inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages i24-i25

Redetermination of the borax structure from laboratory X-ray data at 145 K

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 26 March 2008; accepted 15 April 2008; online 23 April 2008)

The title compound, sodium tetraborate decahydrate (mineral name: borax), Na2[B4O5(OH)4]·8H2O, has been studied previously using X-ray [Morimoto (1956). Miner. J. 2, 1–18] and neutron [Levy & Lisensky (1978). Acta Cryst. B34, 3502–3510] diffraction data. The structure contains tetra­borate anions [B4O5(OH)4]2− with twofold rotation symmetry, which form hydrogen-bonded chains, and [Na(H2O)6] octa­hedra that form zigzag chains [Na(H2O)4/2(H2O)2/1]. The O—H bond distances obtained from the present redetermination at 145 K are shorter than those in the neutron study by an average of 0.127 (19) Å.

Related literature

For previous studies of the borax structure, see: Morimoto (1956[Morimoto, N. (1956). Miner. J. 2, 1—18.]); Levy & Lisenky (1978[Levy, H. A. & Lisensky, G. C. (1978). Acta Cryst. B34, 3502-3510.]). For other structures listed in the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) that contain the [B4O5(OH)4]2− anion, see: Wang et al. (2004[Wang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). J. Solid State Chem. 177, 4648-4654.]); Pan et al. (2007[Pan, C.-Y., Wang, G.-M., Zheng, S.-T. & Yang, G.-Y. (2007). Acta Cryst. E63, o1207-o1209.]). For related structures, see: Yi et al. (2005[Yi, X.-Y., Liu, B., Jimenez-Aparicio, R., Urbanos, F. A., Gao, S., Xu, W., Chen, J.-S., Song, Y. & Zheng, L.-M. (2005). Inorg. Chem. 44, 4309-4314.]). For comparative studies of hydrogen bonds obtained from X-ray and neutron data, see: Allen (1986[Allen, F. H. (1986). Acta Cryst. B42, 515-522.]); Smrčok et al. (2006[Smrčok, Ľ., Sládkovičová, M., Langer, V., Wilson, C. C. & Koóš, M. (2006). Acta Cryst. B62, 912-918.]).

Experimental

Crystal data
  • Na2[B4O5(OH)4]·8H2O

  • Mr = 381.38

  • Monoclinic, C 2/c

  • a = 11.8843 (5) Å

  • b = 10.6026 (4) Å

  • c = 12.2111 (5) Å

  • β = 106.790 (2)°

  • V = 1473.06 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 145 (2) K

  • 0.65 × 0.36 × 0.26 mm

Data collection
  • Bruker–Nonius APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 0.94

  • 8429 measured reflections

  • 2275 independent reflections

  • 2137 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.076

  • S = 1.08

  • 2275 reflections

  • 147 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Na1—O8i 2.3815 (6)
Na1—O6ii 2.3979 (5)
Na1—O7 2.4121 (6)
Na2—O7iii 2.4041 (6)
Na2—O9 2.4214 (6)
Na2—O6 2.4441 (6)
B1—O4 1.4451 (8)
B1—O1 1.4657 (7)
B1—O2 1.4902 (8)
B1—O3 1.5075 (8)
B2—O2 1.3655 (8)
B2—O3i 1.3757 (8)
B2—O5 1.3784 (8)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x, y-1, -z+{\script{1\over 2}}]; (iii) [-x, y+1, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5iv⋯O3iv 0.836 (15) 1.895 (15) 2.7300 (7) 176.3 (15)
O4v—H4⋯O9vi 0.828 (14) 2.049 (14) 2.8658 (8) 168.4 (12)
O6—H6Avii⋯O5viii 0.868 (16) 1.978 (16) 2.8323 (8) 167.9 (14)
O6ix—H6B⋯O4v 0.846 (16) 2.040 (15) 2.8624 (8) 163.9 (16)
O7vii—H7A⋯O2 0.827 (16) 1.989 (16) 2.8135 (8) 174.1 (12)
O7—H7B⋯O4 0.816 (15) 2.135 (15) 2.9233 (8) 162.3 (14)
O8v—H8A⋯O1x 0.866 (13) 1.936 (13) 2.7865 (6) 167.0 (14)
O8v—H8B⋯O5xi 0.855 (15) 2.341 (14) 3.1320 (8) 154.2 (12)
O9—H9Avii⋯O3 0.843 (16) 2.253 (16) 3.0894 (8) 171.7 (15)
O9—H9Bxii⋯O8xiii 0.849 (17) 2.069 (16) 2.9034 (8) 167.4 (15)
Symmetry codes: (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [-x+1, y, -z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ix) -x+1, -y+1, -z+1; (x) x+1, y, z; (xi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (xii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (xiii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The crystal structure of the title compound was previously studied by Morimoto (1956) using X-ray and later by Levy & Lisensky (1978, hereafter LL) using neutron diffraction data.

There are 8 other compounds with free tetraborate anions [B4O5(OH)4]2- reported in the Cambridge Structural Database [C.S.D., version 5.29 with November 2007 updates (Allen, 2002)] with most containing protonated amine-based cations, e.g. DALQEN (Wang et al., 2004) and SIBDIR (Pan et al., 2007). The tetraborate anion in borax has 2-fold symmetry with the axis passing through O1 (Fig. 1) as is observed in five of the related structures. Both Na1 and Na2 cations are on special positions (centre of symmetry and 2-fold axis, respectively) so that they elegantly bind via shared water molecules in a typical zigzag cationic chain [Na(H2O)4/2(H2O)2/1] parallel to the c axis (e.g. DARNOA, Yi et al., 2005), as shown in Figure 2. As is found through a C.S.D. search of similar Na+/H2O cation chains, the Na–O distances to the bridging water molecules are longer than those to non-bridging water molecules, where the trans related Na–O distances belong to non-bridging water molecules.

The results of the present study and the LL model are essentially superimposable, but do reflect expected differences associated with the H atom positions: The systematic pairwise study (Allen, 1986) gave a difference for O–H (X-ray versus neutron) of -0.155 (10) Å, while a more recent study of levoglucosan (Smrčok et al., 2006) averaged at -0.016 (6) Å. The mean O—H distance here (0.843 (17) Å) is significantly shorter than for the neutron set (0.97 (1) Å). As the O···O distances involved in the hydrogen bonding are very similar for both studies (Table 1), the observed H···O distances are correspondingly longer here than in the LL model. We also note that average Na–O distances are marginally longer (0.006 (6) Å) and the B–O distances marginally shorter (-0.005 (2) Å) in the LL model, e.g. Na–O6, B1–O2 are 2.458 (3), 1.500 (2) Å compared with 2.4441 (6), 1.5075 (8) Å, respectively, in the present study. These latter differences are barely significant given that the neutron data set was collected at 296.5 K.

Cell cohesion is provided by strong O—H···O hydrogen bonds of two types: (1) tetraborate anions "head to tail" link via the O5–H and O2 atoms (entry 1, Table 1) to form anionic chains as also seen in DALQEN (Wang et al., 2004); (2) the anionic and cationic chains crosslink through the water & tetraborate strong O–H···O hydrogen bond interactions (entries 2–10; see also Fig. 2 and diagrams in the LL study).

Related literature top

For previous studies of the borax structure, see: Morimoto (1956); Levy & Lisenky (1978). For other structures listed in the Cambridge Structural Database (Allen, 2002) that contain the [B4O5(OH)4]2- anion, see: Wang et al. (2004); Pan et al. (2007). For related structures, see: Yi et al. (2005). For comparative studies of hydrogen bonds obtained from X-ray and neutron data, see: Allen (1986); Smrčok et al. (2006).

Experimental top

To a tetrahydrofuran (thf) solution (90 ml) of sodium tetrahydridoborate (0.31 g, 8.4 mmol) was added 0.5 g (4.2 mmol) of diaminomethane dihydrochloride. After 24 h, the solvent was removed and the remaining product dissolved in water. Methanol was added and the solution was left in a refrigerator. A small clump of colourless crystals of the title compound appeared after several days in the bottom of the flask.

Refinement top

A total of 13 reflections (below 50°/2θ) were not collected. In the present re-determination the same atomic labels and atomic coordinates have been used as in the previous studies (Morimoto, 1956; Levy & Lisensky, 1978). The positions of the H atoms were fully refined with isotropic thermal parameters for each H atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the tetraborate anion shown with displacement ellipsoids at the 50% probability level. [Symmetry code: i) -x, y, 1/2 - z.]
[Figure 2] Fig. 2. Part of the crystal structure showing the zigzag [Na(H2O)4/2(H2O)2/1] chain, the hydrogen bonded tetraborate chain and some interlinking hydrogen bonds, shown as dashed lines. For clarity, only selected atoms and one of each chain is shown. [Symmetry codes: i) -x, y 1/2 - z; ii) x, 1 + y, z.]
sodium tetraborate decahydrate top
Crystal data top
Na2[B4O5(OH)4]·8H2OF(000) = 792
Mr = 381.38Dx = 1.720 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6688 reflections
a = 11.8843 (5) Åθ = 2.6–31.9°
b = 10.6026 (4) ŵ = 0.22 mm1
c = 12.2111 (5) ÅT = 145 K
β = 106.790 (2)°Prism, colourless
V = 1473.06 (10) Å30.65 × 0.36 × 0.26 mm
Z = 4
Data collection top
Bruker–Nonius APEX2 CCD area-detector
diffractometer
2275 independent reflections
Radiation source: fine-focus sealed tube2137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.192 pixels mm-1θmax = 33.2°, θmin = 2.6°
ϕ and ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 1515
Tmin = 0.813, Tmax = 0.94l = 1617
8429 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.3901P]
where P = (Fo2 + 2Fc2)/3
2275 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
Na2[B4O5(OH)4]·8H2OV = 1473.06 (10) Å3
Mr = 381.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.8843 (5) ŵ = 0.22 mm1
b = 10.6026 (4) ÅT = 145 K
c = 12.2111 (5) Å0.65 × 0.36 × 0.26 mm
β = 106.790 (2)°
Data collection top
Bruker–Nonius APEX2 CCD area-detector
diffractometer
2275 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2137 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.94Rint = 0.018
8429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.076All H-atom parameters refined
S = 1.08Δρmax = 0.37 e Å3
2275 reflectionsΔρmin = 0.22 e Å3
147 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.00000.00000.00000.01676 (10)
Na20.00000.84795 (4)0.25000.01796 (11)
B10.08552 (6)0.34499 (6)0.21553 (5)0.01044 (13)
B20.09847 (6)0.45643 (6)0.39269 (6)0.01154 (13)
O10.00000.26659 (6)0.25000.01094 (13)
O20.15546 (4)0.41927 (4)0.31574 (4)0.01276 (11)
O30.01964 (4)0.43573 (4)0.12445 (4)0.01339 (11)
O40.16140 (4)0.27014 (5)0.16772 (4)0.01570 (11)
O50.16369 (4)0.51522 (5)0.49130 (4)0.01815 (12)
O60.12357 (5)0.84607 (5)0.44846 (5)0.01851 (12)
O70.12296 (5)0.00117 (5)0.19548 (5)0.01799 (12)
O80.11919 (5)0.16556 (5)0.46252 (5)0.02067 (12)
O90.11746 (5)0.70654 (6)0.17227 (5)0.02187 (12)
H40.7717 (12)0.2622 (11)0.2876 (12)0.032 (3)*
H50.1187 (13)0.4667 (13)0.0305 (12)0.040 (3)*
H6A0.3089 (13)0.3828 (14)0.0413 (12)0.042 (4)*
H6B0.8662 (14)0.2018 (16)0.4941 (13)0.051 (4)*
H7A0.3098 (13)0.4817 (11)0.3051 (12)0.030 (3)*
H7B0.1304 (12)0.0776 (14)0.2014 (12)0.039 (3)*
H8A0.9099 (12)0.1906 (13)0.1075 (11)0.036 (3)*
H8B0.8131 (12)0.1365 (12)0.0352 (11)0.034 (3)*
H9A0.4018 (13)0.1300 (15)0.3385 (12)0.046 (4)*
H9B0.6140 (15)0.2331 (15)0.1058 (14)0.053 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0165 (2)0.01812 (19)0.0158 (2)0.00057 (13)0.00485 (15)0.00047 (13)
Na20.0179 (2)0.0201 (2)0.0176 (2)0.0000.00773 (16)0.000
B10.0100 (3)0.0121 (3)0.0096 (3)0.0012 (2)0.0035 (2)0.00028 (19)
B20.0108 (3)0.0133 (3)0.0111 (3)0.0014 (2)0.0040 (2)0.0014 (2)
O10.0117 (3)0.0104 (3)0.0111 (3)0.0000.0037 (2)0.000
O20.0103 (2)0.0168 (2)0.0122 (2)0.00223 (15)0.00493 (16)0.00376 (15)
O30.0103 (2)0.0180 (2)0.0130 (2)0.00309 (15)0.00519 (16)0.00559 (15)
O40.0119 (2)0.0209 (2)0.0142 (2)0.00489 (17)0.00365 (17)0.00434 (16)
O50.0132 (2)0.0275 (3)0.0150 (2)0.00595 (18)0.00593 (19)0.00949 (18)
O60.0146 (2)0.0219 (2)0.0186 (2)0.00109 (18)0.00414 (19)0.00229 (18)
O70.0151 (3)0.0160 (2)0.0232 (3)0.00012 (17)0.0061 (2)0.00003 (17)
O80.0185 (3)0.0242 (3)0.0184 (3)0.00116 (19)0.0039 (2)0.00608 (19)
O90.0217 (3)0.0196 (2)0.0229 (3)0.00047 (19)0.0041 (2)0.00352 (19)
Geometric parameters (Å, º) top
Na1—O8i2.3815 (6)Na2—O6ii2.4441 (6)
Na1—O8ii2.3815 (6)Na2—O62.4441 (6)
Na1—O6iii2.3979 (5)B1—O41.4451 (8)
Na1—O6iv2.3979 (5)B1—O11.4657 (7)
Na1—O7v2.4121 (6)B1—O21.4902 (8)
Na1—O72.4121 (6)B1—O31.5075 (8)
Na2—O7vi2.4041 (6)B2—O21.3655 (8)
Na2—O7vii2.4041 (6)B2—O3ii1.3757 (8)
Na2—O92.4214 (6)B2—O51.3784 (8)
Na2—O9ii2.4214 (6)
O8i—Na1—O8ii180.00 (2)O9—Na2—O6ii81.696 (19)
O8i—Na1—O6iii90.45 (2)O9ii—Na2—O6ii97.72 (2)
O8ii—Na1—O6iii89.55 (2)O7vi—Na2—O688.29 (2)
O8i—Na1—O6iv89.55 (2)O7vii—Na2—O692.34 (2)
O8ii—Na1—O6iv90.45 (2)O9—Na2—O697.72 (2)
O6iii—Na1—O6iv180.00 (3)O9ii—Na2—O681.70 (2)
O8i—Na1—O7v91.717 (19)O6ii—Na2—O6179.07 (3)
O8ii—Na1—O7v88.283 (19)O4—B1—O1111.72 (5)
O6iii—Na1—O7v89.177 (19)O4—B1—O2110.91 (5)
O6iv—Na1—O7v90.823 (19)O1—B1—O2109.42 (4)
O8i—Na1—O788.283 (19)O4—B1—O3107.71 (5)
O8ii—Na1—O791.717 (19)O1—B1—O3108.56 (5)
O6iii—Na1—O790.823 (19)O2—B1—O3108.43 (5)
O6iv—Na1—O789.177 (19)O2—B2—O3ii122.44 (6)
O7v—Na1—O7180.000 (16)O2—B2—O5117.78 (6)
O7vi—Na2—O7vii94.98 (3)O3ii—B2—O5119.78 (6)
O7vi—Na2—O9172.90 (2)B1ii—O1—B1110.90 (6)
O7vii—Na2—O981.05 (2)B2—O2—B1116.59 (5)
O7vi—Na2—O9ii81.05 (2)B2ii—O3—B1120.25 (5)
O7vii—Na2—O9ii172.90 (2)Na1vi—O6—Na290.952 (19)
O9—Na2—O9ii103.49 (3)Na2viii—O7—Na191.581 (19)
O7vi—Na2—O6ii92.34 (2)Na2viii—O7—H7B134.8 (10)
O7vii—Na2—O6ii88.29 (2)Na1—O7—H7B96.4 (10)
O4—B1—O1—B1ii172.74 (6)O7vi—Na2—O6—Na1vi0.355 (19)
O2—B1—O1—B1ii64.05 (4)O7vii—Na2—O6—Na1vi94.56 (2)
O3—B1—O1—B1ii54.12 (3)O9—Na2—O6—Na1vi175.84 (2)
O3ii—B2—O2—B14.91 (9)O9ii—Na2—O6—Na1vi81.56 (2)
O5—B2—O2—B1174.23 (5)O6ii—Na2—O6—Na1vi132.911 (15)
O4—B1—O2—B2156.88 (5)O8i—Na1—O7—Na2viii89.93 (2)
O1—B1—O2—B233.19 (7)O8ii—Na1—O7—Na2viii90.07 (2)
O3—B1—O2—B285.06 (6)O6iii—Na1—O7—Na2viii179.640 (19)
O4—B1—O3—B2ii136.95 (6)O6iv—Na1—O7—Na2viii0.360 (19)
O1—B1—O3—B2ii15.82 (7)O7v—Na1—O7—Na2viii122 (44)
O2—B1—O3—B2ii102.97 (6)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x, y+1, z1/2; (iv) x, y1, z+1/2; (v) x, y, z; (vi) x, y+1, z+1/2; (vii) x, y+1, z; (viii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5ix···O3ix0.836 (15)1.895 (15)2.7300 (7)176.3 (15)
O4x—H4···O9xi0.828 (14)2.049 (14)2.8658 (8)168.4 (12)
O6—H6Axii···O5xiii0.868 (16)1.978 (16)2.8323 (8)167.9 (14)
O6xiv—H6B···O4x0.846 (16)2.040 (15)2.8624 (8)163.9 (16)
O7xii—H7A···O20.827 (16)1.989 (16)2.8135 (8)174.1 (12)
O7—H7B···O40.816 (15)2.135 (15)2.9233 (8)162.3 (14)
O8x—H8A···O1xv0.866 (13)1.936 (13)2.7865 (6)167.0 (14)
O8x—H8B···O5xvi0.855 (15)2.341 (14)3.1320 (8)154.2 (12)
O9—H9Axii···O30.843 (16)2.253 (16)3.0894 (8)171.7 (15)
O9—H9Bxvii···O8iii0.849 (17)2.069 (16)2.9034 (8)167.4 (15)
Symmetry codes: (iii) x, y+1, z1/2; (ix) x, y+1, z+1/2; (x) x+1, y, z+1/2; (xi) x+1/2, y1/2, z; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y+3/2, z+1; (xiv) x+1, y+1, z+1; (xv) x+1, y, z; (xvi) x+1/2, y+1/2, z1/2; (xvii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaNa2[B4O5(OH)4]·8H2O
Mr381.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)145
a, b, c (Å)11.8843 (5), 10.6026 (4), 12.2111 (5)
β (°) 106.790 (2)
V3)1473.06 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.65 × 0.36 × 0.26
Data collection
DiffractometerBruker–Nonius APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.813, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
8429, 2275, 2137
Rint0.018
(sin θ/λ)max1)0.770
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.076, 1.08
No. of reflections2275
No. of parameters147
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.22

Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Na1—O8i2.3815 (6)B1—O11.4657 (7)
Na1—O6ii2.3979 (5)B1—O21.4902 (8)
Na1—O72.4121 (6)B1—O31.5075 (8)
Na2—O7iii2.4041 (6)B2—O21.3655 (8)
Na2—O92.4214 (6)B2—O3i1.3757 (8)
Na2—O62.4441 (6)B2—O51.3784 (8)
B1—O41.4451 (8)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y1, z+1/2; (iii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5iv···O3iv0.836 (15)1.895 (15)2.7300 (7)176.3 (15)
O4v—H4···O9vi0.828 (14)2.049 (14)2.8658 (8)168.4 (12)
O6—H6Avii···O5viii0.868 (16)1.978 (16)2.8323 (8)167.9 (14)
O6ix—H6B···O4v0.846 (16)2.040 (15)2.8624 (8)163.9 (16)
O7vii—H7A···O20.827 (16)1.989 (16)2.8135 (8)174.1 (12)
O7—H7B···O40.816 (15)2.135 (15)2.9233 (8)162.3 (14)
O8v—H8A···O1x0.866 (13)1.936 (13)2.7865 (6)167.0 (14)
O8v—H8B···O5xi0.855 (15)2.341 (14)3.1320 (8)154.2 (12)
O9—H9Avii···O30.843 (16)2.253 (16)3.0894 (8)171.7 (15)
O9—H9Bxii···O8xiii0.849 (17)2.069 (16)2.9034 (8)167.4 (15)
Symmetry codes: (iv) x, y+1, z+1/2; (v) x+1, y, z+1/2; (vi) x+1/2, y1/2, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+3/2, z+1; (ix) x+1, y+1, z+1; (x) x+1, y, z; (xi) x+1/2, y+1/2, z1/2; (xii) x1/2, y+1/2, z; (xiii) x, y+1, z1/2.
 

Acknowledgements

We thank Dr J. Wikaira of the University of Canterbury, New Zealand, for her assistance with the data collection.

References

First citationAllen, F. H. (1986). Acta Cryst. B42, 515–522.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLevy, H. A. & Lisensky, G. C. (1978). Acta Cryst. B34, 3502–3510.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorimoto, N. (1956). Miner. J. 2, 1—18.  CrossRef Google Scholar
First citationPan, C.-Y., Wang, G.-M., Zheng, S.-T. & Yang, G.-Y. (2007). Acta Cryst. E63, o1207–o1209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmrčok, Ľ., Sládkovičová, M., Langer, V., Wilson, C. C. & Koóš, M. (2006). Acta Cryst. B62, 912–918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). J. Solid State Chem. 177, 4648–4654.  Web of Science CSD CrossRef CAS Google Scholar
First citationYi, X.-Y., Liu, B., Jimenez-Aparicio, R., Urbanos, F. A., Gao, S., Xu, W., Chen, J.-S., Song, Y. & Zheng, L.-M. (2005). Inorg. Chem. 44, 4309–4314.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages i24-i25
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds