organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3S,4S)-3-Ethyl-4-hydr­­oxy-3-(3-meth­oxy­phen­yl)-1-methyl­azepan-1-ium D-tartrate dihydrate

aDepartment of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, People's Republic of China
*Correspondence e-mail: zbqiu@shmu.edu.cn

(Received 25 February 2008; accepted 3 March 2008; online 2 April 2008)

In the title compound, C16H26NO2+·C4H5O6·2H2O, a meptaz­inol derivative, three C atoms of the azepane ring are disordered over two positions, with site-occupancy factors of 0.80 and 0.20; the major disorder component adopts a twist-chair conformation, while the minor component has a chair conformation. The benzene ring is axially substituted on the heterocyclic ring, resulting in a folded conformation of the cation. The absolute configuration was determined with reference to D-tartaric acid. The crystal structure is stabilized by an extensive network of intra- and inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the synthesis of the racemate of the title compound, see: Hao et al. (2005[Hao, J. L., Li, W., Xie, Q., Chen, Y. & Qiu, Z. B. (2005). J. Fudan Univ. (Med. Sci.), 32, 173-177.]). For conformational studies of seven-membered rings, see: Eliel et al. (1994[Eliel, E. L., Wilen, S. H. & Mander, L. N. (1994). Stereochemistry of Organic Compounds, pp. 762-769. New York: Wiley.]); Entrena et al. (2005[Entrena, A., Campos, J. M., Gallo, M. A. E. & Spinosa, A. (2005). Arkivoc, 6, 88-108.]). For the analgesic activity and clinical use of meptazinol, see: Holmes (1985[Holmes, B. (1985). Drugs, 30, 285-312.]). For related literature, see: Bill et al. (1983[Bill, D. J., Hartley, J. E., Stephens, R. J. & Thompson, A. M. (1983). Br. J. Pharm. 79, 191-199.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26NO2+·C4H5O6·2H2O

  • Mr = 449.49

  • Orthorhombic, P 21 21 21

  • a = 7.146 (3) Å

  • b = 10.812 (4) Å

  • c = 29.338 (11) Å

  • V = 2266.7 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.988

  • 11334 measured reflections

  • 2855 independent reflections

  • 2173 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.163

  • S = 1.04

  • 2855 reflections

  • 319 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4 0.82 2.15 2.623 (5) 116
O6—H6⋯O9 0.82 1.91 2.641 (5) 149
O9—H9X⋯O2 0.83 (2) 2.00 (2) 2.823 (5) 171 (6)
O10—H10X⋯O5 0.82 (2) 1.98 (2) 2.790 (5) 173 (6)
C7A—H7A⋯O1 0.97 2.56 3.149 (8) 119
C6B—H6B1⋯O1 0.97 1.91 2.46 (3) 113
O9—H9Y⋯O7i 0.83 (2) 1.85 (2) 2.680 (5) 171 (7)
O3—H3⋯O8i 0.82 1.73 2.516 (4) 160
O5—H5⋯O10ii 0.82 2.27 2.983 (5) 145
O10—H10Y⋯O4iii 0.82 (2) 2.02 (4) 2.739 (5) 145 (6)
C16—H16⋯O7iv 0.93 2.50 3.417 (6) 171
C7B—H7B1⋯O6iv 0.97 2.51 3.176 (7) 126
C6B—H6B2⋯O1v 0.97 2.39 3.056 (17) 125
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) x+1, y, z; (iv) [-x-1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Meptazinol is a selective µ agonist with additional central anticholinergic activity, which has been used for treating pain associated with labour and kidney problems (Holmes, 1985). Many studies have shown meptazinol to have an advantage over other opioid analgesics because of its lack of adverse cardiorespiratory effects and low addiction liability (Bill et al., 1983); this makes it an ideal precursor for further investigation. During the course of our structural optimization of meptazinol, the title compound was synthesized by introducing an OH group at the 4-position, followed by resolution with D-tartaric acid.

The absolute configuration of the azepane ring atoms is N1(R), C3(S) and C4(S), according to the reference molecule D-tartaric acid. The O—H functionalities, carboxyl group and H2O are known to be efficient donor and acceptor groups for hydrogen bonding, and they form an extensive hydrogen-bond network, which stabilizes the structure. The 3-methoxyphenyl substituent at C3 is trans to the OH group at C4 and cis to the N—H bond, resulting in a folded conformation of the cation.

The major disorder component adopts a twist-chair conformation, while the minor component has a chair conformation. The twist-chair conformation of seven-membered rings is known to be more stable than the chair conformation (Entrena et al., 2005). Thus, the relative proportion of both conformers observed within the crystal structure may reflect the statistical partitioning of the two populations of azepane structures corresponding to different energetic states.

Related literature top

For the synthesis of the racemate of the title compound, see: Hao et al. (2005). For conformational studies of seven-membered rings, see: Eliel et al. (1994); Entrena et al. (2005). For the analgesic activity and clinical use of meptazinol, see: Holmes (1985).

For related literature, see: Bill et al. (1983).

Experimental top

The title compound was prepared by standard procedures upon optical resolution of the racemate with D-tartaric acid. The synthesis of the racemic compound was described by Hao et al. (2005).

Refinement top

The H atoms bonded to N and O in the azepane ring, also the water hydrogen atoms were located in difference maps and refined with restraints: N—H = 0.89 (2) Å and O—H = 0.82 (2) and 0.83 (2) Å. The H atoms attached to O in the anion and all carbon-bound H atoms were placed in calculated positions and refined as riding; O—H = 0.82 and C—H = 0.93 - 0.98 Å; Uiso(H) = xUeq(parent atom) where x = 1.5 for O and 1.2 for C. In the cation, three C atoms with attached H atoms are disordered over two positions; the site occupancy factors are 0.80 and 0.20.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 20% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Both azepane ring conformations are depicted; the minor chair conformation is drawn with open bonds. H atoms bonded to the C atoms of the azepane unit have been omitted for clarity.
[Figure 2] Fig. 2. A view of the crystal packing, showing the hydrogen-bonding network (dashed lines). Only the twist-chair conformation of the azepane ring is shown.
(3S,4S)-3-Ethyl-4-hydroxy-3-(3-methoxyphenyl)-1-methylazepan-1-ium D-tartrate dihydrate top
Crystal data top
C16H26NO2+·C4H5O6·2H2OF(000) = 968
Mr = 449.49Dx = 1.317 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1000 reflections
a = 7.146 (3) Åθ = 2.8–22.5°
b = 10.812 (4) ŵ = 0.11 mm1
c = 29.338 (11) ÅT = 293 K
V = 2266.7 (15) Å3Prismatic, colorless
Z = 40.20 × 0.15 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2855 independent reflections
Radiation source: fine-focus sealed tube2173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 27.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 94
Tmin = 0.979, Tmax = 0.988k = 1313
11334 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0771P)2]
where P = (Fo2 + 2Fc2)/3
2855 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 0.43 e Å3
19 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H26NO2+·C4H5O6·2H2OV = 2266.7 (15) Å3
Mr = 449.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.146 (3) ŵ = 0.11 mm1
b = 10.812 (4) ÅT = 293 K
c = 29.338 (11) Å0.20 × 0.15 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2855 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2173 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.988Rint = 0.076
11334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06119 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
2855 reflectionsΔρmin = 0.26 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.0175 (7)0.3641 (4)0.46124 (12)0.0684 (12)
H1X1.114 (7)0.405 (6)0.457 (2)0.14 (4)*
O20.7001 (6)0.4436 (3)0.25255 (10)0.0628 (11)
O30.6276 (4)0.1543 (3)0.13391 (10)0.0425 (7)
H30.74000.14180.13070.064*
O40.6399 (5)0.2140 (4)0.06130 (12)0.0626 (10)
O50.2757 (4)0.2069 (3)0.05050 (10)0.0487 (8)
H50.36050.23650.03520.073*
O60.3086 (4)0.3996 (3)0.11490 (10)0.0430 (7)
H60.37660.43100.13420.065*
O70.0443 (4)0.3653 (3)0.13158 (11)0.0480 (8)
O80.0205 (4)0.1619 (3)0.13574 (10)0.0391 (7)
O90.6223 (5)0.4527 (3)0.15827 (12)0.0473 (8)
H9X0.651 (9)0.457 (5)0.1855 (9)0.066 (17)*
H9Y0.721 (6)0.424 (7)0.147 (2)0.11 (3)*
O100.0604 (5)0.1148 (3)0.01603 (11)0.0472 (8)
H10X0.033 (5)0.142 (5)0.0284 (18)0.067 (18)*
H10Y0.121 (8)0.135 (6)0.0387 (14)0.08 (2)*
N10.9584 (7)0.0649 (3)0.42832 (11)0.0451 (10)
H10.925 (6)0.018 (3)0.4048 (10)0.029 (11)*
C21.0991 (6)0.1554 (4)0.41055 (14)0.0381 (9)
H2A1.17460.18160.43630.046*
H2B1.18140.11030.39020.046*
C31.0364 (6)0.2740 (4)0.38507 (13)0.0340 (9)
C40.9242 (8)0.3610 (4)0.41797 (14)0.0480 (12)
H40.92890.44470.40520.058*
C5A0.7183 (8)0.3276 (5)0.42468 (16)0.0575 (13)0.80
H5A0.67380.36770.45220.069*0.80
H5B0.64730.36090.39930.069*0.80
C6A0.6754 (8)0.1822 (6)0.42849 (18)0.0489 (15)0.80
H6A0.67340.14800.39790.059*0.80
H6B0.55090.17210.44120.059*0.80
C7A0.8041 (9)0.1098 (5)0.4556 (2)0.0691 (15)0.80
H7A0.85220.16020.48030.083*0.80
H7B0.73820.04010.46890.083*0.80
C5B0.7183 (8)0.3276 (5)0.42468 (16)0.0575 (13)0.20
H5B10.66300.29600.39680.069*0.20
H5B20.64630.39800.43530.069*0.20
C6B0.730 (4)0.2392 (14)0.4568 (5)0.049 (6)0.20
H6B10.79940.27820.48140.058*0.20
H6B20.60330.23040.46800.058*0.20
C7B0.8041 (9)0.1098 (5)0.4556 (2)0.0691 (15)0.20
H7B10.69800.05800.44770.083*0.20
H7B20.83580.08950.48690.083*0.20
C81.0659 (12)0.0250 (5)0.45936 (18)0.082 (2)
H8A0.99310.09860.46380.123*
H8B1.18310.04620.44540.123*
H8C1.08880.01360.48830.123*
C91.2199 (7)0.3436 (5)0.37375 (18)0.0567 (13)
H9A1.29560.34710.40120.068*
H9B1.18820.42800.36560.068*
C101.3354 (9)0.2906 (7)0.3367 (2)0.0770 (18)
H10A1.26040.28140.30970.116*
H10B1.43860.34480.33030.116*
H10C1.38210.21120.34590.116*
C110.9309 (6)0.2535 (4)0.34049 (13)0.0338 (9)
C120.8603 (6)0.3570 (4)0.31824 (13)0.0388 (10)
H120.87040.43460.33170.047*
C130.7751 (7)0.3450 (5)0.27617 (14)0.0442 (10)
C140.7607 (8)0.2313 (5)0.25529 (15)0.0528 (13)
H140.70370.22410.22690.063*
C150.8316 (8)0.1289 (5)0.27677 (14)0.0523 (13)
H150.82340.05190.26280.063*
C160.9167 (6)0.1400 (4)0.31989 (13)0.0412 (10)
H160.96340.07010.33440.049*
C170.6939 (10)0.5617 (5)0.27368 (17)0.0643 (15)
H17A0.81700.58400.28390.096*
H17B0.65010.62200.25210.096*
H17C0.61040.55900.29930.096*
C180.5553 (6)0.1854 (4)0.09532 (14)0.0357 (9)
C190.3405 (5)0.1845 (4)0.09492 (14)0.0348 (9)
H190.29790.10220.10420.042*
C200.2607 (5)0.2792 (4)0.12837 (13)0.0311 (8)
H200.31440.26360.15860.037*
C210.0461 (6)0.2685 (3)0.13173 (12)0.0304 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.102 (3)0.054 (2)0.0493 (19)0.015 (2)0.036 (2)0.0117 (16)
O20.093 (3)0.062 (2)0.0337 (16)0.020 (2)0.0192 (19)0.0047 (14)
O30.0267 (13)0.0508 (18)0.0499 (17)0.0006 (14)0.0032 (13)0.0072 (15)
O40.0358 (17)0.102 (3)0.0504 (19)0.001 (2)0.0073 (16)0.0149 (19)
O50.0355 (16)0.071 (2)0.0396 (16)0.0106 (16)0.0018 (14)0.0067 (15)
O60.0343 (16)0.0337 (15)0.0612 (19)0.0056 (13)0.0115 (15)0.0052 (13)
O70.0328 (15)0.0357 (16)0.076 (2)0.0038 (14)0.0019 (17)0.0016 (15)
O80.0268 (14)0.0354 (15)0.0550 (17)0.0019 (12)0.0009 (13)0.0041 (13)
O90.0393 (18)0.059 (2)0.0433 (19)0.0009 (16)0.0073 (16)0.0042 (16)
O100.0456 (19)0.0567 (19)0.0392 (17)0.0046 (18)0.0032 (17)0.0048 (15)
N10.070 (3)0.0334 (18)0.0320 (18)0.006 (2)0.007 (2)0.0040 (14)
C20.042 (2)0.032 (2)0.040 (2)0.0049 (19)0.0031 (19)0.0004 (17)
C30.034 (2)0.0302 (19)0.038 (2)0.0035 (18)0.0068 (19)0.0033 (16)
C40.077 (3)0.033 (2)0.034 (2)0.005 (2)0.024 (2)0.0071 (17)
C5A0.055 (3)0.078 (4)0.039 (2)0.020 (3)0.007 (2)0.008 (2)
C6A0.039 (3)0.079 (4)0.029 (3)0.018 (3)0.008 (2)0.004 (3)
C7A0.074 (4)0.061 (3)0.073 (3)0.007 (3)0.020 (3)0.002 (3)
C5B0.055 (3)0.078 (4)0.039 (2)0.020 (3)0.007 (2)0.008 (2)
C6B0.086 (18)0.046 (9)0.014 (8)0.022 (10)0.020 (11)0.001 (8)
C7B0.074 (4)0.061 (3)0.073 (3)0.007 (3)0.020 (3)0.002 (3)
C80.147 (7)0.049 (3)0.050 (3)0.009 (4)0.039 (4)0.014 (2)
C90.048 (3)0.061 (3)0.062 (3)0.016 (3)0.009 (3)0.011 (2)
C100.050 (3)0.104 (5)0.077 (4)0.020 (4)0.010 (3)0.003 (4)
C110.030 (2)0.042 (2)0.0300 (18)0.0037 (18)0.0032 (17)0.0003 (16)
C120.046 (2)0.043 (2)0.0281 (19)0.003 (2)0.0044 (18)0.0038 (17)
C130.043 (2)0.056 (3)0.033 (2)0.005 (2)0.0041 (19)0.0015 (19)
C140.059 (3)0.068 (3)0.032 (2)0.000 (3)0.006 (2)0.009 (2)
C150.068 (3)0.051 (3)0.038 (2)0.000 (3)0.002 (2)0.011 (2)
C160.048 (3)0.039 (2)0.036 (2)0.006 (2)0.0024 (19)0.0006 (17)
C170.083 (4)0.060 (3)0.050 (3)0.017 (3)0.003 (3)0.004 (2)
C180.0300 (19)0.037 (2)0.040 (2)0.0026 (18)0.004 (2)0.0023 (17)
C190.028 (2)0.036 (2)0.040 (2)0.0058 (17)0.0012 (18)0.0007 (17)
C200.0279 (19)0.0302 (19)0.0351 (19)0.0021 (16)0.0045 (17)0.0018 (16)
C210.0273 (18)0.033 (2)0.0313 (18)0.0011 (17)0.0036 (17)0.0027 (15)
Geometric parameters (Å, º) top
O1—C41.434 (5)C6A—H6A0.9700
O1—H1X0.83 (2)C6A—H6B0.9700
O2—C131.380 (6)C7A—H7A0.9700
O2—C171.420 (6)C7A—H7B0.9700
O3—C181.289 (5)C6B—H6B10.9700
O3—H30.8200C6B—H6B20.9700
O4—C181.207 (5)C8—H8A0.9599
O5—C191.404 (5)C8—H8B0.9599
O5—H50.8200C8—H8C0.9599
O6—C201.403 (5)C9—C101.482 (8)
O6—H60.8200C9—H9A0.9700
O7—C211.230 (5)C9—H9B0.9700
O8—C211.252 (5)C10—H10A0.9599
O9—H9X0.83 (2)C10—H10B0.9599
O9—H9Y0.83 (2)C10—H10C0.9599
O10—H10X0.82 (2)C11—C161.371 (6)
O10—H10Y0.82 (2)C11—C121.391 (6)
N1—C7A1.447 (7)C12—C131.383 (6)
N1—C21.496 (6)C12—H120.9300
N1—C81.538 (7)C13—C141.377 (7)
N1—H10.890 (19)C14—C151.371 (7)
C2—C31.551 (5)C14—H140.9300
C2—H2A0.9700C15—C161.409 (6)
C2—H2B0.9700C15—H150.9300
C3—C111.526 (5)C16—H160.9300
C3—C91.548 (7)C17—H17A0.9599
C3—C41.568 (6)C17—H17B0.9599
C4—C5A1.528 (8)C17—H17C0.9599
C4—H40.9800C18—C191.536 (6)
C5A—C6A1.606 (8)C19—C201.528 (6)
C5A—H5A0.9700C19—H190.9800
C5A—H5B0.9700C20—C211.541 (6)
C6A—C7A1.446 (8)C20—H200.9800
C4—O1—H1X106 (6)H8B—C8—H8C109.5
C13—O2—C17119.2 (4)C10—C9—C3116.2 (5)
C18—O3—H3109.5C10—C9—H9A108.2
C19—O5—H5109.5C3—C9—H9A108.2
C20—O6—H6109.5C10—C9—H9B108.2
H9X—O9—H9Y101 (6)C3—C9—H9B108.2
H10X—O10—H10Y89 (5)H9A—C9—H9B107.4
C7A—N1—C2119.1 (4)C9—C10—H10A109.5
C7A—N1—C8105.4 (4)C9—C10—H10B109.5
C2—N1—C8106.5 (4)H10A—C10—H10B109.5
C7A—N1—H1115 (3)C9—C10—H10C109.5
C2—N1—H1107 (3)H10A—C10—H10C109.5
C8—N1—H1103 (3)H10B—C10—H10C109.5
N1—C2—C3121.0 (4)C16—C11—C12119.1 (4)
N1—C2—H2A107.1C16—C11—C3123.0 (4)
C3—C2—H2A107.1C12—C11—C3117.7 (3)
N1—C2—H2B107.1C13—C12—C11120.2 (4)
C3—C2—H2B107.1C13—C12—H12119.9
H2A—C2—H2B106.8C11—C12—H12119.9
C11—C3—C9107.8 (3)C14—C13—O2115.9 (4)
C11—C3—C2115.8 (3)C14—C13—C12121.0 (4)
C9—C3—C2105.1 (4)O2—C13—C12123.1 (4)
C11—C3—C4111.2 (3)C15—C14—C13119.3 (4)
C9—C3—C4105.9 (4)C15—C14—H14120.4
C2—C3—C4110.3 (3)C13—C14—H14120.4
O1—C4—C5A109.8 (4)C14—C15—C16120.2 (4)
O1—C4—C3108.7 (4)C14—C15—H15119.9
C5A—C4—C3115.5 (4)C16—C15—H15119.9
O1—C4—H4107.5C11—C16—C15120.3 (4)
C5A—C4—H4107.5C11—C16—H16119.9
C3—C4—H4107.5C15—C16—H16119.9
C4—C5A—C6A115.1 (4)O2—C17—H17A109.5
C4—C5A—H5A108.5O2—C17—H17B109.5
C6A—C5A—H5A108.5H17A—C17—H17B109.5
C4—C5A—H5B108.5O2—C17—H17C109.5
C6A—C5A—H5B108.5H17A—C17—H17C109.5
H5A—C5A—H5B107.5H17B—C17—H17C109.5
C7A—C6A—C5A116.5 (5)O4—C18—O3126.3 (4)
C7A—C6A—H6A108.2O4—C18—C19119.7 (4)
C5A—C6A—H6A108.2O3—C18—C19114.0 (4)
C7A—C6A—H6B108.2O5—C19—C20111.0 (3)
C5A—C6A—H6B108.2O5—C19—C18109.6 (3)
H6A—C6A—H6B107.3C20—C19—C18111.4 (3)
C6A—C7A—N1111.2 (5)O5—C19—H19108.3
C6A—C7A—H7A109.4C20—C19—H19108.3
N1—C7A—H7A109.4C18—C19—H19108.3
C6A—C7A—H7B109.4O6—C20—C19110.5 (3)
N1—C7A—H7B109.4O6—C20—C21109.3 (3)
H7A—C7A—H7B108.0C19—C20—C21111.2 (3)
H6B1—C6B—H6B2105.5O6—C20—H20108.6
N1—C8—H8A109.5C19—C20—H20108.6
N1—C8—H8B109.5C21—C20—H20108.6
H8A—C8—H8B109.5O7—C21—O8125.7 (4)
N1—C8—H8C109.5O7—C21—C20117.3 (4)
H8A—C8—H8C109.5O8—C21—C20117.0 (3)
C7A—N1—C2—C350.1 (6)C4—C3—C11—C1248.4 (5)
C8—N1—C2—C3168.8 (4)C16—C11—C12—C130.8 (6)
N1—C2—C3—C1162.8 (5)C3—C11—C12—C13175.4 (4)
N1—C2—C3—C9178.4 (4)C17—O2—C13—C14174.2 (5)
N1—C2—C3—C464.6 (5)C17—O2—C13—C125.9 (8)
C11—C3—C4—O1172.6 (4)C11—C12—C13—C140.9 (7)
C9—C3—C4—O170.6 (5)C11—C12—C13—O2179.2 (4)
C2—C3—C4—O142.7 (5)O2—C13—C14—C15179.8 (5)
C11—C3—C4—C5A48.7 (5)C12—C13—C14—C150.3 (7)
C9—C3—C4—C5A165.5 (4)C13—C14—C15—C160.5 (8)
C2—C3—C4—C5A81.2 (4)C12—C11—C16—C150.0 (7)
O1—C4—C5A—C6A83.7 (5)C3—C11—C16—C15174.4 (4)
C3—C4—C5A—C6A39.7 (5)C14—C15—C16—C110.6 (7)
C4—C5A—C6A—C7A41.9 (6)O4—C18—C19—O56.3 (6)
C5A—C6A—C7A—N188.8 (6)O3—C18—C19—O5174.0 (3)
C2—N1—C7A—C6A68.9 (6)O4—C18—C19—C20116.9 (5)
C8—N1—C7A—C6A171.8 (5)O3—C18—C19—C2062.9 (5)
C11—C3—C9—C1050.3 (6)O5—C19—C20—O657.8 (4)
C2—C3—C9—C1073.7 (5)C18—C19—C20—O664.6 (4)
C4—C3—C9—C10169.4 (5)O5—C19—C20—C2163.7 (4)
C9—C3—C11—C16107.3 (5)C18—C19—C20—C21173.9 (3)
C2—C3—C11—C1610.1 (6)O6—C20—C21—O713.9 (5)
C4—C3—C11—C16137.1 (4)C19—C20—C21—O7136.2 (4)
C9—C3—C11—C1267.2 (5)O6—C20—C21—O8168.1 (3)
C2—C3—C11—C12175.4 (4)C19—C20—C21—O845.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O40.822.152.623 (5)116
O6—H6···O90.821.912.641 (5)149
O9—H9X···O20.83 (2)2.00 (2)2.823 (5)171 (6)
O10—H10X···O50.82 (2)1.98 (2)2.790 (5)173 (6)
C7A—H7A···O10.972.563.149 (8)119
C6B—H6B1···O10.971.912.46 (3)113
O9—H9Y···O7i0.83 (2)1.85 (2)2.680 (5)171 (7)
O3—H3···O8i0.821.732.516 (4)160
O5—H5···O10ii0.822.272.983 (5)145
O10—H10Y···O4iii0.82 (2)2.02 (4)2.739 (5)145 (6)
C16—H16···O7iv0.932.503.417 (6)171
C7B—H7B1···O6iv0.972.513.176 (7)126
C6B—H6B2···O1v0.972.393.056 (17)125
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z; (iii) x+1, y, z; (iv) x1, y1/2, z+1/2; (v) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H26NO2+·C4H5O6·2H2O
Mr449.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.146 (3), 10.812 (4), 29.338 (11)
V3)2266.7 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
11334, 2855, 2173
Rint0.076
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.163, 1.04
No. of reflections2855
No. of parameters319
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O40.822.152.623 (5)116.4
O6—H6···O90.821.912.641 (5)148.5
O9—H9X···O20.83 (2)2.00 (2)2.823 (5)171 (6)
O10—H10X···O50.82 (2)1.98 (2)2.790 (5)173 (6)
C7A—H7A···O10.972.563.149 (8)118.9
C6B—H6B1···O10.971.912.46 (3)113.3
O9—H9Y···O7i0.83 (2)1.85 (2)2.680 (5)171 (7)
O3—H3···O8i0.821.732.516 (4)159.6
O5—H5···O10ii0.822.272.983 (5)145.4
O10—H10Y···O4iii0.82 (2)2.02 (4)2.739 (5)145 (6)
C16—H16···O7iv0.932.503.417 (6)170.9
C7B—H7B1···O6iv0.972.513.176 (7)125.6
C6B—H6B2···O1v0.972.393.056 (17)125.0
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z; (iii) x+1, y, z; (iv) x1, y1/2, z+1/2; (v) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work is funded in part by the National Natural Science Foundation of China (grant No. 30472088).

References

First citationBill, D. J., Hartley, J. E., Stephens, R. J. & Thompson, A. M. (1983). Br. J. Pharm. 79, 191–199.  CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEliel, E. L., Wilen, S. H. & Mander, L. N. (1994). Stereochemistry of Organic Compounds, pp. 762–769. New York: Wiley.  Google Scholar
First citationEntrena, A., Campos, J. M., Gallo, M. A. E. & Spinosa, A. (2005). Arkivoc, 6, 88-108.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHao, J. L., Li, W., Xie, Q., Chen, Y. & Qiu, Z. B. (2005). J. Fudan Univ. (Med. Sci.), 32, 173–177.  CAS Google Scholar
First citationHolmes, B. (1985). Drugs, 30, 285–312.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds