organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S)-2-(3-Oxo-1,4-dioxa­spiro­[4.5]decan-2-yl)ethanoic acid

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: tsaiyofu@cycu.edu.tw

(Received 11 March 2008; accepted 22 April 2008; online 30 April 2008)

The title compound, C10H14O5, is an inter­mediate in our study of the asymmetric synthesis of α-hydroxy­alkanoic acids. The structure consists of 1,4-dioxaspiro[4,5]decane skeleton formed when the cyclohexylidene group binds to both of the hydroxyl groups of carboxylic groups of the starting malic acid. The six-membered ring adopts a chair conformation.

Related literature

For related literature, see: Coppola & Schuster (1997[Coppola, G. M. & Schuster, H. F. (1997). In α-Hydroxy Acids In Enantioselective Synthesis. Weinheim: Academic Press.]); Díez et al. (2001[Díez, E., Dixon, D. J. & Ley, S. V. (2001). Angew. Chem. Int. Ed. 40, 2906-2909.]); Dixon et al. (2005[Dixon, D. J., Ley, S. V., Lohmann, S. & Sheppard, T. D. (2005). Synlett, 481-484.]); Hanessian et al. (1993[Hanessian, S., Tehim, A. & Chen, P. (1993). J. Org. Chem. 58, 7768-7781.]); Heimgartner & Obrecht (1990[Heimgartner, H. & Obrecht, D. (1990). Helv. Chim. Acta, 73, 221-228.]); Horgen et al. (2000[Horgen, F. D., Yoshida, W. Y. & Scheuer, P. J. (2000). J. Nat. Prod. 63, 461-467.]); Liang et al. (2000[Liang, J., Moher, E. D., Moore, R. E. & Hoard, D. W. (2000). J. Org. Chem. 65, 3143-3147.]); Sitachitta et al. (2000[Sitachitta, N., Williamson, R. T. & Gerwick, W. H. (2000). J. Nat. Prod. 63, 197-200.]); Sugiyama et al. (1990[Sugiyama, T., Murayama, T. & Yamashita, K. (1990). Tetrahedron Lett. 31, 7343-7344.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14O5

  • Mr = 214.21

  • Orthorhombic, P 21 21 21

  • a = 6.7098 (6) Å

  • b = 10.3463 (8) Å

  • c = 15.3175 (13) Å

  • V = 1063.37 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 (2) K

  • 0.50 × 0.45 × 0.35 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scanSADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.948, Tmax = 0.963

  • 7861 measured reflections

  • 2206 independent reflections

  • 1814 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.123

  • S = 1.05

  • 2206 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Enantiomerically pure α-hydroxy carboxylic acids are an important class of biological molecules (Liang et al., 2000; Sitachitta et al., 2000; Horgen et al., 2000) as well as important intermediates for the synthesis of natural products (Coppola & Schuster, 1997; Sugiyama et al., 1990; Heimgartner & Obrecht, 1990). For the above reasons, asymmetric synthesis of α-hydroxy carboxylic acids has attracted considerable attention. A number of synthetic strategies for preparing the optically active α-hydroxy carboxylic acids have been published in the literature (Dixon et al., 2005; Díez et al., 2001; Coppola & Schuster, 1997). The synthesis of the optically pure title compound ([a] 20 D = + 6.6°) (Scheme 1), which is an intermediate of our study on the asymmetric synthesis of α-hydroxyalkanoic acids, was carried out according to the reported method (Hanessian et al., 1993) starting with the commercial optical pure L-(-)-malic acid. Herein, we report the single-crystal structure (Fig. 1) of the title compound. The crude product was recrystalized from ethyl acetate – n-hexane at room temperature, which allowed us to observe the single-crystal of the title compound. Notably, the cyclohexylidene group was bonded at the hydroxyl groups of carboxylic group (C-1) and on C-2 to show the spirocyclic structure.

Related literature top

For related literature, see: Coppola & Schuster (1997); Díez et al. (2001); Dixon et al. (2005); Hanessian et al. (1993); Heimgartner & Obrecht (1990); Horgen et al. (2000); Liang et al. (2000); Sitachitta et al. (2000); Sugiyama et al. (1990).

Experimental top

Freshly distilled cyclohexanone (5.60 ml, 56.00 mmol) and BF3˙OEt2 (9.40 ml, 73.30 mmol) was added to a suspension solution of L-(-)-malic acid (5.01 g, 37.39 mmol) in dry ether (62.0 ml) cooled at 0 oC. The suspension gradually turned into a clear solution. After the mixture was stirred for 1 h at 0 oC, the ice bath was then removed and the mixture was stirred for 12 h at room temperature. The reaction mixture was diluted with ether and washed with 10% aqueous NaOAc (4 x 20.0 ml). The combined aqueous layers were extracted with ether, and the combined organic phases were washed three times with brine and dried over MgSO4. Removal of solvent in vacuo afforded a crude acid as pale yellow oil. Recrystallization (ethyl acetate /n-hexane) afforded 4.426 g (83%) of the acid 2 as an off-white crystal: Rf = 0.40 (ethyl acetate – n-hexane, 1/1, v/v); [a] 21D = + 6.6° (c 1.2, CHCl3); 1H NMR (300 MHz, CDCl3) δ 9.29 (bs, 1H), 4.72 (dd, 1H, J = 6.3, 3.9 Hz), 2.99 and 2.86 (ABX, 2H, JAB = 17.3, JAX = 6.3, JBX = 3.9 Hz), 1.89–1.30 (m, 10H).

Refinement top

The C-bound H atoms were placed in calculated positions (C-H = 0.97 - 0.98 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2or 1.5Ueq(C). The hydroxy H atoms were constrained to ideal geometries with O-H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids for non-H atoms are represented at the 30% probability level. The H atoms are drawn with an arbitrary radius.
(2S)-2-(3-Oxo-1,4-dioxaspiro[4.5]decan-2-yl)ethanoic acid top
Crystal data top
C10H14O5F(000) = 456
Mr = 214.21Dx = 1.338 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3702 reflections
a = 6.7098 (6) Åθ = 2.4–31.6°
b = 10.3463 (8) ŵ = 0.11 mm1
c = 15.3175 (13) ÅT = 295 K
V = 1063.37 (15) Å3Tabular, colourless
Z = 40.50 × 0.45 × 0.35 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2206 independent reflections
Radiation source: fine-focus sealed tube1814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 33.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004
h = 108
Tmin = 0.948, Tmax = 0.963k = 159
7861 measured reflectionsl = 1322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0907P)2 + 0.0732P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2206 reflectionsΔρmax = 0.31 e Å3
138 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.077 (9)
Crystal data top
C10H14O5V = 1063.37 (15) Å3
Mr = 214.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7098 (6) ŵ = 0.11 mm1
b = 10.3463 (8) ÅT = 295 K
c = 15.3175 (13) Å0.50 × 0.45 × 0.35 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2206 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004
1814 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.963Rint = 0.022
7861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
2206 reflectionsΔρmin = 0.17 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7046 (2)0.66387 (12)0.06930 (8)0.0516 (3)
O20.4717 (2)0.51238 (14)0.10628 (8)0.0584 (4)
O30.2465 (2)0.28916 (12)0.00641 (11)0.0613 (4)
O40.0034 (2)0.40271 (14)0.04693 (12)0.0647 (4)
H4A0.06200.33360.04140.097*
O50.6684 (3)0.66532 (14)0.07558 (9)0.0614 (4)
C10.6310 (2)0.61950 (15)0.00602 (11)0.0438 (3)
C20.4985 (3)0.50524 (14)0.01414 (10)0.0406 (3)
H2A0.56620.42450.00150.049*
C30.2983 (3)0.51228 (15)0.03022 (12)0.0454 (3)
H3A0.22200.58270.00510.055*
H3B0.31760.53090.09170.055*
C40.1827 (2)0.38946 (15)0.02119 (10)0.0393 (3)
C50.6327 (3)0.58484 (16)0.14185 (11)0.0461 (4)
C60.5544 (4)0.6724 (2)0.21270 (13)0.0615 (5)
H6A0.48750.62090.25680.074*
H6B0.45770.73170.18800.074*
C70.7215 (5)0.7482 (2)0.25453 (14)0.0702 (7)
H7A0.77600.80830.21220.084*
H7B0.66870.79810.30290.084*
C80.8859 (4)0.6613 (2)0.28737 (14)0.0686 (6)
H8A0.83470.60640.33360.082*
H8B0.99250.71360.31140.082*
C90.9671 (3)0.5778 (2)0.21429 (14)0.0643 (5)
H9A1.02890.63220.17040.077*
H9B1.06810.52000.23720.077*
C100.8011 (3)0.49950 (18)0.17303 (13)0.0547 (4)
H10A0.85400.45110.12400.066*
H10B0.75020.43810.21540.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0599 (8)0.0417 (6)0.0531 (6)0.0192 (6)0.0063 (6)0.0093 (5)
O20.0631 (8)0.0668 (8)0.0454 (6)0.0280 (7)0.0004 (6)0.0098 (6)
O30.0445 (6)0.0356 (5)0.1039 (11)0.0022 (5)0.0091 (7)0.0121 (7)
O40.0425 (6)0.0513 (7)0.1003 (11)0.0049 (6)0.0158 (7)0.0192 (7)
O50.0622 (8)0.0654 (9)0.0565 (7)0.0148 (7)0.0016 (6)0.0219 (7)
C10.0436 (7)0.0370 (6)0.0509 (8)0.0079 (6)0.0021 (7)0.0086 (6)
C20.0434 (7)0.0330 (6)0.0455 (7)0.0058 (6)0.0007 (6)0.0048 (6)
C30.0436 (7)0.0360 (7)0.0568 (8)0.0043 (6)0.0036 (7)0.0096 (6)
C40.0376 (6)0.0365 (6)0.0440 (7)0.0006 (6)0.0002 (6)0.0009 (5)
C50.0516 (9)0.0420 (7)0.0448 (7)0.0098 (7)0.0003 (7)0.0040 (6)
C60.0602 (11)0.0677 (12)0.0564 (10)0.0122 (10)0.0036 (9)0.0061 (9)
C70.0984 (19)0.0535 (11)0.0588 (11)0.0035 (11)0.0118 (12)0.0117 (9)
C80.0772 (15)0.0712 (13)0.0575 (10)0.0108 (12)0.0193 (10)0.0002 (10)
C90.0513 (10)0.0734 (13)0.0683 (11)0.0032 (10)0.0065 (9)0.0130 (11)
C100.0663 (11)0.0425 (8)0.0552 (8)0.0047 (9)0.0025 (9)0.0053 (7)
Geometric parameters (Å, º) top
O1—C11.336 (2)C5—C101.511 (3)
O1—C51.4617 (19)C6—C71.511 (3)
O2—C51.423 (2)C6—H6A0.9700
O2—C21.425 (2)C6—H6B0.9700
O3—C41.199 (2)C7—C81.510 (4)
O4—C41.317 (2)C7—H7A0.9700
O4—H4A0.8200C7—H7B0.9700
O5—C11.193 (2)C8—C91.515 (3)
C1—C21.511 (2)C8—H8A0.9700
C2—C31.507 (2)C8—H8B0.9700
C2—H2A0.9800C9—C101.515 (3)
C3—C41.495 (2)C9—H9A0.9700
C3—H3A0.9700C9—H9B0.9700
C3—H3B0.9700C10—H10A0.9700
C5—C61.508 (3)C10—H10B0.9700
C1—O1—C5110.00 (12)C7—C6—H6A109.4
C5—O2—C2108.11 (13)C5—C6—H6B109.4
C4—O4—H4A109.5C7—C6—H6B109.4
O5—C1—O1123.82 (15)H6A—C6—H6B108.0
O5—C1—C2128.12 (16)C8—C7—C6111.94 (17)
O1—C1—C2108.05 (13)C8—C7—H7A109.2
O2—C2—C3109.37 (15)C6—C7—H7A109.2
O2—C2—C1103.66 (13)C8—C7—H7B109.2
C3—C2—C1113.23 (12)C6—C7—H7B109.2
O2—C2—H2A110.1H7A—C7—H7B107.9
C3—C2—H2A110.1C7—C8—C9110.88 (17)
C1—C2—H2A110.1C7—C8—H8A109.5
C4—C3—C2112.30 (13)C9—C8—H8A109.5
C4—C3—H3A109.1C7—C8—H8B109.5
C2—C3—H3A109.1C9—C8—H8B109.5
C4—C3—H3B109.1H8A—C8—H8B108.1
C2—C3—H3B109.1C10—C9—C8110.37 (19)
H3A—C3—H3B107.9C10—C9—H9A109.6
O3—C4—O4122.26 (15)C8—C9—H9A109.6
O3—C4—C3125.67 (15)C10—C9—H9B109.6
O4—C4—C3112.07 (14)C8—C9—H9B109.6
O2—C5—O1104.72 (12)H9A—C9—H9B108.1
O2—C5—C6109.10 (17)C5—C10—C9111.66 (15)
O1—C5—C6109.04 (14)C5—C10—H10A109.3
O2—C5—C10112.38 (15)C9—C10—H10A109.3
O1—C5—C10108.68 (15)C5—C10—H10B109.3
C6—C5—C10112.58 (15)C9—C10—H10B109.3
C5—C6—C7111.0 (2)H10A—C10—H10B107.9
C5—C6—H6A109.4

Experimental details

Crystal data
Chemical formulaC10H14O5
Mr214.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)6.7098 (6), 10.3463 (8), 15.3175 (13)
V3)1063.37 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.45 × 0.35
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004
Tmin, Tmax0.948, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
7861, 2206, 1814
Rint0.022
(sin θ/λ)max1)0.772
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.123, 1.05
No. of reflections2206
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC 96-2113-M-033-003) and in part from the project of the specific research fields in the Chung Yuan Christian University, Taiwan, under grant CYCU-95-CR-CH.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoppola, G. M. & Schuster, H. F. (1997). In α-Hydroxy Acids In Enantioselective Synthesis. Weinheim: Academic Press.  Google Scholar
First citationDíez, E., Dixon, D. J. & Ley, S. V. (2001). Angew. Chem. Int. Ed. 40, 2906–2909.  Google Scholar
First citationDixon, D. J., Ley, S. V., Lohmann, S. & Sheppard, T. D. (2005). Synlett, 481–484.  Google Scholar
First citationHanessian, S., Tehim, A. & Chen, P. (1993). J. Org. Chem. 58, 7768–7781.  CrossRef CAS Web of Science Google Scholar
First citationHeimgartner, H. & Obrecht, D. (1990). Helv. Chim. Acta, 73, 221–228.  Google Scholar
First citationHorgen, F. D., Yoshida, W. Y. & Scheuer, P. J. (2000). J. Nat. Prod. 63, 461–467.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiang, J., Moher, E. D., Moore, R. E. & Hoard, D. W. (2000). J. Org. Chem. 65, 3143–3147.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSitachitta, N., Williamson, R. T. & Gerwick, W. H. (2000). J. Nat. Prod. 63, 197–200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSugiyama, T., Murayama, T. & Yamashita, K. (1990). Tetrahedron Lett. 31, 7343–7344.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds