organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1-Acetyl-2,6-di­phenyl­piperidin-4-yl­­idene)(phen­yl)aceto­nitrile

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, bPG Department of Physics, Rajah Serfoji Govt. College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 27 March 2008; accepted 31 March 2008; online 4 April 2008)

In the title mol­ecule, C27H24N2O, the piperidine ring adopts a boat conformation. The acetyl group at position 1 has a bis­ectional orientation. The two phenyl rings attached to the piperidine ring at positions 2 and 6 have bis­ectional and axial orientations, respectively, and make a dihedral angle of 75.27 (10)°. The phenyl­acetonitrile group at position 4 has an equatorial orientation. Mol­ecules are linked by C—H⋯N, C—H⋯O inter­molecular and C—H⋯π inter­actions. A C—H⋯O intra­molecular inter­action is also found in the mol­ecule.

Related literature

Thiruvalluvar et al. (2007[Thiruvalluvar, A., Balamurugan, S., Manimekalai, A. & Balamurugan, A. (2007). Acta Cryst. E63, o2903.]) have reported the crystal structure of (2,6-diphenyl­piperidin-4-yl­idene)(phen­yl)acetonitrile, in which the piperidine ring adopts a chair conformation.

[Scheme 1]

Experimental

Crystal data
  • C27H24N2O

  • Mr = 392.48

  • Triclinic, [P \overline 1]

  • a = 9.4034 (17) Å

  • b = 10.646 (6) Å

  • c = 10.8860 (18) Å

  • α = 90.45 (2)°

  • β = 99.957 (14)°

  • γ = 101.98 (3)°

  • V = 1048.9 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 (2) K

  • 0.43 × 0.37 × 0.23 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: none

  • 14102 measured reflections

  • 6736 independent reflections

  • 2238 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.150

  • S = 0.86

  • 6736 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O11 1.00 2.21 2.723 (3) 110
C12—H12A⋯N16i 0.98 2.50 3.423 (3) 158
C42—H42⋯O11ii 0.95 2.58 3.398 (3) 145
C22—H22⋯Cg1 0.95 2.79 3.734 (3) 174
C26—H26⋯Cg2iii 0.95 2.89 3.784 (3) 157
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x+1, -y, -z+2. Cg1 and Cg2 are the centroids of the C61–C66 and C41–C46 phenyl rings, respectively.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In the title compound, (Fig. 1), the piperidine ring adopts a boat conformation. The acetyl group at position 1 has a bisectional orientation. The two phenyl rings attached to the piperidine ring at positions 2 and 6 have bisectional and axial orientations, respectively, and make a dihedral angle of 75.27 (10)°. The phenyl-acetonitrile group at position 4 has an equatorial orientation. Molecules are linked by intermolecular C12—H12A···N16, C42—H42···O11 and intramolecular C6—H6···O11 hydrogen bonds. There are C22—H22···π (x, y, z) interactions involving the phenyl ring at 6 and C26—H26···π (1 - x, -y, 2 - z) interactions involving the phenyl ring at C14.

Related literature top

Thiruvalluvar et al. (2007) have reported the crystal structure of (2,6-diphenylpiperidin-4-ylidene)(phenyl)acetonitrile, in which the piperidine ring adopts a chair conformation.

Experimental top

A mixture of (2,6-diphenylpiperidin-4-ylidene)(phenyl)acetonitrile (3.5 g, 0.01 mol), acetic anhydride (2.8 ml, 0.03 mol) and trimethylamine (4.2 ml, 0.03 mol) in benzene (50 ml) was refluxed for 8-10 h. The reaction mixture was cooled to room temperature and poured into ice-cold water. The solid mass was separated by filtration, dried and recrystallized from ethanol. The yield of the isolated product was 2.16 g (55%).

Refinement top

The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.95–1.00 Å and Uiso(H) = 1.2–1.5Ueq(parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
(1-Acetyl-2,6-diphenylpiperidin-4-ylidene)(phenyl)acetonitrile top
Crystal data top
C27H24N2OZ = 2
Mr = 392.48F(000) = 416
Triclinic, P1Dx = 1.243 Mg m3
Hall symbol: -P 1Melting point: 411 K
a = 9.4034 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.646 (6) ÅCell parameters from 7731 reflections
c = 10.8860 (18) Åθ = 4.5–32.5°
α = 90.45 (2)°µ = 0.08 mm1
β = 99.957 (14)°T = 200 K
γ = 101.98 (3)°Prism, colourless
V = 1048.9 (7) Å30.43 × 0.37 × 0.23 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
2238 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 32.4°, θmin = 4.5°
Detector resolution: 10.5081 pixels mm-1h = 1413
ϕ and ω scansk = 1515
14102 measured reflectionsl = 1614
6736 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0581P)2]
where P = (Fo2 + 2Fc2)/3
6736 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C27H24N2Oγ = 101.98 (3)°
Mr = 392.48V = 1048.9 (7) Å3
Triclinic, P1Z = 2
a = 9.4034 (17) ÅMo Kα radiation
b = 10.646 (6) ŵ = 0.08 mm1
c = 10.8860 (18) ÅT = 200 K
α = 90.45 (2)°0.43 × 0.37 × 0.23 mm
β = 99.957 (14)°
Data collection top
Oxford Diffraction Gemini
diffractometer
2238 reflections with I > 2σ(I)
14102 measured reflectionsRint = 0.062
6736 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 0.86Δρmax = 0.17 e Å3
6736 reflectionsΔρmin = 0.18 e Å3
271 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.28221 (18)0.44042 (15)0.77415 (18)0.0685 (7)
N10.39382 (16)0.27784 (16)0.73697 (15)0.0349 (6)
N160.59278 (19)0.19597 (17)0.91049 (19)0.0506 (7)
C20.52978 (19)0.22457 (18)0.75539 (19)0.0359 (7)
C30.49051 (19)0.07647 (18)0.7407 (2)0.0360 (7)
C40.36419 (19)0.01309 (19)0.80179 (18)0.0328 (6)
C50.2347 (2)0.07931 (19)0.7838 (2)0.0398 (7)
C60.24863 (19)0.19042 (18)0.69692 (19)0.0342 (7)
C110.3964 (3)0.3991 (2)0.7794 (2)0.0516 (9)
C120.5447 (3)0.4833 (2)0.8355 (3)0.0754 (10)
C140.36214 (19)0.09522 (18)0.86415 (17)0.0298 (6)
C150.4908 (2)0.15071 (18)0.8868 (2)0.0374 (7)
C210.6360 (2)0.27610 (18)0.6675 (2)0.0345 (7)
C220.5903 (2)0.2716 (2)0.5393 (2)0.0479 (8)
C230.6893 (2)0.3135 (2)0.4608 (2)0.0584 (9)
C240.8362 (2)0.3599 (2)0.5095 (3)0.0554 (10)
C250.8845 (2)0.3641 (2)0.6354 (3)0.0526 (9)
C260.7842 (2)0.32381 (19)0.7149 (2)0.0440 (7)
C410.23021 (19)0.16901 (18)0.91288 (19)0.0325 (7)
C420.1746 (2)0.29754 (19)0.87607 (19)0.0394 (7)
C430.0464 (2)0.3626 (2)0.9124 (2)0.0479 (8)
C440.0256 (2)0.3021 (2)0.9879 (2)0.0505 (8)
C450.0332 (2)0.1759 (2)1.0289 (2)0.0485 (8)
C460.1591 (2)0.1095 (2)0.9908 (2)0.0385 (7)
C610.21670 (19)0.1583 (2)0.5582 (2)0.0360 (7)
C620.1943 (2)0.0355 (2)0.5061 (2)0.0449 (8)
C630.1684 (2)0.0136 (3)0.3767 (3)0.0568 (9)
C640.1629 (2)0.1141 (3)0.2993 (2)0.0615 (9)
C650.1818 (2)0.2372 (3)0.3491 (2)0.0593 (10)
C660.2075 (2)0.2592 (2)0.4772 (2)0.0466 (8)
H20.583010.248600.842820.0430*
H3A0.465810.051330.650550.0431*
H3B0.578930.043200.776370.0431*
H5A0.223510.111790.866280.0477*
H5B0.143600.015010.750200.0477*
H60.173580.239990.712510.0411*
H12A0.530450.567380.861940.1132*
H12B0.609300.494660.773010.1132*
H12C0.590190.442350.907900.1132*
H220.489160.239180.504880.0576*
H230.656000.310340.373070.0701*
H240.904190.389000.455370.0665*
H250.986320.394360.668850.0632*
H260.817770.329160.802610.0528*
H420.224540.340690.826020.0472*
H430.007360.449860.885220.0575*
H440.114570.346951.011360.0606*
H450.013320.134611.083430.0582*
H460.197690.022221.018160.0462*
H620.196450.034920.558950.0539*
H630.154640.071200.342140.0681*
H640.146070.098970.211340.0736*
H650.177100.306790.295470.0710*
H660.219180.344120.510910.0559*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0661 (10)0.0515 (10)0.0951 (14)0.0227 (9)0.0221 (10)0.0108 (10)
N10.0359 (9)0.0358 (10)0.0346 (10)0.0086 (7)0.0099 (7)0.0008 (8)
N160.0456 (10)0.0407 (11)0.0677 (14)0.0131 (9)0.0114 (10)0.0047 (10)
C20.0304 (10)0.0402 (12)0.0383 (13)0.0066 (9)0.0108 (9)0.0049 (10)
C30.0303 (10)0.0367 (12)0.0438 (13)0.0077 (9)0.0137 (9)0.0091 (10)
C40.0310 (10)0.0365 (11)0.0328 (12)0.0059 (9)0.0125 (8)0.0041 (9)
C50.0329 (10)0.0479 (13)0.0423 (13)0.0103 (10)0.0146 (9)0.0109 (11)
C60.0292 (10)0.0376 (11)0.0397 (13)0.0105 (9)0.0121 (9)0.0085 (10)
C110.0546 (14)0.0438 (14)0.0600 (17)0.0117 (12)0.0191 (12)0.0015 (12)
C120.0726 (17)0.0482 (16)0.101 (2)0.0018 (13)0.0184 (16)0.0301 (16)
C140.0325 (10)0.0347 (11)0.0228 (10)0.0075 (9)0.0061 (8)0.0022 (9)
C150.0399 (12)0.0275 (11)0.0457 (14)0.0031 (10)0.0153 (10)0.0007 (10)
C210.0335 (10)0.0305 (11)0.0414 (14)0.0070 (9)0.0116 (9)0.0044 (9)
C220.0330 (11)0.0689 (16)0.0402 (14)0.0046 (11)0.0092 (10)0.0063 (12)
C230.0523 (14)0.0773 (18)0.0452 (15)0.0045 (13)0.0183 (12)0.0131 (14)
C240.0482 (14)0.0574 (16)0.0634 (19)0.0019 (11)0.0281 (12)0.0153 (13)
C250.0355 (11)0.0498 (14)0.072 (2)0.0028 (10)0.0153 (12)0.0101 (13)
C260.0364 (11)0.0425 (13)0.0510 (14)0.0051 (10)0.0054 (10)0.0079 (11)
C410.0291 (10)0.0335 (12)0.0355 (12)0.0065 (9)0.0072 (9)0.0065 (10)
C420.0503 (12)0.0353 (12)0.0328 (12)0.0053 (10)0.0126 (10)0.0031 (10)
C430.0536 (13)0.0393 (13)0.0434 (15)0.0058 (11)0.0069 (11)0.0087 (11)
C440.0375 (12)0.0583 (16)0.0519 (15)0.0005 (11)0.0096 (11)0.0246 (13)
C450.0451 (12)0.0513 (15)0.0562 (15)0.0147 (11)0.0229 (11)0.0153 (12)
C460.0409 (11)0.0354 (12)0.0417 (13)0.0081 (10)0.0140 (10)0.0088 (10)
C610.0245 (10)0.0401 (12)0.0454 (14)0.0078 (9)0.0102 (9)0.0036 (11)
C620.0332 (11)0.0490 (14)0.0524 (16)0.0067 (10)0.0097 (10)0.0003 (12)
C630.0429 (13)0.0673 (17)0.0575 (18)0.0074 (12)0.0080 (12)0.0222 (15)
C640.0398 (13)0.101 (2)0.0390 (15)0.0043 (14)0.0071 (11)0.0031 (16)
C650.0472 (14)0.081 (2)0.0468 (17)0.0102 (13)0.0042 (12)0.0192 (15)
C660.0418 (12)0.0504 (14)0.0487 (15)0.0116 (10)0.0087 (10)0.0068 (12)
Geometric parameters (Å, º) top
O11—C111.235 (3)C62—C631.397 (4)
N1—C21.487 (3)C63—C641.371 (4)
N1—C61.477 (3)C64—C651.379 (4)
N1—C111.362 (3)C65—C661.383 (3)
N16—C151.152 (3)C2—H21.0000
C2—C31.543 (3)C3—H3A0.9900
C2—C211.525 (3)C3—H3B0.9900
C3—C41.502 (3)C5—H5A0.9900
C4—C51.515 (3)C5—H5B0.9900
C4—C141.341 (3)C6—H61.0000
C5—C61.519 (3)C12—H12A0.9800
C6—C611.510 (3)C12—H12B0.9800
C11—C121.516 (4)C12—H12C0.9800
C14—C151.439 (3)C22—H220.9500
C14—C411.506 (3)C23—H230.9500
C21—C221.385 (3)C24—H240.9500
C21—C261.386 (3)C25—H250.9500
C22—C231.380 (3)C26—H260.9500
C23—C241.376 (3)C42—H420.9500
C24—C251.365 (5)C43—H430.9500
C25—C261.394 (3)C44—H440.9500
C41—C421.389 (3)C45—H450.9500
C41—C461.390 (3)C46—H460.9500
C42—C431.383 (3)C62—H620.9500
C43—C441.383 (3)C63—H630.9500
C44—C451.381 (3)C64—H640.9500
C45—C461.379 (3)C65—H650.9500
C61—C621.381 (3)C66—H660.9500
C61—C661.402 (3)
O11···C42i3.398 (3)C63···H5Bvi2.9700
O11···H62.2100C64···H5Bvi2.8800
O11···H25ii2.7600C65···H223.0800
O11···H42i2.5800C66···H222.6700
N16···C12iii3.423 (3)H2···C122.6000
N1···H222.8800H2···H12C2.1600
N1···H662.8900H2···H262.3100
N16···H12Aiii2.5000H3A···C62.8700
N16···H5Aiv2.7500H3A···C222.7800
N16···H46iv2.7200H3A···C612.8500
C3···C623.390 (3)H3A···C622.7300
C3···C613.244 (3)H3A···H222.5600
C4···C623.371 (3)H3A···H622.5300
C5···C463.107 (3)H3B···C152.4600
C12···C263.501 (4)H5A···C413.0500
C12···C213.196 (4)H5A···C462.7400
C12···N16i3.423 (3)H5A···H462.2000
C21···C123.196 (4)H5A···N16iv2.7500
C22···C663.520 (3)H5A···C45vii3.0400
C22···C613.512 (3)H5A···H45vii2.2000
C26···C45iv3.570 (4)H5B···C412.8000
C26···C123.501 (4)H5B···C462.9400
C42···O11iii3.398 (3)H5B···C622.7800
C43···C43v3.544 (4)H5B···H622.3100
C45···C26iv3.570 (4)H5B···C63vi2.9700
C46···C53.107 (3)H5B···C64vi2.8800
C61···C33.244 (3)H6···O112.2100
C61···C223.512 (3)H6···H662.5300
C62···C33.390 (3)H12A···N16i2.5000
C62···C62vi3.553 (3)H12B···C22.8100
C62···C43.371 (3)H12B···C212.6600
C66···C223.520 (3)H12B···C262.8300
C2···H12B2.8100H12C···C22.7400
C2···H12C2.7400H12C···H22.1600
C4···H622.8200H22···N12.8800
C4···H463.0300H22···C612.6900
C5···H45vii2.8800H22···C653.0800
C5···H622.6600H22···C662.6700
C5···H462.8300H22···H3A2.5600
C6···H3A2.8700H25···O11ix2.7600
C11···H663.0900H26···H22.3100
C12···H22.6000H26···C44iv2.7900
C15···H422.8500H26···C45iv2.8500
C15···H3B2.4600H42···O11iii2.5800
C21···H12B2.6600H42···C152.8500
C22···H3A2.7800H43···C43v3.0200
C25···H63viii3.0800H43···C44v3.0100
C26···H63viii2.9500H45···C5vii2.8800
C26···H12B2.8300H45···H5Avii2.2000
C41···H5B2.8000H46···C43.0300
C41···H5A3.0500H46···C52.8300
C43···H65vi2.9600H46···H5A2.2000
C43···H43v3.0200H46···N16iv2.7200
C44···H26iv2.7900H62···C42.8200
C44···H43v3.0100H62···C52.6600
C45···H64vi3.0700H62···H3A2.5300
C45···H5Avii3.0400H62···H5B2.3100
C45···H26iv2.8500H63···C25viii3.0800
C46···H5A2.7400H63···C26viii2.9500
C46···H5B2.9400H64···C45vi3.0700
C61···H222.6900H65···C43vi2.9600
C61···H3A2.8500H66···N12.8900
C62···H5B2.7800H66···C113.0900
C62···H3A2.7300H66···H62.5300
C2—N1—C6119.34 (15)C2—C3—H3B109.00
C2—N1—C11121.28 (18)C4—C3—H3A109.00
C6—N1—C11118.09 (18)C4—C3—H3B109.00
N1—C2—C3110.80 (15)H3A—C3—H3B108.00
N1—C2—C21113.88 (16)C4—C5—H5A109.00
C3—C2—C21108.75 (16)C4—C5—H5B109.00
C2—C3—C4114.81 (16)C6—C5—H5A109.00
C3—C4—C5114.37 (17)C6—C5—H5B109.00
C3—C4—C14123.67 (17)H5A—C5—H5B108.00
C5—C4—C14121.93 (18)N1—C6—H6106.00
C4—C5—C6114.44 (17)C5—C6—H6106.00
N1—C6—C5108.81 (16)C61—C6—H6106.00
N1—C6—C61112.14 (16)C11—C12—H12A109.00
C5—C6—C61117.64 (17)C11—C12—H12B110.00
O11—C11—N1121.8 (2)C11—C12—H12C109.00
O11—C11—C12120.1 (2)H12A—C12—H12B109.00
N1—C11—C12118.1 (2)H12A—C12—H12C109.00
C4—C14—C15120.42 (18)H12B—C12—H12C109.00
C4—C14—C41124.59 (17)C21—C22—H22119.00
C15—C14—C41114.99 (16)C23—C22—H22120.00
N16—C15—C14176.9 (2)C22—C23—H23120.00
C2—C21—C22121.85 (18)C24—C23—H23120.00
C2—C21—C26119.99 (19)C23—C24—H24120.00
C22—C21—C26118.10 (19)C25—C24—H24120.00
C21—C22—C23121.06 (19)C24—C25—H25120.00
C22—C23—C24120.0 (2)C26—C25—H25120.00
C23—C24—C25120.1 (2)C21—C26—H26120.00
C24—C25—C26119.9 (2)C25—C26—H26120.00
C21—C26—C25120.8 (2)C41—C42—H42120.00
C14—C41—C42119.79 (17)C43—C42—H42120.00
C14—C41—C46121.13 (17)C42—C43—H43120.00
C42—C41—C46119.04 (18)C44—C43—H43120.00
C41—C42—C43119.87 (19)C43—C44—H44120.00
C42—C43—C44120.78 (19)C45—C44—H44120.00
C43—C44—C45119.32 (19)C44—C45—H45120.00
C44—C45—C46120.22 (19)C46—C45—H45120.00
C41—C46—C45120.68 (19)C41—C46—H46120.00
C6—C61—C62124.09 (19)C45—C46—H46120.00
C6—C61—C66117.97 (18)C61—C62—H62120.00
C62—C61—C66117.9 (2)C63—C62—H62120.00
C61—C62—C63120.8 (2)C62—C63—H63120.00
C62—C63—C64120.2 (3)C64—C63—H63120.00
C63—C64—C65120.0 (2)C63—C64—H64120.00
C64—C65—C66119.9 (2)C65—C64—H64120.00
C61—C66—C65121.1 (2)C64—C65—H65120.00
N1—C2—H2108.00C66—C65—H65120.00
C3—C2—H2108.00C61—C66—H66119.00
C21—C2—H2108.00C65—C66—H66119.00
C2—C3—H3A109.00
C6—N1—C2—C35.9 (2)C5—C6—C61—C628.6 (3)
C6—N1—C2—C21117.10 (19)C5—C6—C61—C66170.61 (17)
C11—N1—C2—C3160.88 (18)C4—C14—C41—C42123.0 (2)
C11—N1—C2—C2176.2 (2)C4—C14—C41—C4654.6 (3)
C2—N1—C6—C551.9 (2)C15—C14—C41—C4255.8 (3)
C2—N1—C6—C6180.0 (2)C15—C14—C41—C46126.6 (2)
C11—N1—C6—C5115.26 (19)C2—C21—C22—C23177.12 (19)
C11—N1—C6—C61112.9 (2)C26—C21—C22—C230.1 (3)
C2—N1—C11—O11173.7 (2)C2—C21—C26—C25176.10 (18)
C2—N1—C11—C125.6 (3)C22—C21—C26—C251.0 (3)
C6—N1—C11—O116.8 (3)C21—C22—C23—C240.4 (3)
C6—N1—C11—C12172.5 (2)C22—C23—C24—C250.3 (3)
N1—C2—C3—C442.5 (2)C23—C24—C25—C261.4 (3)
C21—C2—C3—C4168.35 (17)C24—C25—C26—C211.7 (3)
N1—C2—C21—C2253.0 (2)C14—C41—C42—C43174.69 (19)
N1—C2—C21—C26130.00 (19)C46—C41—C42—C432.9 (3)
C3—C2—C21—C2271.1 (2)C14—C41—C46—C45176.11 (19)
C3—C2—C21—C26105.9 (2)C42—C41—C46—C451.5 (3)
C2—C3—C4—C542.4 (2)C41—C42—C43—C441.7 (3)
C2—C3—C4—C14139.6 (2)C42—C43—C44—C451.1 (3)
C3—C4—C5—C65.6 (2)C43—C44—C45—C462.6 (3)
C14—C4—C5—C6172.45 (18)C44—C45—C46—C411.3 (3)
C3—C4—C14—C156.4 (3)C6—C61—C62—C63178.61 (19)
C3—C4—C14—C41172.37 (18)C66—C61—C62—C632.2 (3)
C5—C4—C14—C15175.75 (18)C6—C61—C66—C65178.57 (18)
C5—C4—C14—C415.5 (3)C62—C61—C66—C652.2 (3)
C4—C5—C6—N150.8 (2)C61—C62—C63—C640.9 (3)
C4—C5—C6—C6178.1 (2)C62—C63—C64—C650.5 (3)
N1—C6—C61—C62118.7 (2)C63—C64—C65—C660.5 (3)
N1—C6—C61—C6662.1 (2)C64—C65—C66—C610.8 (3)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x+1, y, z+2; (v) x, y1, z+2; (vi) x, y, z+1; (vii) x, y, z+2; (viii) x+1, y, z+1; (ix) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O111.002.212.723 (3)110
C12—H12A···N16i0.982.503.423 (3)158
C42—H42···O11iii0.952.583.398 (3)145
C22—H22···Cg10.952.793.734 (3)174
C26—H26···Cg2iv0.952.893.784 (3)157
Symmetry codes: (i) x, y+1, z; (iii) x, y1, z; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC27H24N2O
Mr392.48
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.4034 (17), 10.646 (6), 10.8860 (18)
α, β, γ (°)90.45 (2), 99.957 (14), 101.98 (3)
V3)1048.9 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.43 × 0.37 × 0.23
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14102, 6736, 2238
Rint0.062
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.151, 0.86
No. of reflections6736
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O111.002.212.723 (3)110
C12—H12A···N16i0.982.503.423 (3)158
C42—H42···O11ii0.952.583.398 (3)145
C22—H22···Cg10.952.793.734 (3)174
C26—H26···Cg2iii0.952.893.784 (3)157
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y, z+2.
 

Acknowledgements

RJB acknowledges the NSF-MRI program for funding the purchase of the X-ray CCD diffractometer. AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007].

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Balamurugan, S., Manimekalai, A. & Balamurugan, A. (2007). Acta Cryst. E63, o2903.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds