metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­methyl­amino)pyridinium] tetra­bromidodi­phenyl­stannate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 April 2008; accepted 18 April 2008; online 23 April 2008)

The SnIV atom of the stannate anion in the title salt, (C7H11N2)2[SnBr4(C6H5)2], lies on a center of inversion in a tetra­gonally compressed octa­hedron. The two independent Br atoms in the anion are hydrogen-bond acceptors for the same cation.

Related literature

For the structure of dipyridinium tetra­bromidostannate(II), see: Tuleda & Khan (1991[Tuleda, D. & Khan, M. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1003-1005.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)2[SnBr4(C6H5)2]

  • Mr = 838.89

  • Monoclinic, P 21 /n

  • a = 10.7803 (2) Å

  • b = 9.3847 (2) Å

  • c = 14.4068 (4) Å

  • β = 94.126 (2)°

  • V = 1453.76 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.40 mm−1

  • T = 100 (2) K

  • 0.24 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.386, Tmax = 0.514 (expected range = 0.348–0.464)

  • 11853 measured reflections

  • 3334 independent reflections

  • 2688 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.051

  • S = 0.99

  • 3334 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C1 2.143 (3)
Sn1—Br1 2.7395 (2)
Sn1—Br2 2.7470 (3)
C1—Sn1—Br1 90.53 (7)
C1—Sn1—Br1i 89.47 (7)
C1—Sn1—Br2 89.64 (7)
C1—Sn1—Br2i 90.36 (7)
Br1—Sn1—Br2 88.981 (8)
Br1—Sn1—Br2i 91.019 (8)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Br1 0.88 (1) 2.79 (3) 3.385 (3) 126 (3)
N2—H2N⋯Br2 0.88 (1) 2.81 (3) 3.485 (3) 135 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Bis[4-(dimethylamino)pyridinium] tetrabromidodiphenylstannate(IV), (I) (Fig. 1 and Table 1) was the product of the cleavage of the mixed alkyl/triarylstannate, cyclopentyltriphenyltin, by 4-dimethylaminopyridine hydrobromide perbromide. The stannate has the tin atom in a tetragonally compressed octahedral Br4C2 environment. The anion has also been reported as the centrosymmetric pyridinium salt: Sn–Br = 2.7592 (3), 2.7737 (3) and Sn–C 2.158 (3) Å (Tuleda & Khan, 1991). Connections between ions are of the type N-H···Br (Table 2) so that each independent pair of bromide atoms are linked to the same cation.

Related literature top

For the structure of dipyridinium tetrabromidostannate, see: Tuleda & Khan (1991).

Experimental top

Cyclopentyltriphenyltin (1.36 g, 3 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (1.1 g, 3 mmol) were heated in chloroform (100 ml) for 3 h. The filtered solution when allowed to evaporate yielded large yellow crystals, m.p. 470–473 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C). The ammonium H atom was refined with a distance restraint of N–H 0.88±0.01 Å; its displacement parameter was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of [C7H11N]2 [SnBr4(C6H5)2] at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Bis[4-(dimethylamino)pyridinium] tetrabromidodiphenylstannate(IV) top
Crystal data top
(C7H11N2)2[SnBr4(C6H5)2]F(000) = 812
Mr = 838.89Dx = 1.916 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3449 reflections
a = 10.7803 (2) Åθ = 2.3–28.3°
b = 9.3847 (2) ŵ = 6.40 mm1
c = 14.4068 (4) ÅT = 100 K
β = 94.126 (2)°Block, colorless
V = 1453.76 (6) Å30.24 × 0.18 × 0.12 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
3334 independent reflections
Radiation source: fine-focus sealed tube2688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.386, Tmax = 0.514k = 1212
11853 measured reflectionsl = 1814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0228P)2]
where P = (Fo2 + 2Fc2)/3
3334 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = 0.42 e Å3
Crystal data top
(C7H11N2)2[SnBr4(C6H5)2]V = 1453.76 (6) Å3
Mr = 838.89Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.7803 (2) ŵ = 6.40 mm1
b = 9.3847 (2) ÅT = 100 K
c = 14.4068 (4) Å0.24 × 0.18 × 0.12 mm
β = 94.126 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3334 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2688 reflections with I > 2σ(I)
Tmin = 0.386, Tmax = 0.514Rint = 0.035
11853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0241 restraint
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.47 e Å3
3334 reflectionsΔρmin = 0.42 e Å3
166 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.50000.50000.01159 (7)
Br10.25635 (2)0.50711 (3)0.43147 (2)0.01591 (7)
Br20.55014 (2)0.71661 (3)0.38004 (2)0.01549 (7)
N10.05057 (19)1.2090 (2)0.45413 (16)0.0168 (5)
N20.2527 (2)0.8608 (3)0.3851 (2)0.0309 (7)
H2N0.296 (3)0.785 (2)0.372 (3)0.057 (12)*
C10.4622 (2)0.6546 (3)0.60374 (19)0.0130 (6)
C20.5344 (2)0.7784 (3)0.6151 (2)0.0185 (6)
H20.60430.79160.57940.022*
C30.5038 (3)0.8816 (3)0.6784 (2)0.0232 (7)
H30.55290.96540.68620.028*
C40.4025 (3)0.8631 (3)0.7301 (2)0.0248 (7)
H40.38070.93540.77220.030*
C50.3325 (3)0.7406 (3)0.7212 (2)0.0219 (7)
H50.26390.72770.75820.026*
C60.3615 (2)0.6360 (3)0.65865 (19)0.0172 (6)
H60.31310.55150.65300.021*
C70.0284 (3)1.2845 (3)0.3844 (2)0.0260 (7)
H7A0.02361.33680.34290.039*
H7B0.08161.35170.41530.039*
H7C0.08041.21600.34810.039*
C80.0588 (3)1.2631 (3)0.5493 (2)0.0209 (6)
H8A0.03861.18660.59200.031*
H8B0.00011.34180.55410.031*
H8C0.14351.29720.56570.031*
C90.1188 (2)1.0979 (3)0.4305 (2)0.0141 (6)
C100.1155 (2)1.0461 (3)0.3381 (2)0.0182 (6)
H100.06681.09370.29000.022*
C110.1821 (3)0.9282 (3)0.3182 (2)0.0254 (7)
H110.17860.89320.25620.031*
C120.2617 (3)0.9093 (3)0.4731 (2)0.0280 (8)
H120.31410.86090.51860.034*
C130.1979 (2)1.0250 (3)0.4982 (2)0.0201 (7)
H130.20581.05770.56070.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01150 (12)0.01286 (14)0.01055 (14)0.00047 (10)0.00166 (10)0.00068 (11)
Br10.01193 (13)0.01943 (15)0.01628 (15)0.00059 (10)0.00046 (10)0.00031 (12)
Br20.01807 (13)0.01534 (14)0.01326 (14)0.00163 (11)0.00254 (10)0.00332 (13)
N10.0165 (11)0.0180 (12)0.0155 (13)0.0016 (10)0.0018 (9)0.0031 (11)
N20.0372 (15)0.0258 (16)0.0305 (17)0.0166 (13)0.0093 (13)0.0049 (14)
C10.0147 (13)0.0135 (14)0.0109 (15)0.0026 (11)0.0011 (11)0.0007 (12)
C20.0209 (14)0.0194 (15)0.0155 (15)0.0009 (12)0.0027 (12)0.0045 (13)
C30.0308 (16)0.0152 (16)0.0227 (17)0.0012 (12)0.0039 (13)0.0025 (13)
C40.0339 (17)0.0243 (17)0.0158 (16)0.0109 (14)0.0004 (13)0.0078 (14)
C50.0193 (14)0.0345 (19)0.0120 (15)0.0065 (12)0.0012 (12)0.0018 (14)
C60.0139 (13)0.0235 (16)0.0138 (15)0.0001 (11)0.0015 (11)0.0003 (13)
C70.0217 (15)0.0307 (18)0.0244 (17)0.0081 (13)0.0072 (13)0.0020 (15)
C80.0233 (14)0.0217 (16)0.0178 (16)0.0016 (12)0.0018 (12)0.0022 (13)
C90.0132 (12)0.0147 (14)0.0147 (15)0.0048 (10)0.0016 (11)0.0038 (12)
C100.0184 (14)0.0163 (15)0.0197 (16)0.0006 (11)0.0000 (12)0.0056 (13)
C110.0345 (17)0.0237 (17)0.0188 (17)0.0052 (14)0.0073 (14)0.0021 (15)
C120.0271 (16)0.0303 (19)0.0261 (19)0.0057 (14)0.0014 (14)0.0102 (16)
C130.0192 (13)0.0234 (17)0.0175 (16)0.0012 (12)0.0010 (12)0.0045 (13)
Geometric parameters (Å, º) top
Sn1—C12.143 (3)C4—H40.9500
Sn1—C1i2.143 (3)C5—C61.384 (4)
Sn1—Br12.7395 (2)C5—H50.9500
Sn1—Br1i2.7395 (2)C6—H60.9500
Sn1—Br22.7470 (3)C7—H7A0.9800
Sn1—Br2i2.7470 (3)C7—H7B0.9800
N1—C91.334 (3)C7—H7C0.9800
N1—C71.454 (3)C8—H8A0.9800
N1—C81.459 (4)C8—H8B0.9800
N2—C121.344 (4)C8—H8C0.9800
N2—C111.342 (4)C9—C101.415 (4)
N2—H2N0.879 (10)C9—C131.424 (4)
C1—C61.399 (4)C10—C111.361 (4)
C1—C21.402 (4)C10—H100.9500
C2—C31.387 (4)C11—H110.9500
C2—H20.9500C12—C131.349 (4)
C3—C41.376 (4)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.376 (4)
C1—Sn1—C1i180.0C6—C5—C4120.3 (3)
C1—Sn1—Br190.53 (7)C6—C5—H5119.8
C1—Sn1—Br1i89.47 (7)C4—C5—H5119.8
C1—Sn1—Br289.64 (7)C5—C6—C1120.1 (3)
C1—Sn1—Br2i90.36 (7)C5—C6—H6120.0
C1i—Sn1—Br189.47 (7)C1—C6—H6120.0
C1i—Sn1—Br1i90.53 (7)N1—C7—H7A109.5
C1i—Sn1—Br290.36 (7)N1—C7—H7B109.5
C1i—Sn1—Br2i89.64 (7)H7A—C7—H7B109.5
Br1—Sn1—Br1i180.0N1—C7—H7C109.5
Br1—Sn1—Br288.981 (8)H7A—C7—H7C109.5
Br1—Sn1—Br2i91.019 (8)H7B—C7—H7C109.5
Br1i—Sn1—Br2i88.981 (8)N1—C8—H8A109.5
Br1i—Sn1—Br291.019 (8)N1—C8—H8B109.5
Br2—Sn1—Br2i180.0H8A—C8—H8B109.5
C9—N1—C7120.7 (2)N1—C8—H8C109.5
C9—N1—C8121.0 (2)H8A—C8—H8C109.5
C7—N1—C8118.2 (2)H8B—C8—H8C109.5
C12—N2—C11121.0 (3)N1—C9—C10122.1 (2)
C12—N2—H2N118 (3)N1—C9—C13121.0 (3)
C11—N2—H2N120 (3)C10—C9—C13116.9 (2)
C6—C1—C2118.9 (3)C11—C10—C9120.0 (3)
C6—C1—Sn1120.3 (2)C11—C10—H10120.0
C2—C1—Sn1120.71 (19)C9—C10—H10120.0
C3—C2—C1120.0 (3)N2—C11—C10120.8 (3)
C3—C2—H2120.0N2—C11—H11119.6
C1—C2—H2120.0C10—C11—H11119.6
C4—C3—C2120.2 (3)N2—C12—C13121.5 (3)
C4—C3—H3119.9N2—C12—H12119.3
C2—C3—H3119.9C13—C12—H12119.3
C3—C4—C5120.4 (3)C12—C13—C9119.7 (3)
C3—C4—H4119.8C12—C13—H13120.1
C5—C4—H4119.8C9—C13—H13120.1
Br1i—Sn1—C1—C6130.5 (2)C2—C1—C6—C51.7 (4)
Br1—Sn1—C1—C649.5 (2)Sn1—C1—C6—C5175.7 (2)
Br2i—Sn1—C1—C641.5 (2)C7—N1—C9—C101.6 (4)
Br2—Sn1—C1—C6138.5 (2)C8—N1—C9—C10178.0 (2)
Br1i—Sn1—C1—C252.2 (2)C7—N1—C9—C13178.9 (2)
Br1—Sn1—C1—C2127.8 (2)C8—N1—C9—C132.6 (4)
Br2i—Sn1—C1—C2141.2 (2)N1—C9—C10—C11176.8 (3)
Br2—Sn1—C1—C238.8 (2)C13—C9—C10—C112.6 (4)
C6—C1—C2—C31.5 (4)C12—N2—C11—C101.4 (5)
Sn1—C1—C2—C3175.9 (2)C9—C10—C11—N20.9 (4)
C1—C2—C3—C40.2 (4)C11—N2—C12—C131.7 (5)
C2—C3—C4—C51.7 (4)N2—C12—C13—C90.2 (5)
C3—C4—C5—C61.5 (4)N1—C9—C13—C12177.1 (3)
C4—C5—C6—C10.2 (4)C10—C9—C13—C122.3 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Br10.88 (1)2.79 (3)3.385 (3)126 (3)
N2—H2N···Br20.88 (1)2.81 (3)3.485 (3)135 (3)

Experimental details

Crystal data
Chemical formula(C7H11N2)2[SnBr4(C6H5)2]
Mr838.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.7803 (2), 9.3847 (2), 14.4068 (4)
β (°) 94.126 (2)
V3)1453.76 (6)
Z2
Radiation typeMo Kα
µ (mm1)6.40
Crystal size (mm)0.24 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.386, 0.514
No. of measured, independent and
observed [I > 2σ(I)] reflections
11853, 3334, 2688
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.051, 0.99
No. of reflections3334
No. of parameters166
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.42

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Sn1—C12.143 (3)Sn1—Br22.7470 (3)
Sn1—Br12.7395 (2)
C1—Sn1—Br190.53 (7)C1—Sn1—Br2i90.36 (7)
C1—Sn1—Br1i89.47 (7)Br1—Sn1—Br288.981 (8)
C1—Sn1—Br289.64 (7)Br1—Sn1—Br2i91.019 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Br10.88 (1)2.79 (3)3.385 (3)126 (3)
N2—H2N···Br20.88 (1)2.81 (3)3.485 (3)135 (3)
 

Acknowledgements

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuleda, D. & Khan, M. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1003–1005.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds