9—N1178.2 (3)
C7—C4—C5—C6178.8 (3)C7—C8—C12—O158.0 (4)
C3—C4—C7—C848.1 (5)C9—C8—C12—O164.0 (4)
C3—C4—C7—C1176.5 (4)N1—C10—C11—C756.7 (5)
C5—C4—C7—C8131.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl1i0.81 (7)2.35 (7)3.114 (4)160 (6)
N1—H11···Cl10.83 (5)2.56 (5)3.234 (5)140 (4)
N1—H12···Cl1ii0.84 (5)2.41 (5)3.144 (5)147 (6)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H17FNO+·Cl
Mr245.72
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.697 (4), 5.958 (3), 13.393 (8)
β (°) 95.505 (5)
V3)611.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.863, 0.939
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
6813, 2421, 2163
Rint0.036
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.203, 1.13
No. of reflections2421
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.37
Absolute structureFlack (1983), 938 Friedel Pairs
Absolute structure parameter0.11 (13)

Computer programs: CrystalClear (Pflugrath, 1999), CrystalStructure (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl1i0.81 (7)2.35 (7)3.114 (4)160 (6)
N1—H11···Cl10.83 (5)2.56 (5)3.234 (5)140 (4)
N1—H12···Cl1ii0.84 (5)2.41 (5)3.144 (5)147 (6)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

Footnotes

DRL publication number: 693.

Acknowledgements

We are grateful to Dr Reddy's Discovery Research for encouragement. We thank Dr Vijay Vittal Mathad and Mr Naveen Kumar Kolla for providing the sample of paroxetine hydrochloride hemihydrate, and Dr Vyas for valuable suggestions.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBarnes, R. D., Wood-Kaczmar, M. W., Curzons, A. D., Lynch, I. R., Richardson, J. E. & Buxton, P. C. (1988). US Patent No. 4 721 723.  Google Scholar
First citationBower, J. F., Johannessen, T. R., Szeto, P., Whitehead, A. J. & Gallagher, T. (2007). Chem. Commun. pp. 728–730.  Web of Science CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGonzalo de, G., Brieva, R., Sanchez, V. M., Bayod, M. & Gotor, V. (2001). J. Org. Chem. 66, 8947–8953.  Web of Science CrossRef PubMed Google Scholar
First citationIbers, J. A. (1999). Acta Cryst. C55, 432–434.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPflugrath, J. W. (1999). Acta Cryst. D55, 1718–1725.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds