metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(biuret-κ2O,O′)yttrium(III) trichloride

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 27 March 2008; accepted 31 March 2008; online 2 April 2008)

In the title compound, [Y(C2H5N3O2)2(H2O)4]Cl3, the Y3+ ion (site symmetry 2) is bonded to eight O atoms (arising from two O,O′-bidentate biuret mol­ecules and four water mol­ecules) in a distorted square-anti­prismatic arrangement. A network of N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds help to establish the packing, leading to a three-dimensional network. One of the chloride ions has site symmetry 2.

Related literature

For related structures, see: Carugo et al. (1992[Carugo, O., Poli, G. & Manzoni, L. (1992). Acta Cryst. C48, 2013-2016.]); Haddad (1987[Haddad, S. F. (1987). Acta Cryst. C43, 1882-1885.], 1988[Haddad, S. F. (1988). Acta Cryst. C44, 815-818.]). For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For valence-sum calculations, see: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

[Scheme 1]

Experimental

Crystal data
  • [Y(C2H5N3O2)2(H2O)4]Cl3

  • Mr = 473.50

  • Monoclinic, C 2/c

  • a = 7.6510 (4) Å

  • b = 13.2534 (7) Å

  • c = 17.2547 (9) Å

  • β = 100.817 (1)°

  • V = 1718.57 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.90 mm−1

  • T = 293 (2) K

  • 0.36 × 0.24 × 0.14 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.340, Tmax = 0.611 (expected range = 0.322–0.579)

  • 8075 measured reflections

  • 3105 independent reflections

  • 2464 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 0.98

  • 3105 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Y1—O1 2.3157 (11)
Y1—O2 2.3349 (11)
Y1—O4 2.3536 (12)
Y1—O3 2.3660 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.10 2.9111 (18) 157
N1—H2⋯Cl1ii 0.86 2.39 3.1897 (17) 155
N2—H3⋯Cl1ii 0.86 2.53 3.3184 (14) 153
N3—H4⋯Cl1iii 0.86 2.54 3.3633 (15) 161
N3—H5⋯Cl1iv 0.86 2.54 3.3232 (15) 151
O3—H6⋯Cl1v 0.80 2.39 3.1607 (12) 161
O3—H7⋯Cl2vi 0.79 2.27 3.0504 (12) 168
O4—H8⋯Cl1 0.75 2.45 3.2028 (13) 177
O4—H9⋯Cl2 0.80 2.40 3.1238 (12) 150
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) -x, -y, -z+1; (v) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) x-1, y, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

No complexes of yttrium(III) with biuret (biur), H2N—CO—NH—CO—NH2 (or C2H5N3O2) have been structurally characterized. The structures of two samarium-biuret complexes, Sm(biur)4.(NO3)3 (Haddad, 1987) and Sm(biur)4.(ClO4)3 (Haddad, 1988) have been described. In both cases, an SmO8 square antiprismatic coordination arises for the metal ion. Based on X-ray photographs, it was suggested that all the Ln(biur)4.(NO3)3 and Ln(biur)4.(ClO4)3 compounds are isostructural with their samarium prototypes. In this paper, we describe the synthesis and structure of the title compound, (I).

Compound (I) is an ionic salt containing a new [Y(biur)2(H2O)4]3+ complex ion. The complete complex ion is generated by crystallographic 2-fold symmetry, with the Y atom lying on the rotation axis. Two uncoordinated chloride ions, one of which has crystallographic site symmetry 2, complete the structure of (I), Fig. 1.

The resulting YO8 polyhedral geometry in (I) (Table 1) is a distorted square antiprism (Fig. 2). The nominal square face formed by atoms O1, O2, O1i and O2i (i = -x, y, 3/2 - z) is reasonably regular, but the second face formed by the four water molecules (O3, O4, O3i and O4i) is much more distorted, and the diagonal O3···O3i and O4···O4i distances of 4.223 (2)Å and 3.5197 (19) Å, respectively, are very different. The Y1 atom deviates from the mean planes of O1/O2/O1i/O2i and O3/O4/O3i/O4i by 1.1616 (8) Å and 1.3151 (9) Å, respectively. The two O atom mean planes are constrained to be parallel by symmetry. The bond valence sum (Brese & O'Keeffe, 1991) for Y1 of 3.34 in (I) indicates that its valence requirement is easily satisfied by this geometry.

The O,O-bidenate coordination of the biuret molecule to the yttrium ion in (I) results in a six-membered chelate ring that is non-planar. As noted previously (Carugo et al., 1992), the biuret molecule can be regarded as two planar amide fragments linked by the NH bridge. Here, the dihedral angle betwen the N1/C1/O1/N2 and N2/C2/O2/N3 units is 5.06 (10)°. The yttrium cation deviates from the N1/C1/O1/N2 and N2/C2/O2/N3 mean planes by 0.894 (4) Å and 0.606 (4) Å, respectively.

The component species in (I) are linked by a dense array of N—H···O, N—H···Cl and O—H···Cl hydrogen bonds (Table 2) resulting in a three-dimensional network. Of note is the N—H···O hydrogen bond, which results in [100] chains (Fig. 3) of cations, in which R22(8) loops (Bernstein et al., 1995) linking the molecules are apparent.

Related literature top

For related structures, see: Carugo et al. (1992); Haddad (1987, 1988). For related literature, see: Bernstein et al. (1995). For valence-sum calculations, see: Brese & O'Keeffe (1991).

Experimental top

0.1 M Aqueous solutions of YCl3 (10 ml) and biuret (10 ml) were mixed and a small quantity of dilute hydrochloric acid was added, to result in a colourless solution. Colourless blocks of (I) grew over several days as the water slowly evaporated.

Refinement top

The N-bound hydrogen atoms were geometrically placed (N—H = 0.88 Å) and refined as riding with Uiso(H) = 1.2Ueq(N). The water H atoms were located in difference maps and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O); see Table 2 for O-H distances.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) -x, y, 3/2 - z.
[Figure 2] Fig. 2. Detail of (I) showing the distorted square antiprismatic coordination of the Y atom. Symmetry code: (i) -x, y, 3/2 - z.
[Figure 3] Fig. 3. Fragment of a [100] chain of cations in (I) with the hydrogen bonds indicated by double-dashed lines. Symmetry codes: (i) 1 - x, y, 3/2 - z; (ii) x + 1, y, z.
Tetraaquabis(biuret-κ2O,O')yttrium(III) trichloride top
Crystal data top
[Y(C2H5N3O2)2(H2O)4]Cl3F(000) = 952
Mr = 473.50Dx = 1.830 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3637 reflections
a = 7.6510 (4) Åθ = 3.1–32.4°
b = 13.2534 (7) ŵ = 3.90 mm1
c = 17.2547 (9) ÅT = 293 K
β = 100.817 (1)°Block, colourless
V = 1718.57 (16) Å30.36 × 0.24 × 0.14 mm
Z = 4
Data collection top
Bruker SMART1000 CCD
diffractometer
3105 independent reflections
Radiation source: fine-focus sealed tube2464 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 32.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1111
Tmin = 0.340, Tmax = 0.611k = 2019
8075 measured reflectionsl = 1626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difmap (O-H) and geom (N-H)
wR(F2) = 0.059H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0303P)2]
where P = (Fo2 + 2Fc2)/3
3105 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Y(C2H5N3O2)2(H2O)4]Cl3V = 1718.57 (16) Å3
Mr = 473.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.6510 (4) ŵ = 3.90 mm1
b = 13.2534 (7) ÅT = 293 K
c = 17.2547 (9) Å0.36 × 0.24 × 0.14 mm
β = 100.817 (1)°
Data collection top
Bruker SMART1000 CCD
diffractometer
3105 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2464 reflections with I > 2σ(I)
Tmin = 0.340, Tmax = 0.611Rint = 0.019
8075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 0.98Δρmax = 0.37 e Å3
3105 reflectionsΔρmin = 0.34 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.00000.107273 (15)0.75000.02386 (6)
Cl10.04205 (5)0.33346 (3)0.50811 (2)0.03905 (10)
Cl20.50000.29705 (5)0.75000.03992 (14)
O10.25038 (14)0.02884 (9)0.72093 (7)0.0348 (3)
O20.08317 (13)0.01042 (8)0.63600 (7)0.0329 (2)
N10.45654 (18)0.01014 (13)0.64850 (10)0.0476 (4)
H10.53990.01820.68170.057*
H20.48040.03820.60680.057*
N20.17105 (17)0.05973 (11)0.60525 (8)0.0332 (3)
H30.21130.09800.57240.040*
N30.10477 (19)0.11253 (11)0.54451 (9)0.0410 (3)
H40.21910.10990.53510.049*
H50.05060.15460.51930.049*
C10.2922 (2)0.01064 (12)0.66153 (10)0.0308 (3)
C20.0118 (2)0.05156 (11)0.59806 (9)0.0295 (3)
O30.23875 (15)0.18780 (9)0.66560 (7)0.0377 (3)
H60.27310.17470.62010.045*
H70.31700.21590.68120.045*
O40.11867 (16)0.22520 (10)0.67195 (8)0.0519 (4)
H80.08280.24920.63260.062*
H90.21760.24650.67420.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.02161 (9)0.02849 (10)0.02041 (9)0.0000.00117 (7)0.000
Cl10.0364 (2)0.0491 (2)0.0297 (2)0.00110 (17)0.00118 (17)0.00610 (18)
Cl20.0316 (3)0.0479 (3)0.0418 (3)0.0000.0107 (2)0.000
O10.0255 (5)0.0467 (6)0.0309 (6)0.0049 (5)0.0014 (5)0.0080 (5)
O20.0282 (5)0.0358 (6)0.0327 (6)0.0034 (5)0.0004 (5)0.0092 (5)
N10.0266 (7)0.0778 (11)0.0394 (8)0.0078 (7)0.0089 (6)0.0204 (8)
N20.0266 (6)0.0415 (7)0.0315 (7)0.0016 (6)0.0053 (5)0.0088 (6)
N30.0321 (7)0.0459 (8)0.0426 (8)0.0014 (6)0.0012 (6)0.0179 (7)
C10.0271 (7)0.0350 (8)0.0293 (8)0.0013 (6)0.0025 (6)0.0004 (7)
C20.0290 (7)0.0320 (7)0.0261 (7)0.0009 (6)0.0021 (6)0.0012 (6)
O30.0353 (6)0.0498 (7)0.0253 (6)0.0145 (5)0.0011 (5)0.0026 (5)
O40.0390 (7)0.0677 (9)0.0436 (7)0.0157 (6)0.0061 (6)0.0281 (7)
Geometric parameters (Å, º) top
Y1—O1i2.3157 (11)N1—H20.8600
Y1—O12.3157 (11)N2—C11.374 (2)
Y1—O22.3349 (11)N2—C21.385 (2)
Y1—O2i2.3349 (11)N2—H30.8600
Y1—O4i2.3536 (12)N3—C21.329 (2)
Y1—O42.3536 (12)N3—H40.8600
Y1—O3i2.3660 (10)N3—H50.8600
Y1—O32.3660 (10)O3—H60.7990
O1—C11.2450 (19)O3—H70.7934
O2—C21.2392 (18)O4—H80.7541
N1—C11.318 (2)O4—H90.8023
N1—H10.8600
O1i—Y1—O1126.66 (6)O4—Y1—O371.61 (4)
O1i—Y1—O280.21 (4)O3i—Y1—O3126.37 (6)
O1—Y1—O271.12 (4)C1—O1—Y1135.89 (10)
O1i—Y1—O2i71.12 (4)C2—O2—Y1137.05 (10)
O1—Y1—O2i80.21 (4)C1—N1—H1120.0
O2—Y1—O2i113.30 (6)C1—N1—H2120.0
O1i—Y1—O4i75.55 (5)H1—N1—H2120.0
O1—Y1—O4i147.74 (4)C1—N2—C2124.22 (14)
O2—Y1—O4i140.68 (4)C1—N2—H3117.9
O2i—Y1—O4i87.51 (4)C2—N2—H3117.9
O1i—Y1—O4147.74 (4)C2—N3—H4120.0
O1—Y1—O475.55 (5)C2—N3—H5120.0
O2—Y1—O487.51 (4)H4—N3—H5120.0
O2i—Y1—O4140.68 (4)O1—C1—N1122.63 (15)
O4i—Y1—O496.78 (8)O1—C1—N2122.49 (14)
O1i—Y1—O3i130.07 (4)N1—C1—N2114.87 (15)
O1—Y1—O3i76.19 (4)O2—C2—N3122.60 (14)
O2—Y1—O3i145.42 (4)O2—C2—N2122.84 (14)
O2i—Y1—O3i70.89 (4)N3—C2—N2114.49 (15)
O4i—Y1—O3i71.61 (4)Y1—O3—H6125.5
O4—Y1—O3i73.53 (4)Y1—O3—H7123.2
O1i—Y1—O376.19 (4)H6—O3—H7107.8
O1—Y1—O3130.07 (4)Y1—O4—H8133.0
O2—Y1—O370.89 (4)Y1—O4—H9132.0
O2i—Y1—O3145.42 (4)H8—O4—H994.3
O4i—Y1—O373.53 (4)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.862.102.9111 (18)157
N1—H2···Cl1iii0.862.393.1897 (17)155
N2—H3···Cl1iii0.862.533.3184 (14)153
N3—H4···Cl1iv0.862.543.3633 (15)161
N3—H5···Cl1v0.862.543.3232 (15)151
O3—H6···Cl1vi0.802.393.1607 (12)161
O3—H7···Cl2vii0.792.273.0504 (12)168
O4—H8···Cl10.752.453.2028 (13)177
O4—H9···Cl20.802.403.1238 (12)150
Symmetry codes: (ii) x+1, y, z+3/2; (iii) x+1/2, y1/2, z; (iv) x1/2, y1/2, z; (v) x, y, z+1; (vi) x1/2, y+1/2, z+1; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Y(C2H5N3O2)2(H2O)4]Cl3
Mr473.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)7.6510 (4), 13.2534 (7), 17.2547 (9)
β (°) 100.817 (1)
V3)1718.57 (16)
Z4
Radiation typeMo Kα
µ (mm1)3.90
Crystal size (mm)0.36 × 0.24 × 0.14
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.340, 0.611
No. of measured, independent and
observed [I > 2σ(I)] reflections
8075, 3105, 2464
Rint0.019
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 0.98
No. of reflections3105
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Y1—O12.3157 (11)Y1—O42.3536 (12)
Y1—O22.3349 (11)Y1—O32.3660 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.102.9111 (18)157
N1—H2···Cl1ii0.862.393.1897 (17)155
N2—H3···Cl1ii0.862.533.3184 (14)153
N3—H4···Cl1iii0.862.543.3633 (15)161
N3—H5···Cl1iv0.862.543.3232 (15)151
O3—H6···Cl1v0.802.393.1607 (12)161
O3—H7···Cl2vi0.792.273.0504 (12)168
O4—H8···Cl10.752.453.2028 (13)177
O4—H9···Cl20.802.403.1238 (12)150
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y1/2, z; (iii) x1/2, y1/2, z; (iv) x, y, z+1; (v) x1/2, y+1/2, z+1; (vi) x1, y, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarugo, O., Poli, G. & Manzoni, L. (1992). Acta Cryst. C48, 2013–2016.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHaddad, S. F. (1987). Acta Cryst. C43, 1882–1885.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHaddad, S. F. (1988). Acta Cryst. C44, 815–818.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds