inorganic compounds
Redetermination of the borax structure from laboratory X-ray data at 145 K
aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz
The title compound, sodium tetraborate decahydrate (mineral name: borax), Na2[B4O5(OH)4]·8H2O, has been studied previously using X-ray [Morimoto (1956). Miner. J. 2, 1–18] and neutron [Levy & Lisensky (1978). Acta Cryst. B34, 3502–3510] diffraction data. The structure contains tetraborate anions [B4O5(OH)4]2− with twofold rotation symmetry, which form hydrogen-bonded chains, and [Na(H2O)6] octahedra that form zigzag chains [Na(H2O)4/2(H2O)2/1]. The O—H bond distances obtained from the present redetermination at 145 K are shorter than those in the neutron study by an average of 0.127 (19) Å.
Related literature
For previous studies of the borax structure, see: Morimoto (1956); Levy & Lisenky (1978). For other structures listed in the Cambridge Structural Database (Allen, 2002) that contain the [B4O5(OH)4]2− anion, see: Wang et al. (2004); Pan et al. (2007). For related structures, see: Yi et al. (2005). For comparative studies of hydrogen bonds obtained from X-ray and neutron data, see: Allen (1986); Smrčok et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2006); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808010441/wm2174sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808010441/wm2174Isup2.hkl
To a tetrahydrofuran (thf) solution (90 ml) of sodium tetrahydridoborate (0.31 g, 8.4 mmol) was added 0.5 g (4.2 mmol) of diaminomethane dihydrochloride. After 24 h, the solvent was removed and the remaining product dissolved in water. Methanol was added and the solution was left in a refrigerator. A small clump of colourless crystals of the title compound appeared after several days in the bottom of the flask.
A total of 13 reflections (below 50°/2θ) were not collected. In the present re-determination the same atomic labels and atomic coordinates have been used as in the previous studies (Morimoto, 1956; Levy & Lisensky, 1978). The positions of the H atoms were fully refined with isotropic thermal parameters for each H atom.
Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. Molecular structure of the tetraborate anion shown with displacement ellipsoids at the 50% probability level. [Symmetry code: i) -x, y, 1/2 - z.] | |
Fig. 2. Part of the crystal structure showing the zigzag [Na(H2O)4/2(H2O)2/1] chain, the hydrogen bonded tetraborate chain and some interlinking hydrogen bonds, shown as dashed lines. For clarity, only selected atoms and one of each chain is shown. [Symmetry codes: i) -x, y 1/2 - z; ii) x, 1 + y, z.] |
Na2[B4O5(OH)4]·8H2O | F(000) = 792 |
Mr = 381.38 | Dx = 1.720 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6688 reflections |
a = 11.8843 (5) Å | θ = 2.6–31.9° |
b = 10.6026 (4) Å | µ = 0.22 mm−1 |
c = 12.2111 (5) Å | T = 145 K |
β = 106.790 (2)° | Prism, colourless |
V = 1473.06 (10) Å3 | 0.65 × 0.36 × 0.26 mm |
Z = 4 |
Bruker–Nonius APEX2 CCD area-detector diffractometer | 2275 independent reflections |
Radiation source: fine-focus sealed tube | 2137 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 8.192 pixels mm-1 | θmax = 33.2°, θmin = 2.6° |
ϕ and ω scans | h = −17→16 |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | k = −15→15 |
Tmin = 0.813, Tmax = 0.94 | l = −16→17 |
8429 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | All H-atom parameters refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0482P)2 + 0.3901P] where P = (Fo2 + 2Fc2)/3 |
2275 reflections | (Δ/σ)max = 0.001 |
147 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Na2[B4O5(OH)4]·8H2O | V = 1473.06 (10) Å3 |
Mr = 381.38 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.8843 (5) Å | µ = 0.22 mm−1 |
b = 10.6026 (4) Å | T = 145 K |
c = 12.2111 (5) Å | 0.65 × 0.36 × 0.26 mm |
β = 106.790 (2)° |
Bruker–Nonius APEX2 CCD area-detector diffractometer | 2275 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 2137 reflections with I > 2σ(I) |
Tmin = 0.813, Tmax = 0.94 | Rint = 0.018 |
8429 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.076 | All H-atom parameters refined |
S = 1.08 | Δρmax = 0.37 e Å−3 |
2275 reflections | Δρmin = −0.22 e Å−3 |
147 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.0000 | 0.0000 | 0.0000 | 0.01676 (10) | |
Na2 | 0.0000 | 0.84795 (4) | 0.2500 | 0.01796 (11) | |
B1 | 0.08552 (6) | 0.34499 (6) | 0.21553 (5) | 0.01044 (13) | |
B2 | 0.09847 (6) | 0.45643 (6) | 0.39269 (6) | 0.01154 (13) | |
O1 | 0.0000 | 0.26659 (6) | 0.2500 | 0.01094 (13) | |
O2 | 0.15546 (4) | 0.41927 (4) | 0.31574 (4) | 0.01276 (11) | |
O3 | 0.01964 (4) | 0.43573 (4) | 0.12445 (4) | 0.01339 (11) | |
O4 | 0.16140 (4) | 0.27014 (5) | 0.16772 (4) | 0.01570 (11) | |
O5 | 0.16369 (4) | 0.51522 (5) | 0.49130 (4) | 0.01815 (12) | |
O6 | 0.12357 (5) | 0.84607 (5) | 0.44846 (5) | 0.01851 (12) | |
O7 | 0.12296 (5) | 0.00117 (5) | 0.19548 (5) | 0.01799 (12) | |
O8 | 0.11919 (5) | 0.16556 (5) | 0.46252 (5) | 0.02067 (12) | |
O9 | 0.11746 (5) | 0.70654 (6) | 0.17227 (5) | 0.02187 (12) | |
H4 | 0.7717 (12) | 0.2622 (11) | 0.2876 (12) | 0.032 (3)* | |
H5 | 0.1187 (13) | 0.4667 (13) | 0.0305 (12) | 0.040 (3)* | |
H6A | 0.3089 (13) | 0.3828 (14) | 0.0413 (12) | 0.042 (4)* | |
H6B | 0.8662 (14) | 0.2018 (16) | 0.4941 (13) | 0.051 (4)* | |
H7A | 0.3098 (13) | 0.4817 (11) | 0.3051 (12) | 0.030 (3)* | |
H7B | 0.1304 (12) | 0.0776 (14) | 0.2014 (12) | 0.039 (3)* | |
H8A | 0.9099 (12) | 0.1906 (13) | 0.1075 (11) | 0.036 (3)* | |
H8B | 0.8131 (12) | 0.1365 (12) | 0.0352 (11) | 0.034 (3)* | |
H9A | 0.4018 (13) | 0.1300 (15) | 0.3385 (12) | 0.046 (4)* | |
H9B | 0.6140 (15) | 0.2331 (15) | 0.1058 (14) | 0.053 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0165 (2) | 0.01812 (19) | 0.0158 (2) | 0.00057 (13) | 0.00485 (15) | 0.00047 (13) |
Na2 | 0.0179 (2) | 0.0201 (2) | 0.0176 (2) | 0.000 | 0.00773 (16) | 0.000 |
B1 | 0.0100 (3) | 0.0121 (3) | 0.0096 (3) | 0.0012 (2) | 0.0035 (2) | −0.00028 (19) |
B2 | 0.0108 (3) | 0.0133 (3) | 0.0111 (3) | −0.0014 (2) | 0.0040 (2) | −0.0014 (2) |
O1 | 0.0117 (3) | 0.0104 (3) | 0.0111 (3) | 0.000 | 0.0037 (2) | 0.000 |
O2 | 0.0103 (2) | 0.0168 (2) | 0.0122 (2) | −0.00223 (15) | 0.00493 (16) | −0.00376 (15) |
O3 | 0.0103 (2) | 0.0180 (2) | 0.0130 (2) | 0.00309 (15) | 0.00519 (16) | 0.00559 (15) |
O4 | 0.0119 (2) | 0.0209 (2) | 0.0142 (2) | 0.00489 (17) | 0.00365 (17) | −0.00434 (16) |
O5 | 0.0132 (2) | 0.0275 (3) | 0.0150 (2) | −0.00595 (18) | 0.00593 (19) | −0.00949 (18) |
O6 | 0.0146 (2) | 0.0219 (2) | 0.0186 (2) | −0.00109 (18) | 0.00414 (19) | 0.00229 (18) |
O7 | 0.0151 (3) | 0.0160 (2) | 0.0232 (3) | 0.00012 (17) | 0.0061 (2) | 0.00003 (17) |
O8 | 0.0185 (3) | 0.0242 (3) | 0.0184 (3) | 0.00116 (19) | 0.0039 (2) | 0.00608 (19) |
O9 | 0.0217 (3) | 0.0196 (2) | 0.0229 (3) | −0.00047 (19) | 0.0041 (2) | −0.00352 (19) |
Na1—O8i | 2.3815 (6) | Na2—O6ii | 2.4441 (6) |
Na1—O8ii | 2.3815 (6) | Na2—O6 | 2.4441 (6) |
Na1—O6iii | 2.3979 (5) | B1—O4 | 1.4451 (8) |
Na1—O6iv | 2.3979 (5) | B1—O1 | 1.4657 (7) |
Na1—O7v | 2.4121 (6) | B1—O2 | 1.4902 (8) |
Na1—O7 | 2.4121 (6) | B1—O3 | 1.5075 (8) |
Na2—O7vi | 2.4041 (6) | B2—O2 | 1.3655 (8) |
Na2—O7vii | 2.4041 (6) | B2—O3ii | 1.3757 (8) |
Na2—O9 | 2.4214 (6) | B2—O5 | 1.3784 (8) |
Na2—O9ii | 2.4214 (6) | ||
O8i—Na1—O8ii | 180.00 (2) | O9—Na2—O6ii | 81.696 (19) |
O8i—Na1—O6iii | 90.45 (2) | O9ii—Na2—O6ii | 97.72 (2) |
O8ii—Na1—O6iii | 89.55 (2) | O7vi—Na2—O6 | 88.29 (2) |
O8i—Na1—O6iv | 89.55 (2) | O7vii—Na2—O6 | 92.34 (2) |
O8ii—Na1—O6iv | 90.45 (2) | O9—Na2—O6 | 97.72 (2) |
O6iii—Na1—O6iv | 180.00 (3) | O9ii—Na2—O6 | 81.70 (2) |
O8i—Na1—O7v | 91.717 (19) | O6ii—Na2—O6 | 179.07 (3) |
O8ii—Na1—O7v | 88.283 (19) | O4—B1—O1 | 111.72 (5) |
O6iii—Na1—O7v | 89.177 (19) | O4—B1—O2 | 110.91 (5) |
O6iv—Na1—O7v | 90.823 (19) | O1—B1—O2 | 109.42 (4) |
O8i—Na1—O7 | 88.283 (19) | O4—B1—O3 | 107.71 (5) |
O8ii—Na1—O7 | 91.717 (19) | O1—B1—O3 | 108.56 (5) |
O6iii—Na1—O7 | 90.823 (19) | O2—B1—O3 | 108.43 (5) |
O6iv—Na1—O7 | 89.177 (19) | O2—B2—O3ii | 122.44 (6) |
O7v—Na1—O7 | 180.000 (16) | O2—B2—O5 | 117.78 (6) |
O7vi—Na2—O7vii | 94.98 (3) | O3ii—B2—O5 | 119.78 (6) |
O7vi—Na2—O9 | 172.90 (2) | B1ii—O1—B1 | 110.90 (6) |
O7vii—Na2—O9 | 81.05 (2) | B2—O2—B1 | 116.59 (5) |
O7vi—Na2—O9ii | 81.05 (2) | B2ii—O3—B1 | 120.25 (5) |
O7vii—Na2—O9ii | 172.90 (2) | Na1vi—O6—Na2 | 90.952 (19) |
O9—Na2—O9ii | 103.49 (3) | Na2viii—O7—Na1 | 91.581 (19) |
O7vi—Na2—O6ii | 92.34 (2) | Na2viii—O7—H7B | 134.8 (10) |
O7vii—Na2—O6ii | 88.29 (2) | Na1—O7—H7B | 96.4 (10) |
O4—B1—O1—B1ii | −172.74 (6) | O7vi—Na2—O6—Na1vi | −0.355 (19) |
O2—B1—O1—B1ii | 64.05 (4) | O7vii—Na2—O6—Na1vi | 94.56 (2) |
O3—B1—O1—B1ii | −54.12 (3) | O9—Na2—O6—Na1vi | 175.84 (2) |
O3ii—B2—O2—B1 | −4.91 (9) | O9ii—Na2—O6—Na1vi | −81.56 (2) |
O5—B2—O2—B1 | 174.23 (5) | O6ii—Na2—O6—Na1vi | −132.911 (15) |
O4—B1—O2—B2 | −156.88 (5) | O8i—Na1—O7—Na2viii | −89.93 (2) |
O1—B1—O2—B2 | −33.19 (7) | O8ii—Na1—O7—Na2viii | 90.07 (2) |
O3—B1—O2—B2 | 85.06 (6) | O6iii—Na1—O7—Na2viii | 179.640 (19) |
O4—B1—O3—B2ii | 136.95 (6) | O6iv—Na1—O7—Na2viii | −0.360 (19) |
O1—B1—O3—B2ii | 15.82 (7) | O7v—Na1—O7—Na2viii | −122 (44) |
O2—B1—O3—B2ii | −102.97 (6) |
Symmetry codes: (i) x, −y, z−1/2; (ii) −x, y, −z+1/2; (iii) x, −y+1, z−1/2; (iv) −x, y−1, −z+1/2; (v) −x, −y, −z; (vi) −x, y+1, −z+1/2; (vii) x, y+1, z; (viii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5ix···O3ix | 0.836 (15) | 1.895 (15) | 2.7300 (7) | 176.3 (15) |
O4x—H4···O9xi | 0.828 (14) | 2.049 (14) | 2.8658 (8) | 168.4 (12) |
O6—H6Axii···O5xiii | 0.868 (16) | 1.978 (16) | 2.8323 (8) | 167.9 (14) |
O6xiv—H6B···O4x | 0.846 (16) | 2.040 (15) | 2.8624 (8) | 163.9 (16) |
O7xii—H7A···O2 | 0.827 (16) | 1.989 (16) | 2.8135 (8) | 174.1 (12) |
O7—H7B···O4 | 0.816 (15) | 2.135 (15) | 2.9233 (8) | 162.3 (14) |
O8x—H8A···O1xv | 0.866 (13) | 1.936 (13) | 2.7865 (6) | 167.0 (14) |
O8x—H8B···O5xvi | 0.855 (15) | 2.341 (14) | 3.1320 (8) | 154.2 (12) |
O9—H9Axii···O3 | 0.843 (16) | 2.253 (16) | 3.0894 (8) | 171.7 (15) |
O9—H9Bxvii···O8iii | 0.849 (17) | 2.069 (16) | 2.9034 (8) | 167.4 (15) |
Symmetry codes: (iii) x, −y+1, z−1/2; (ix) x, −y+1, z+1/2; (x) −x+1, y, −z+1/2; (xi) x+1/2, y−1/2, z; (xii) −x+1/2, y+1/2, −z+1/2; (xiii) −x+1/2, −y+3/2, −z+1; (xiv) −x+1, −y+1, −z+1; (xv) x+1, y, z; (xvi) x+1/2, −y+1/2, z−1/2; (xvii) x−1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | Na2[B4O5(OH)4]·8H2O |
Mr | 381.38 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 145 |
a, b, c (Å) | 11.8843 (5), 10.6026 (4), 12.2111 (5) |
β (°) | 106.790 (2) |
V (Å3) | 1473.06 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.65 × 0.36 × 0.26 |
Data collection | |
Diffractometer | Bruker–Nonius APEX2 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.813, 0.94 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8429, 2275, 2137 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.770 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.076, 1.08 |
No. of reflections | 2275 |
No. of parameters | 147 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.37, −0.22 |
Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).
Na1—O8i | 2.3815 (6) | B1—O1 | 1.4657 (7) |
Na1—O6ii | 2.3979 (5) | B1—O2 | 1.4902 (8) |
Na1—O7 | 2.4121 (6) | B1—O3 | 1.5075 (8) |
Na2—O7iii | 2.4041 (6) | B2—O2 | 1.3655 (8) |
Na2—O9 | 2.4214 (6) | B2—O3i | 1.3757 (8) |
Na2—O6 | 2.4441 (6) | B2—O5 | 1.3784 (8) |
B1—O4 | 1.4451 (8) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, y−1, −z+1/2; (iii) −x, y+1, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5iv···O3iv | 0.836 (15) | 1.895 (15) | 2.7300 (7) | 176.3 (15) |
O4v—H4···O9vi | 0.828 (14) | 2.049 (14) | 2.8658 (8) | 168.4 (12) |
O6—H6Avii···O5viii | 0.868 (16) | 1.978 (16) | 2.8323 (8) | 167.9 (14) |
O6ix—H6B···O4v | 0.846 (16) | 2.040 (15) | 2.8624 (8) | 163.9 (16) |
O7vii—H7A···O2 | 0.827 (16) | 1.989 (16) | 2.8135 (8) | 174.1 (12) |
O7—H7B···O4 | 0.816 (15) | 2.135 (15) | 2.9233 (8) | 162.3 (14) |
O8v—H8A···O1x | 0.866 (13) | 1.936 (13) | 2.7865 (6) | 167.0 (14) |
O8v—H8B···O5xi | 0.855 (15) | 2.341 (14) | 3.1320 (8) | 154.2 (12) |
O9—H9Avii···O3 | 0.843 (16) | 2.253 (16) | 3.0894 (8) | 171.7 (15) |
O9—H9Bxii···O8xiii | 0.849 (17) | 2.069 (16) | 2.9034 (8) | 167.4 (15) |
Symmetry codes: (iv) x, −y+1, z+1/2; (v) −x+1, y, −z+1/2; (vi) x+1/2, y−1/2, z; (vii) −x+1/2, y+1/2, −z+1/2; (viii) −x+1/2, −y+3/2, −z+1; (ix) −x+1, −y+1, −z+1; (x) x+1, y, z; (xi) x+1/2, −y+1/2, z−1/2; (xii) x−1/2, y+1/2, z; (xiii) x, −y+1, z−1/2. |
Acknowledgements
We thank Dr J. Wikaira of the University of Canterbury, New Zealand, for her assistance with the data collection.
References
Allen, F. H. (1986). Acta Cryst. B42, 515–522. CrossRef CAS Web of Science IUCr Journals Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2006). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Levy, H. A. & Lisensky, G. C. (1978). Acta Cryst. B34, 3502–3510. CrossRef CAS IUCr Journals Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Morimoto, N. (1956). Miner. J. 2, 1—18. CrossRef Google Scholar
Pan, C.-Y., Wang, G.-M., Zheng, S.-T. & Yang, G.-Y. (2007). Acta Cryst. E63, o1207–o1209. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smrčok, Ľ., Sládkovičová, M., Langer, V., Wilson, C. C. & Koóš, M. (2006). Acta Cryst. B62, 912–918. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). J. Solid State Chem. 177, 4648–4654. Web of Science CSD CrossRef CAS Google Scholar
Yi, X.-Y., Liu, B., Jimenez-Aparicio, R., Urbanos, F. A., Gao, S., Xu, W., Chen, J.-S., Song, Y. & Zheng, L.-M. (2005). Inorg. Chem. 44, 4309–4314. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structure of the title compound was previously studied by Morimoto (1956) using X-ray and later by Levy & Lisensky (1978, hereafter LL) using neutron diffraction data.
There are 8 other compounds with free tetraborate anions [B4O5(OH)4]2- reported in the Cambridge Structural Database [C.S.D., version 5.29 with November 2007 updates (Allen, 2002)] with most containing protonated amine-based cations, e.g. DALQEN (Wang et al., 2004) and SIBDIR (Pan et al., 2007). The tetraborate anion in borax has 2-fold symmetry with the axis passing through O1 (Fig. 1) as is observed in five of the related structures. Both Na1 and Na2 cations are on special positions (centre of symmetry and 2-fold axis, respectively) so that they elegantly bind via shared water molecules in a typical zigzag cationic chain [Na(H2O)4/2(H2O)2/1] parallel to the c axis (e.g. DARNOA, Yi et al., 2005), as shown in Figure 2. As is found through a C.S.D. search of similar Na+/H2O cation chains, the Na–O distances to the bridging water molecules are longer than those to non-bridging water molecules, where the trans related Na–O distances belong to non-bridging water molecules.
The results of the present study and the LL model are essentially superimposable, but do reflect expected differences associated with the H atom positions: The systematic pairwise study (Allen, 1986) gave a difference for O–H (X-ray versus neutron) of -0.155 (10) Å, while a more recent study of levoglucosan (Smrčok et al., 2006) averaged at -0.016 (6) Å. The mean O—H distance here (0.843 (17) Å) is significantly shorter than for the neutron set (0.97 (1) Å). As the O···O distances involved in the hydrogen bonding are very similar for both studies (Table 1), the observed H···O distances are correspondingly longer here than in the LL model. We also note that average Na–O distances are marginally longer (0.006 (6) Å) and the B–O distances marginally shorter (-0.005 (2) Å) in the LL model, e.g. Na–O6, B1–O2 are 2.458 (3), 1.500 (2) Å compared with 2.4441 (6), 1.5075 (8) Å, respectively, in the present study. These latter differences are barely significant given that the neutron data set was collected at 296.5 K.
Cell cohesion is provided by strong O—H···O hydrogen bonds of two types: (1) tetraborate anions "head to tail" link via the O5–H and O2 atoms (entry 1, Table 1) to form anionic chains as also seen in DALQEN (Wang et al., 2004); (2) the anionic and cationic chains crosslink through the water & tetraborate strong O–H···O hydrogen bond interactions (entries 2–10; see also Fig. 2 and diagrams in the LL study).