organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o774-o775

Di­cyclo­hexyl­ammonium 2-meth­oxy­benzoate

aDepartment of Chemistry, Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia, and bDepartment of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, PO Box 180, HR-10002 Zagreb, Croatia
*Correspondence e-mail: judas@chem.pmf.hr

(Received 12 March 2008; accepted 19 March 2008; online 2 April 2008)

The asymmetric unit of the title compound, C12H24N+·C8H7O3, contains one dicyclo­hexyl­ammonium cation and one 2-methoxy­benzoate anion. Two cations and two anions are linked together to form a four-ion cluster through a set of N—H⋯O hydrogen bonds. Weak C—H⋯O hydrogen bonds connect the clusters into chains that are stacked along the crystallographic c axis.

Related literature

For the crystal structures of dicyclo­hexyl­ammonium salts of monocarboxylic acids, see: Ng et al. (1999[Ng, S. W., Fun, H.-K. & Shanmuga Sundara Raj, S. (1999). Acta Cryst. C55, 2145-2147.]); Ng, Naumov et al. 2001[Ng, S. W., Naumov, P., Drew, M. G. B., Wojciechowski, G. & Brzezinski, B. (2001). J. Mol. Struct. 595, 29-37.]), Ng & Hook (1999[Ng, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 312-316.]); Subramanian et al. (2000[Subramanian, R. R., Anandan, S. S., Kwek, K. H., Low, K. S., Shanmuga Sundara Raj, S., Fun, H.-K., Razak, I. A., Hanna, J. V. & Ng, S. W. (2000). Acta Cryst. C56, e292-e294.]). For the crystal structures of dicyclo­hexyl­ammonium salts of dicarboxylic acids, see: Ballabh et al. (2005[Ballabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des. 5, 1545-1553.]); Trivedi et al. (2005[Trivedi, D. R., Ballabh, A. & Dastidar, P. (2005). J. Mater. Chem. 5, 1545-1553.]); Ng, Chantrapromma et al. (2001[Ng, S. W., Chantrapromma, S., Razak, I. A. & Fun, H.-K. (2001). Acta Cryst. C57, 291-292.]). For related literature, see: Zain & Ng (2007[Zain, S. M. & Ng, S. W. (2007). Acta Cryst. E63, o3303.]); Trivedi et al. (2004[Trivedi, D. R., Ballabh, A. & Dastidar, P. (2004). Chem. Eur. J. 10, 5311-5322.]); Ng et al. (1991[Ng, S. W., Kumar Das, V. G. & Tiekink, E. R. T. (1991). J. Organomet. Chem. 411, 121-129.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H24N+·C8H7O3

  • Mr = 333.46

  • Monoclinic, P 21 /c

  • a = 9.2798 (5) Å

  • b = 17.7978 (9) Å

  • c = 12.1513 (7) Å

  • β = 104.720 (5)°

  • V = 1941.04 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (1) K

  • 0.62 × 0.41 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur CCD diffractometer

  • Absorption correction: none

  • 19673 measured reflections

  • 3789 independent reflections

  • 2750 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.175

  • S = 1.03

  • 3789 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯O1 0.92 (3) 1.84 (3) 2.735 (3) 163 (2)
N1—H1⋯O2i 0.88 (2) 1.85 (3) 2.703 (2) 162 (2)
C20—H20A⋯O1ii 0.97 2.66 3.457 (3) 140
Symmetry codes: (i) -x, -y, -z+2; (ii) -x+1, -y, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wroclaw, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wroclaw, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), RasTop (Valadon, 2000–2003[Valadon, P. (2000-2003). RasTop. Phillipe Valadon, Location?.]) and POV-RAY (Persistence of Vision, 2004[Persistence of Vision (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was synthesized as a model for the purposes of a workshop on parallel synthesis and combinatorial chemistry. The compound was selected because of its resemblance to dicyclohexylammonium salts of substituted cinnamic acids, that are widely known as gelators of organic fluids (Ballabh et al., 2005; Trivedi et al., 2005, Trivedi et al., 2004).

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit consist of a dicyclohexylammonium cation and a 2-methoxybenzoate anion. The carboxylate group of the anion is twisted with respect to the parent benzene ring by 65.1 (2)°. All bond lengths fall within normal ranges (Allen et al., 1987).

Two cations and two anions self-assemble into a tetrameric structural unit by two hydrogen bonds; N1—H2···O1 and N1—H1···O2i (Fig. 2, Table 1.).

Weak C20—H20···O1ii hydrogen bonds (Fig. 3, Table 1) link these tetrameric units into chains that are stacked together in a zipper-like manner, so as to produce narrow channels between them (Fig. 4a). The appearance of the channels is consistent with the relatively low calculated density of the title compound (1.14 g cm-3).

The zipper-like stacking is achieved by the interdigitation of protruding benzene groups in each chain (Fig. 4 b), thus maximizing the intermolecular contacts.

Related literature top

For the crystal structures of dicyclohexylammonium salts of monocarboxylic acids, see: Ng et al. (1999); Ng, Naumov et al. 2001), Ng & Hook (1999); Subramanian et al. (2000). For the crystal structures of dicyclohexylammonium salts of dicarboxylic acids, see: Ballabh et al. (2005); Trivedi et al. (2005); Ng, Chantrapromma et al. (2001). For related literature, see: Zain & Ng (2007); Trivedi et al. (2004); Ng et al. (1991); Allen et al. (1987).

Experimental top

A solution of dicyclohexylamine (363 mg, 2.00 mmol) in toluene (5 ml) was added with stirring to a solution of 2-methoxybenzoic acid (304 mg, 2.00 mmol) in toluene (5 ml). The resulting solution was allowed to stand in an open beaker for several days until crystals of the title compound formed by slow solvent evaporation. The crystals were suitable for single-crystal X-ray diffraction. The compound was also analyzed by thermal methods (TG and DSC). Thermal analyses were performed on METTLER thermal analysis modules DSC823e and TGA/SDTA851e. The calorimetric thermogram exhibited one endothermic signal that was sharp and well defined, corresponding to the melting point of the compound. The onset temperature of the signal is Tf = 416 K with enthalpy of fusion, ΔHfus = 37,9 kJ mol-1. Degradation of the sample begins above 524 K.

Refinement top

Carbon-bound H atoms were placed in calculated positions and included in the refinement using the riding-model approximation, with C—H distances of 0.93 Å for phenyl, 0.97 Å for methylene, 0.98 Å for methine and 0.96 Å for methyl groups, and with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(Cmethyl). A rotating group model was used for the methyl groups. The hydrogen atoms of the amine group were located in the final Fourier difference map and their coordinates were blocked during the refinement process.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); Mercury (Macrae et al., 2006); RasTop (Valadon, 2000–2003); POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Self-assembly of cations and anions through N1—H2···O1 and N1—H1···O2 hydrogen bonds into tetrameric units.
[Figure 3] Fig. 3. Linkage of the tetrameric units into molecular chains through weak C20—H20···O1 hydrogen bonds. Carbon atoms C20 involved in hydrogen bonding are darkened for clarity.
[Figure 4] Fig. 4. Views of the crystal structure of the title compound depicting: (a) the narrow channels between neighboring chains of tetrameric units; (b) the interpenetration of benzene rings belonging to neighboring chains. Atoms of each chain have been color-coded for clarity.
dicyclohexylamonium 2-methoxybenzoate top
Crystal data top
C12H24N+·C8H7O3F(000) = 728
Mr = 333.46Dx = 1.141 Mg m3
Monoclinic, P21/cMelting point: 416 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.2798 (5) ÅCell parameters from 742 reflections
b = 17.7978 (9) Åθ = 6.4–21.2°
c = 12.1513 (7) ŵ = 0.08 mm1
β = 104.720 (5)°T = 293 K
V = 1941.04 (18) Å3Prismatic, colourless
Z = 40.62 × 0.41 × 0.35 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2750 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.0°, θmin = 4.1°
ω scansh = 1111
19673 measured reflectionsk = 2121
3789 independent reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.785P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3789 reflectionsΔρmax = 0.37 e Å3
225 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (4)
Crystal data top
C12H24N+·C8H7O3V = 1941.04 (18) Å3
Mr = 333.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2798 (5) ŵ = 0.08 mm1
b = 17.7978 (9) ÅT = 293 K
c = 12.1513 (7) Å0.62 × 0.41 × 0.35 mm
β = 104.720 (5)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2750 reflections with I > 2σ(I)
19673 measured reflectionsRint = 0.042
3789 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
3789 reflectionsΔρmin = 0.17 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2706 (2)0.08567 (10)1.00183 (17)0.0842 (6)
O20.04537 (19)0.13445 (12)0.96352 (17)0.0852 (6)
O30.0699 (2)0.14787 (12)0.72365 (14)0.0819 (6)
N10.2059 (2)0.06289 (11)1.02163 (16)0.0491 (5)
H10.114 (3)0.0780 (13)1.0175 (19)0.059*
H20.209 (2)0.0112 (15)1.0178 (19)0.059*
C10.1749 (2)0.13270 (11)0.95593 (17)0.0471 (5)
C20.2251 (2)0.19520 (11)0.89133 (17)0.0438 (5)
C30.3308 (3)0.24641 (13)0.9464 (2)0.0634 (6)
H30.37310.24131.02410.076*
C40.3748 (4)0.30529 (15)0.8877 (3)0.0898 (10)
H40.44650.33920.92580.108*
C50.3122 (4)0.31337 (16)0.7736 (3)0.0894 (10)
H50.34000.35350.73450.107*
C60.2088 (3)0.26265 (16)0.7164 (2)0.0750 (8)
H60.16710.26820.63880.090*
C70.1666 (2)0.20300 (13)0.77480 (19)0.0537 (6)
C80.0317 (4)0.1435 (2)0.6036 (2)0.0992 (11)
H8B0.02210.18780.57220.149*
H8C0.02950.10000.57950.149*
H8A0.12080.13950.57760.149*
C90.2458 (2)0.09394 (12)0.91808 (18)0.0507 (5)
H90.34370.07420.91620.061*
C100.1326 (3)0.06616 (16)0.8135 (2)0.0761 (7)
H10A0.13240.01170.81290.091*
H10B0.03400.08300.81590.091*
C110.1681 (4)0.09527 (19)0.7053 (2)0.0940 (10)
H11B0.09130.07870.63970.113*
H11A0.26220.07420.69920.113*
C120.1775 (4)0.17925 (19)0.7044 (3)0.0950 (10)
H12B0.20820.19560.63770.114*
H12A0.08000.20050.70050.114*
C130.2877 (5)0.2071 (2)0.8103 (3)0.1075 (11)
H13A0.38690.19110.80860.129*
H13B0.28650.26160.81060.129*
C140.2540 (3)0.17841 (14)0.9200 (2)0.0760 (8)
H14B0.16000.19910.92710.091*
H14A0.33160.19480.98520.091*
C150.3019 (2)0.08294 (11)1.13645 (17)0.0471 (5)
H150.29680.13741.14670.057*
C160.2390 (2)0.04421 (14)1.2256 (2)0.0599 (6)
H16A0.23340.00941.21100.072*
H16B0.13860.06231.21940.072*
C170.3332 (3)0.05828 (17)1.3448 (2)0.0743 (7)
H17B0.32620.11091.36370.089*
H17A0.29470.02871.39810.089*
C180.4956 (3)0.03803 (17)1.3571 (2)0.0755 (7)
H18A0.50470.01591.34900.091*
H18B0.55410.05221.43230.091*
C190.5553 (3)0.07794 (15)1.2679 (2)0.0717 (7)
H19B0.65730.06231.27480.086*
H19A0.55550.13171.28120.086*
C200.4629 (2)0.06121 (14)1.1488 (2)0.0594 (6)
H20A0.50210.08901.09410.071*
H20B0.46890.00801.13290.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1052 (14)0.0553 (11)0.1037 (15)0.0129 (10)0.0479 (12)0.0276 (10)
O20.0615 (10)0.1125 (16)0.0879 (14)0.0220 (10)0.0307 (9)0.0165 (11)
O30.0777 (11)0.1234 (17)0.0406 (9)0.0256 (11)0.0079 (8)0.0009 (9)
N10.0455 (9)0.0437 (10)0.0621 (12)0.0020 (8)0.0210 (8)0.0081 (8)
C10.0600 (12)0.0460 (12)0.0374 (11)0.0104 (10)0.0166 (9)0.0060 (9)
C20.0455 (10)0.0423 (11)0.0465 (12)0.0037 (8)0.0168 (9)0.0004 (8)
C30.0789 (16)0.0585 (14)0.0571 (14)0.0167 (12)0.0252 (12)0.0057 (11)
C40.121 (2)0.0557 (16)0.108 (3)0.0344 (16)0.056 (2)0.0122 (15)
C50.127 (3)0.0545 (16)0.108 (3)0.0052 (17)0.068 (2)0.0244 (16)
C60.0877 (18)0.0762 (18)0.0692 (17)0.0236 (15)0.0344 (14)0.0327 (14)
C70.0502 (11)0.0625 (14)0.0503 (13)0.0092 (10)0.0164 (10)0.0082 (10)
C80.091 (2)0.152 (3)0.0475 (16)0.004 (2)0.0051 (14)0.0046 (18)
C90.0505 (11)0.0522 (12)0.0529 (13)0.0041 (9)0.0196 (10)0.0033 (9)
C100.0922 (19)0.0692 (17)0.0626 (17)0.0069 (14)0.0116 (14)0.0055 (13)
C110.125 (3)0.091 (2)0.0612 (18)0.0079 (19)0.0165 (17)0.0017 (15)
C120.121 (3)0.093 (2)0.071 (2)0.0183 (19)0.0259 (18)0.0164 (17)
C130.164 (3)0.078 (2)0.088 (2)0.027 (2)0.046 (2)0.0125 (17)
C140.107 (2)0.0544 (15)0.0715 (18)0.0130 (14)0.0313 (15)0.0015 (12)
C150.0506 (11)0.0382 (10)0.0542 (13)0.0017 (8)0.0165 (10)0.0060 (9)
C160.0547 (12)0.0597 (14)0.0712 (16)0.0047 (10)0.0268 (11)0.0068 (11)
C170.0851 (18)0.0795 (18)0.0591 (16)0.0140 (14)0.0200 (13)0.0135 (13)
C180.0735 (16)0.0733 (17)0.0737 (18)0.0050 (13)0.0074 (13)0.0142 (14)
C190.0571 (13)0.0656 (16)0.0864 (19)0.0069 (12)0.0071 (13)0.0050 (14)
C200.0476 (11)0.0629 (14)0.0698 (16)0.0050 (10)0.0189 (11)0.0007 (11)
Geometric parameters (Å, º) top
O1—C11.244 (3)C11—C121.498 (5)
O2—C11.229 (3)C11—H11B0.9700
O3—C71.368 (3)C11—H11A0.9700
O3—C81.413 (3)C12—C131.510 (5)
N1—C151.495 (3)C12—H12B0.9700
N1—C91.504 (3)C12—H12A0.9700
N1—H10.88 (2)C13—C141.532 (4)
N1—H20.92 (3)C13—H13A0.9700
C1—C21.502 (3)C13—H13B0.9700
C2—C31.381 (3)C14—H14B0.9700
C2—C71.389 (3)C14—H14A0.9700
C3—C41.386 (4)C15—C201.513 (3)
C3—H30.9300C15—C161.520 (3)
C4—C51.368 (4)C15—H150.9800
C4—H40.9300C16—C171.511 (3)
C5—C61.371 (4)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C6—C71.387 (3)C17—C181.520 (4)
C6—H60.9300C17—H17B0.9700
C8—H8B0.9600C17—H17A0.9700
C8—H8C0.9600C18—C191.513 (4)
C8—H8A0.9600C18—H18A0.9700
C9—C141.505 (3)C18—H18B0.9700
C9—C101.511 (3)C19—C201.513 (3)
C9—H90.9800C19—H19B0.9700
C10—C111.526 (4)C19—H19A0.9700
C10—H10A0.9700C20—H20A0.9700
C10—H10B0.9700C20—H20B0.9700
C7—O3—C8118.2 (2)C11—C12—H12B109.5
C15—N1—C9118.55 (16)C13—C12—H12B109.5
C15—N1—H1108.5 (15)C11—C12—H12A109.5
C9—N1—H1106.2 (15)C13—C12—H12A109.5
C15—N1—H2105.4 (14)H12B—C12—H12A108.1
C9—N1—H2107.8 (14)C12—C13—C14112.8 (3)
H1—N1—H2110 (2)C12—C13—H13A109.0
O2—C1—O1125.7 (2)C14—C13—H13A109.0
O2—C1—C2117.3 (2)C12—C13—H13B109.0
O1—C1—C2116.86 (18)C14—C13—H13B109.0
C3—C2—C7118.3 (2)H13A—C13—H13B107.8
C3—C2—C1120.77 (19)C9—C14—C13109.9 (2)
C7—C2—C1120.94 (18)C9—C14—H14B109.7
C2—C3—C4121.0 (3)C13—C14—H14B109.7
C2—C3—H3119.5C9—C14—H14A109.7
C4—C3—H3119.5C13—C14—H14A109.7
C5—C4—C3119.8 (3)H14B—C14—H14A108.2
C5—C4—H4120.1N1—C15—C20111.74 (17)
C3—C4—H4120.1N1—C15—C16108.11 (17)
C4—C5—C6120.4 (2)C20—C15—C16111.23 (18)
C4—C5—H5119.8N1—C15—H15108.6
C6—C5—H5119.8C20—C15—H15108.6
C5—C6—C7119.8 (3)C16—C15—H15108.6
C5—C6—H6120.1C17—C16—C15112.00 (19)
C7—C6—H6120.1C17—C16—H16A109.2
O3—C7—C6123.7 (2)C15—C16—H16A109.2
O3—C7—C2115.66 (19)C17—C16—H16B109.2
C6—C7—C2120.6 (2)C15—C16—H16B109.2
O3—C8—H8B109.5H16A—C16—H16B107.9
O3—C8—H8C109.5C16—C17—C18111.9 (2)
H8B—C8—H8C109.5C16—C17—H17B109.2
O3—C8—H8A109.5C18—C17—H17B109.2
H8B—C8—H8A109.5C16—C17—H17A109.2
H8C—C8—H8A109.5C18—C17—H17A109.2
N1—C9—C14112.10 (18)H17B—C17—H17A107.9
N1—C9—C10108.46 (18)C19—C18—C17110.6 (2)
C14—C9—C10111.2 (2)C19—C18—H18A109.5
N1—C9—H9108.3C17—C18—H18A109.5
C14—C9—H9108.3C19—C18—H18B109.5
C10—C9—H9108.3C17—C18—H18B109.5
C9—C10—C11110.9 (2)H18A—C18—H18B108.1
C9—C10—H10A109.5C20—C19—C18111.8 (2)
C11—C10—H10A109.5C20—C19—H19B109.3
C9—C10—H10B109.5C18—C19—H19B109.3
C11—C10—H10B109.5C20—C19—H19A109.3
H10A—C10—H10B108.0C18—C19—H19A109.3
C12—C11—C10111.7 (3)H19B—C19—H19A107.9
C12—C11—H11B109.3C19—C20—C15110.46 (19)
C10—C11—H11B109.3C19—C20—H20A109.6
C12—C11—H11A109.3C15—C20—H20A109.6
C10—C11—H11A109.3C19—C20—H20B109.6
H11B—C11—H11A107.9C15—C20—H20B109.6
C11—C12—C13110.5 (3)H20A—C20—H20B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O10.92 (3)1.84 (3)2.735 (3)163 (2)
N1—H1···O2i0.88 (2)1.85 (3)2.703 (2)162 (2)
C20—H20A···O1ii0.972.663.457 (3)140
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC12H24N+·C8H7O3
Mr333.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.2798 (5), 17.7978 (9), 12.1513 (7)
β (°) 104.720 (5)
V3)1941.04 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.62 × 0.41 × 0.35
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19673, 3789, 2750
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.175, 1.03
No. of reflections3789
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997); Mercury (Macrae et al., 2006); RasTop (Valadon, 2000–2003); POV-RAY (Persistence of Vision, 2004), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O10.92 (3)1.84 (3)2.735 (3)163 (2)
N1—H1···O2i0.88 (2)1.85 (3)2.703 (2)162 (2)
C20—H20A···O1ii0.972.663.457 (3)140.1
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2.
 

Acknowledgements

Financial support by the Ministry of Science, Education and Sport of the Republic of Croatia is gratefully acknowledged (grant Nos. 098–0982914-2935 and 119–1193079-1084).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBallabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des. 5, 1545–1553.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W., Chantrapromma, S., Razak, I. A. & Fun, H.-K. (2001). Acta Cryst. C57, 291–292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W., Fun, H.-K. & Shanmuga Sundara Raj, S. (1999). Acta Cryst. C55, 2145–2147.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 312–316.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W., Kumar Das, V. G. & Tiekink, E. R. T. (1991). J. Organomet. Chem. 411, 121–129.  CSD CrossRef CAS Web of Science Google Scholar
First citationNg, S. W., Naumov, P., Drew, M. G. B., Wojciechowski, G. & Brzezinski, B. (2001). J. Mol. Struct. 595, 29–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wroclaw, Poland.  Google Scholar
First citationPersistence of Vision (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanian, R. R., Anandan, S. S., Kwek, K. H., Low, K. S., Shanmuga Sundara Raj, S., Fun, H.-K., Razak, I. A., Hanna, J. V. & Ng, S. W. (2000). Acta Cryst. C56, e292–e294.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTrivedi, D. R., Ballabh, A. & Dastidar, P. (2004). Chem. Eur. J. 10, 5311–5322.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTrivedi, D. R., Ballabh, A. & Dastidar, P. (2005). J. Mater. Chem. 5, 1545–1553.  Google Scholar
First citationValadon, P. (2000–2003). RasTop. Phillipe Valadon, Location?Google Scholar
First citationZain, S. M. & Ng, S. W. (2007). Acta Cryst. E63, o3303.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o774-o775
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds