metal-organic compounds
Tetrakis(thiourea-κS)palladium(II) dithiocyanate
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan, and cDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan
*Correspondence e-mail: saeed_a786@hotmail.com
The title compound, [Pd(CH4N2S)4](SCN)2, consists of complex [Pd(TU)4]2+ [TU = thiourea, SC(NH2)2] cations and thiocyanate counter-anions. The PdII cation is situated on an inversion centre and exhibits an almost square-planar coordination by the S atoms of the TU ligands. The complex cations are connected through the thiocyanate ions via N—H⋯N [2.922 (3)–3.056 (3) Å] and N—H⋯S [3.369 (2)–3.645 (2) Å] hydrogen bonds.
Related literature
For the coordination chemistry of thiones and thionates, and for biomolecules possessing thioamido binding sites, see: Akrivos (2001); Raper (1996); Cusumano et al. (2005). For other structures listed in the Cambridge Structural Database (Allen, 2002) that contain transition metals and thiourea ligands, see: Bott et al. (1998); Dupa & Krebs (1973); Gale et al. (2006); Hunt et al. (1979); Taylor et al. (1974).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.
Supporting information
10.1107/S160053680801088X/wm2176sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680801088X/wm2176Isup2.hkl
Crystals of (I) were obtained by adding 4 equivalents of thiourea in 15 ml methanol to a solution of K2[PdCl2] (0.326 g) in 15 ml of water and stirring for one h. The resulting orange solution was kept after filtration at room temperature for three d. Orange crystals of (I) were obtained on slow evaporation. The counter anion SCN- has apparently been introduced due to impurities (presumably KSCN), that were present in thiourea.
The H atoms attached to the N atoms were placed in idealized positions and refined with a N—H distance of 0.88 Å and Uiso(H) = 1.2Ueq(N).
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell
CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).Fig. 1. Molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 30% probability level. Unlabelled atoms and atoms labelled by superscript i) are related by the symmetry operator i) 1-x, y, z. |
[Pd(CH4N2S)4](SCN)2 | F(000) = 528 |
Mr = 527.05 | Dx = 1.884 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2ybc | Cell parameters from 3103 reflections |
a = 8.136 (3) Å | θ = 3.4–27.5° |
b = 12.966 (5) Å | µ = 1.69 mm−1 |
c = 8.810 (3) Å | T = 123 K |
β = 91.12 (5)° | Prism, orange |
V = 929.3 (6) Å3 | 0.30 × 0.25 × 0.22 mm |
Z = 2 |
Rigaku/MSC Mercury CCD diffractometer | 2117 independent reflections |
Radiation source: fine-focus sealed tube | 2040 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 27.5°, θmin = 3.9° |
Absorption correction: integration (NUMABS; Higashi, 1999) | h = −8→10 |
Tmin = 0.632, Tmax = 0.708 | k = −16→13 |
7301 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.043 | H-atom parameters constrained |
S = 1.35 | w = 1/[σ2(Fo2) + 0.6382P] where P = (Fo2 + 2Fc2)/3 |
2117 reflections | (Δ/σ)max = 0.001 |
106 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
[Pd(CH4N2S)4](SCN)2 | V = 929.3 (6) Å3 |
Mr = 527.05 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.136 (3) Å | µ = 1.69 mm−1 |
b = 12.966 (5) Å | T = 123 K |
c = 8.810 (3) Å | 0.30 × 0.25 × 0.22 mm |
β = 91.12 (5)° |
Rigaku/MSC Mercury CCD diffractometer | 2117 independent reflections |
Absorption correction: integration (NUMABS; Higashi, 1999) | 2040 reflections with I > 2σ(I) |
Tmin = 0.632, Tmax = 0.708 | Rint = 0.025 |
7301 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.043 | H-atom parameters constrained |
S = 1.35 | Δρmax = 0.66 e Å−3 |
2117 reflections | Δρmin = −0.48 e Å−3 |
106 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.0000 | 0.5000 | 0.5000 | 0.00900 (6) | |
S1 | −0.19061 (6) | 0.37251 (3) | 0.56476 (5) | 0.01265 (10) | |
C1 | −0.1354 (2) | 0.26304 (14) | 0.4664 (2) | 0.0140 (4) | |
N1 | −0.0189 (2) | 0.26297 (13) | 0.36425 (19) | 0.0197 (4) | |
H1A | 0.0068 | 0.2054 | 0.3175 | 0.024* | |
H1B | 0.0332 | 0.3205 | 0.3429 | 0.024* | |
N2 | −0.2134 (2) | 0.17612 (13) | 0.49809 (19) | 0.0199 (4) | |
H2A | −0.1874 | 0.1187 | 0.4511 | 0.024* | |
H2B | −0.2911 | 0.1759 | 0.5661 | 0.024* | |
S2 | 0.13159 (6) | 0.47003 (4) | 0.73312 (5) | 0.01300 (10) | |
C2 | 0.3204 (2) | 0.41505 (14) | 0.7012 (2) | 0.0141 (4) | |
N3 | 0.3774 (2) | 0.39827 (14) | 0.56415 (18) | 0.0201 (4) | |
H3A | 0.4743 | 0.3693 | 0.5534 | 0.024* | |
H3B | 0.3184 | 0.4160 | 0.4835 | 0.024* | |
N4 | 0.4105 (2) | 0.38793 (14) | 0.82155 (19) | 0.0219 (4) | |
H4A | 0.5073 | 0.3591 | 0.8096 | 0.026* | |
H4B | 0.3736 | 0.3988 | 0.9134 | 0.026* | |
S3 | 0.22933 (7) | 0.42269 (4) | 0.17265 (6) | 0.02044 (12) | |
C3 | 0.4076 (3) | 0.36611 (15) | 0.2055 (2) | 0.0186 (4) | |
N5 | 0.5334 (2) | 0.32525 (15) | 0.2287 (2) | 0.0260 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.00878 (10) | 0.00771 (9) | 0.01049 (9) | 0.00000 (7) | −0.00061 (7) | 0.00047 (7) |
S1 | 0.0121 (2) | 0.0103 (2) | 0.0156 (2) | −0.00127 (17) | 0.00147 (17) | −0.00054 (16) |
C1 | 0.0152 (10) | 0.0128 (9) | 0.0137 (9) | −0.0004 (7) | −0.0027 (7) | 0.0001 (7) |
N1 | 0.0228 (10) | 0.0129 (8) | 0.0238 (9) | −0.0030 (7) | 0.0077 (7) | −0.0057 (6) |
N2 | 0.0248 (10) | 0.0115 (8) | 0.0236 (9) | −0.0039 (7) | 0.0073 (7) | −0.0027 (7) |
S2 | 0.0111 (2) | 0.0163 (2) | 0.0115 (2) | 0.00134 (17) | −0.00052 (16) | 0.00123 (16) |
C2 | 0.0126 (9) | 0.0124 (9) | 0.0172 (9) | −0.0010 (7) | −0.0007 (7) | 0.0011 (7) |
N3 | 0.0166 (9) | 0.0275 (9) | 0.0162 (8) | 0.0096 (7) | 0.0005 (7) | 0.0019 (7) |
N4 | 0.0170 (9) | 0.0309 (10) | 0.0176 (8) | 0.0108 (8) | −0.0040 (7) | 0.0005 (7) |
S3 | 0.0193 (3) | 0.0202 (2) | 0.0220 (2) | 0.0026 (2) | 0.0054 (2) | 0.00404 (19) |
C3 | 0.0235 (12) | 0.0183 (10) | 0.0144 (9) | −0.0049 (8) | 0.0061 (8) | −0.0029 (7) |
N5 | 0.0232 (11) | 0.0256 (9) | 0.0292 (10) | 0.0018 (8) | 0.0031 (8) | −0.0007 (8) |
Pd1—S2 | 2.3302 (11) | N2—H2B | 0.8800 |
Pd1—S2i | 2.3302 (11) | S2—C2 | 1.721 (2) |
Pd1—S1 | 2.3448 (8) | C2—N3 | 1.320 (3) |
Pd1—S1i | 2.3448 (8) | C2—N4 | 1.325 (3) |
S1—C1 | 1.727 (2) | N3—H3A | 0.8800 |
C1—N1 | 1.320 (3) | N3—H3B | 0.8800 |
C1—N2 | 1.326 (3) | N4—H4A | 0.8800 |
N1—H1A | 0.8800 | N4—H4B | 0.8800 |
N1—H1B | 0.8800 | S3—C3 | 1.646 (2) |
N2—H2A | 0.8800 | C3—N5 | 1.167 (3) |
S2—Pd1—S2i | 180.0 | C1—N2—H2B | 120.0 |
S2—Pd1—S1 | 87.86 (3) | H2A—N2—H2B | 120.0 |
S2i—Pd1—S1 | 92.14 (3) | C2—S2—Pd1 | 108.72 (7) |
S2—Pd1—S1i | 92.14 (3) | N3—C2—N4 | 119.29 (18) |
S2i—Pd1—S1i | 87.86 (3) | N3—C2—S2 | 123.27 (15) |
S1—Pd1—S1i | 180.0 | N4—C2—S2 | 117.44 (15) |
C1—S1—Pd1 | 106.11 (7) | C2—N3—H3A | 120.0 |
N1—C1—N2 | 119.74 (17) | C2—N3—H3B | 120.0 |
N1—C1—S1 | 122.68 (15) | H3A—N3—H3B | 120.0 |
N2—C1—S1 | 117.57 (15) | C2—N4—H4A | 120.0 |
C1—N1—H1A | 120.0 | C2—N4—H4B | 120.0 |
C1—N1—H1B | 120.0 | H4A—N4—H4B | 120.0 |
H1A—N1—H1B | 120.0 | N5—C3—S3 | 179.5 (2) |
C1—N2—H2A | 120.0 | ||
S2—Pd1—S1—C1 | −101.78 (7) | S1—Pd1—S2—C2 | 112.12 (7) |
S2i—Pd1—S1—C1 | 78.22 (7) | S1i—Pd1—S2—C2 | −67.88 (7) |
Pd1—S1—C1—N1 | −6.95 (19) | Pd1—S2—C2—N3 | 2.44 (18) |
Pd1—S1—C1—N2 | 172.15 (14) | Pd1—S2—C2—N4 | −176.95 (14) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···S3 | 0.88 | 2.58 | 3.369 (2) | 150 |
N1—H1A···S2ii | 0.88 | 2.60 | 3.466 (2) | 166 |
N2—H2A···S3iii | 0.88 | 2.78 | 3.615 (2) | 158 |
N2—H2B···N5iv | 0.88 | 2.04 | 2.922 (3) | 178 |
N3—H3B···S3 | 0.88 | 2.82 | 3.645 (2) | 157 |
N3—H3A···S1v | 0.88 | 2.73 | 3.531 (2) | 153 |
N4—H4B···S3vi | 0.88 | 2.61 | 3.482 (2) | 173 |
N4—H4A···N5vii | 0.88 | 2.50 | 3.056 (3) | 121 |
Symmetry codes: (ii) x, −y+1/2, z−1/2; (iii) −x, y−1/2, −z+1/2; (iv) x−1, −y+1/2, z+1/2; (v) x+1, y, z; (vi) x, y, z+1; (vii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Pd(CH4N2S)4](SCN)2 |
Mr | 527.05 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 8.136 (3), 12.966 (5), 8.810 (3) |
β (°) | 91.12 (5) |
V (Å3) | 929.3 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.69 |
Crystal size (mm) | 0.30 × 0.25 × 0.22 |
Data collection | |
Diffractometer | Rigaku/MSC Mercury CCD diffractometer |
Absorption correction | Integration (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.632, 0.708 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7301, 2117, 2040 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.043, 1.35 |
No. of reflections | 2117 |
No. of parameters | 106 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.66, −0.48 |
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), TEXSAN (Molecular Structure Corporation & Rigaku, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).
Pd1—S2 | 2.3302 (11) | Pd1—S1 | 2.3448 (8) |
S2—Pd1—S2i | 180.0 | S2i—Pd1—S1 | 92.14 (3) |
S2—Pd1—S1 | 87.86 (3) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···S3 | 0.88 | 2.58 | 3.369 (2) | 150.0 |
N1—H1A···S2ii | 0.88 | 2.60 | 3.466 (2) | 166.4 |
N2—H2A···S3iii | 0.88 | 2.78 | 3.615 (2) | 158.2 |
N2—H2B···N5iv | 0.88 | 2.04 | 2.922 (3) | 178.4 |
N3—H3B···S3 | 0.88 | 2.82 | 3.645 (2) | 156.6 |
N3—H3A···S1v | 0.88 | 2.73 | 3.531 (2) | 152.5 |
N4—H4B···S3vi | 0.88 | 2.61 | 3.482 (2) | 172.9 |
N4—H4A···N5vii | 0.88 | 2.50 | 3.056 (3) | 121.4 |
Symmetry codes: (ii) x, −y+1/2, z−1/2; (iii) −x, y−1/2, −z+1/2; (iv) x−1, −y+1/2, z+1/2; (v) x+1, y, z; (vi) x, y, z+1; (vii) x, −y+1/2, z+1/2. |
Acknowledgements
M. K. Rauf is grateful to the Higher Education Commission of Pakistan for financial support for a PhD programme.
References
Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181–210. Web of Science CrossRef CAS Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bott, R. C., Bowmaker, G. A., Davis, C. A., Hope, G. A. & Jones, B. E. (1998). Inorg. Chem. 37, 651–657. Web of Science CSD CrossRef CAS Google Scholar
Cusumano, M., Di Pietro, M. L., Giannetto, A. & Vainiglia, P. A. (2005). J. Inorg. Biochem. 99, 560–565. Web of Science CrossRef PubMed CAS Google Scholar
Dupa, M. R. & Krebs, B. (1973). Inorg. Chim. Acta, 7, 271–276. Google Scholar
Gale, P. A., Light, M. E. & Quesada, R. (2006). CrystEngComm, 8, 178–188. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hunt, G. W., Terry, N. W. & Amma, E. L. (1979). Acta Cryst. B35, 1235–1236. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA. Google Scholar
Molecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA. Google Scholar
Raper, E. S. (1996). Coord. Chem. Rev. 153, 199–255. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, F. Jr, Weiniger, M. S. & Amma, E. L. (1974). Inorg. Chem. 13, 2835–2842. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea (TU), SC(NH2)2, is a simple ambidentate ligand capable of binding to transition metals via the sulfur or the nitrogen atoms. Complex formation with such ligands provides model systems for the interaction of naturally occurring biomolecules possessing thioamido binding sites (Akrivos, 2001; Raper, 1996; Cusumano et al., 2005). The ability of TU to form stable adducts with a variety of transition metals, e.g. Cu, Ag, Au and Pt, is well established. The crystal structures of several such complexes have been determined (Bott et al., 1998; Gale et al., 2006). These studies demonstrate that TU can act both as a terminal ligand in monomeric complexes (Hunt et al., 1979), or as a bridging ligand in polymeric complexes (Taylor et al., 1974). In order to investigate other transition metal complexes of thiourea, we report here the crystal structure of a monomeric complex, viz. [Pd(SC(NH2)2)4](SCN)2, (I).
The crystal structure of (I) is composed of complex [Pd(TU)4]+2 cations and thiocyanate counter anions. The Pd2+ ion is situated on an inversion centre and, as expected for a d8 system, has an almost square planar environment with cis angles (S—Pd—S) ranging from 87.87 (2) to 92.13 (2)°, and trans angles (S—Pd—S) of 180.0°. The TU ligands are coordinated to PdII at almost equal distances. The Pd—S bond lengths of 2.3302 (8) and 2.3448 (7) Å (Table 1) are comparable to those of similar compounds reported in the literature (Gale et al., 2006). In the cationic complex, TU ligands behave as S–donors and all four ligands are binding in a terminal mode. Therefore no bridging of metal centers are found as it is observed in some other metal-thiourea compounds, for example, [Cu4(TU)7(SO4)2]NO3 (Bott et al., 1998) and [Ag2(TU)6](ClO4)2 (Dupa & Krebs, 1973). The C—S and C—N bond lengths of 1.723 (2) Å and 1.326 (3) Å, respectively, agree with those of coordinated thiourea molecules reported in the Cambridge Crystallographic database (Allen, 2002). In the crystal structure, the building units are connected via hydrogen bonds of the type N—H···N [2.922 (3)–3.058 (3) Å] and N—H···S [3.370 (2)–3.646 (2) Å] (see Table 2).