organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-5-(4-methyl­phen­yl)-3-oxo­cyclo­hexane-1-carbo­nitrile

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, and cInstitute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence e-mail: athiru@vsnl.net

(Received 1 April 2008; accepted 3 April 2008; online 10 April 2008)

In the title mol­ecule, C15H17NO, the cyclo­hexane ring adopts a chair conformation. The cyano and methyl groups at position 1 have axial and equatorial orientations, respectively. The benzene ring has an equatorial orientation. A C—H⋯π inter­action involving the benzene ring is found in the crystal structure.

Related literature

Subramanyam et al. (2007[Subramanyam, M., Thiruvalluvar, A., Sabapathy Mohan, R. T. & Kamatchi, S. (2007). Acta Cryst. E63, o2715-o2716.]) have reported the crystal structure of 3-cyano-3-methyl-5-phenyl­cyclo­hexane, in which the cyclo­hexane ring adopts a chair conformation.

[Scheme 1]

Experimental

Crystal data
  • C15H17NO

  • Mr = 227.30

  • Monoclinic, C 2/c

  • a = 23.4475 (5) Å

  • b = 6.0370 (1) Å

  • c = 21.0740 (5) Å

  • β = 123.267 (1)°

  • V = 2494.22 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 160 (1) K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 37687 measured reflections

  • 3640 independent reflections

  • 2682 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.170

  • S = 1.08

  • 3640 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4ACgi 0.99 2.61 3.5425 (15) 157
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}]. Cg is the centroid of the benzene ring.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound has been analysed as part of our crystallographic studies on substituted cyclohexanes (Subramanyam et al., 2007). Its molecular structure, with atomic numbering scheme, is shown in Fig. 1. The cyclohexane ring adopts a chair conformation. The cyano group and the methyl group at position 1 have axial and equatorial orientations respectively. The benzene ring at position 5 has an equatorial orientation. A C4—H4A···π(-x, y, 1/2 - z) interaction involving the benzene ring is found in the structure. No classical hydrogen bonds are found in the crystal structure.

Related literature top

Subramanyam et al. (2007) have reported the crystal structure of 3-cyano-3-methyl-5-phenylcyclohexane, in which the cyclohexane ring adopts a chair conformation.

Experimental top

A mixture of 5-4'-methylphenyl-3-methylcyclohex-2-enone (4.00 g, 0.02 mol), potassium cyanide (2.60 g, 0.04 mol), ammonium chloride (1.59 g, 0.03 mol), dimethylformamide (50 ml) and water (2 ml) was heated with stirring for 16-18 h at 353 K. The reaction mixture was cooled to room temperature and poured into water. The product was extracted with CH2Cl2 (3x10 ml) and the organic layer was dried, evaporated and purified by column chromatography (hexane-EtOAc, 4.5:1 v/v). The yield of the isolated product was 3.40 g (75%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for Csp2, 0.98 Å for methyl C, 0.99 Å for methylene C and 1.00 Å for methine C; Uiso(H) = xUeq(carrier atom), where x = 1.5 for methyl and 1.2 for all other C atoms

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.
1-Methyl-5-(4-methylphenyl)-3-oxocyclohexane-1-carbonitrile top
Crystal data top
C15H17NOF(000) = 976
Mr = 227.30Dx = 1.211 Mg m3
Monoclinic, C2/cMelting point: 376 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 23.4475 (5) ÅCell parameters from 3933 reflections
b = 6.0370 (1) Åθ = 2.0–30.0°
c = 21.0740 (5) ŵ = 0.08 mm1
β = 123.267 (1)°T = 160 K
V = 2494.22 (9) Å3Tablet, colourless
Z = 80.25 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2682 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.054
Horizontally mounted graphite crystal monochromatorθmax = 30.1°, θmin = 2.1°
Detector resolution: 9 pixels mm-1h = 032
ϕ and ω scans with κ offsetsk = 08
37687 measured reflectionsl = 2924
3640 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0889P)2 + 1.0674P]
where P = (Fo2 + 2Fc2)/3
3640 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C15H17NOV = 2494.22 (9) Å3
Mr = 227.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.4475 (5) ŵ = 0.08 mm1
b = 6.0370 (1) ÅT = 160 K
c = 21.0740 (5) Å0.25 × 0.20 × 0.10 mm
β = 123.267 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2682 reflections with I > 2σ(I)
37687 measured reflectionsRint = 0.054
3640 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.08Δρmax = 0.42 e Å3
3640 reflectionsΔρmin = 0.27 e Å3
154 parameters
Special details top

Experimental. Solvent used: ? Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.608 (1) Frames collected: 469 Seconds exposure per frame: 68 Degrees rotation per frame: 1.7 Crystal-Detector distance (mm): 30.0

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.15528 (6)0.46344 (19)0.25177 (7)0.0415 (4)
N120.08326 (7)0.6151 (2)0.47679 (8)0.0396 (4)
C10.11894 (7)0.9214 (2)0.37288 (8)0.0257 (4)
C20.16638 (7)0.8175 (3)0.29352 (8)0.0301 (4)
C30.13059 (7)0.6453 (2)0.27576 (7)0.0284 (4)
C40.06263 (7)0.7130 (2)0.28980 (8)0.0285 (4)
C50.01555 (6)0.8211 (2)0.36851 (7)0.0235 (3)
C60.05364 (7)1.0065 (2)0.37989 (8)0.0257 (4)
C110.15578 (8)1.1085 (3)0.38596 (10)0.0358 (5)
C120.09953 (7)0.7479 (2)0.43103 (8)0.0283 (4)
C150.24199 (7)1.0891 (3)0.40745 (9)0.0366 (5)
C510.05077 (6)0.8959 (2)0.37806 (7)0.0234 (3)
C520.10525 (7)0.7488 (2)0.40770 (7)0.0268 (4)
C530.16606 (7)0.8088 (2)0.41545 (8)0.0288 (4)
C540.17508 (7)1.0191 (3)0.39554 (8)0.0283 (4)
C550.12020 (7)1.1653 (2)0.36508 (9)0.0321 (4)
C560.05907 (7)1.1049 (2)0.35635 (9)0.0308 (4)
H2A0.205920.748440.290890.0361*
H2B0.183880.935830.254690.0361*
H4A0.070290.818890.249980.0341*
H4B0.039700.580690.286000.0341*
H50.003870.705020.407710.0282*
H6A0.065991.123600.341550.0308*
H6B0.023131.073050.430720.0308*
H11A0.168731.224890.347970.0537*
H11B0.125311.170520.436860.0537*
H11C0.196801.049420.381410.0537*
H15A0.274350.965500.429150.0549*
H15B0.260391.215510.442280.0549*
H15C0.234751.131600.358660.0549*
H520.100860.605080.422900.0321*
H530.202090.703960.434700.0345*
H550.124641.309170.349970.0384*
H560.022421.207750.335260.0370*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0412 (6)0.0397 (6)0.0472 (7)0.0142 (5)0.0266 (5)0.0148 (5)
N120.0409 (7)0.0425 (8)0.0396 (7)0.0060 (6)0.0248 (6)0.0051 (6)
C10.0254 (6)0.0250 (6)0.0306 (7)0.0027 (5)0.0178 (6)0.0022 (5)
C20.0233 (6)0.0366 (8)0.0285 (7)0.0015 (6)0.0130 (5)0.0014 (6)
C30.0273 (7)0.0332 (8)0.0231 (7)0.0052 (5)0.0129 (5)0.0028 (5)
C40.0283 (7)0.0303 (7)0.0304 (7)0.0032 (5)0.0184 (6)0.0045 (5)
C50.0224 (6)0.0230 (6)0.0265 (6)0.0008 (5)0.0144 (5)0.0021 (5)
C60.0258 (6)0.0246 (7)0.0301 (7)0.0042 (5)0.0176 (6)0.0030 (5)
C110.0364 (8)0.0305 (8)0.0515 (9)0.0015 (6)0.0311 (7)0.0045 (7)
C120.0258 (6)0.0329 (7)0.0303 (7)0.0071 (5)0.0181 (6)0.0048 (6)
C150.0275 (7)0.0443 (9)0.0427 (9)0.0070 (6)0.0222 (7)0.0033 (7)
C510.0229 (6)0.0248 (6)0.0241 (6)0.0018 (5)0.0140 (5)0.0003 (5)
C520.0258 (6)0.0264 (7)0.0272 (7)0.0003 (5)0.0140 (5)0.0040 (5)
C530.0232 (6)0.0332 (7)0.0281 (7)0.0030 (5)0.0128 (5)0.0034 (6)
C540.0249 (6)0.0340 (7)0.0289 (7)0.0052 (5)0.0167 (6)0.0035 (5)
C550.0346 (7)0.0252 (7)0.0450 (9)0.0036 (6)0.0273 (7)0.0009 (6)
C560.0296 (7)0.0258 (7)0.0428 (8)0.0033 (5)0.0235 (7)0.0056 (6)
Geometric parameters (Å, º) top
O3—C31.2145 (17)C2—H2A0.9900
N12—C121.1466 (19)C2—H2B0.9900
C1—C21.545 (2)C4—H4A0.9900
C1—C61.543 (3)C4—H4B0.9900
C1—C111.536 (3)C5—H51.0000
C1—C121.4812 (19)C6—H6A0.9900
C2—C31.507 (2)C6—H6B0.9900
C3—C41.509 (3)C11—H11A0.9800
C4—C51.5450 (19)C11—H11B0.9800
C5—C61.531 (2)C11—H11C0.9800
C5—C511.523 (2)C15—H15A0.9800
C15—C541.507 (3)C15—H15B0.9800
C51—C521.391 (2)C15—H15C0.9800
C51—C561.3917 (18)C52—H520.9500
C52—C531.391 (3)C53—H530.9500
C53—C541.389 (2)C55—H550.9500
C54—C551.393 (2)C56—H560.9500
C55—C561.390 (3)
O3···H6Ai2.8000H4A···C55vii2.9200
O3···H11Ai2.6400H4A···C56vii2.9500
O3···H15Cii2.8500H4B···C523.1000
O3···H55ii2.7700H4B···H56i2.5700
N12···H11Bi2.8200H5···C122.5600
N12···H5iii2.8900H5···H522.3700
N12···H6Biv2.8700H5···N12iii2.8900
N12···H52iii2.7100H6A···O3ix2.8000
C4···C123.532 (2)H6A···C562.7800
C12···C43.532 (2)H6A···H2B2.5900
C12···C15v3.598 (3)H6A···H11A2.5600
C15···C12vi3.598 (3)H6A···H562.2100
C6···H562.7200H6B···C563.0900
C12···H52.5600H6B···H11B2.5400
C12···H6Biv2.9600H6B···N12iv2.8700
C15···H2Bvii3.0500H6B···C12iv2.9600
C51···H4Avii3.0100H11A···O3ix2.6400
C52···H4B3.1000H11A···H2B2.5000
C52···H55i3.0600H11A···H6A2.5600
C52···H4Avii2.9800H11B···N12ix2.8200
C52···H11Biv3.0800H11B···H6B2.5400
C53···H4Avii2.9300H11B···C52iv3.0800
C53···H53viii2.9700H11C···H2A2.5600
C54···H4Avii2.9400H15A···H532.3700
C55···H52ix3.0600H15C···O3x2.8500
C55···H4Avii2.9200H15C···H2Bvii2.3200
C56···H6A2.7800H15C···H2Avi2.5800
C56···H6B3.0900H52···C55i3.0600
C56···H4Avii2.9500H52···H52.3700
H2A···H11C2.5600H52···N12iii2.7100
H2A···H15Cv2.5800H53···H15A2.3700
H2B···H6A2.5900H53···C53viii2.9700
H2B···H11A2.5000H53···H53viii2.4800
H2B···C15vii3.0500H55···C52ix3.0600
H2B···H15Cvii2.3200H55···O3x2.7700
H4A···C51vii3.0100H56···C62.7200
H4A···C52vii2.9800H56···H4Bix2.5700
H4A···C53vii2.9300H56···H6A2.2100
H4A···C54vii2.9400
C2—C1—C6109.04 (13)C3—C4—H4B109.00
C2—C1—C11110.55 (14)C5—C4—H4A109.00
C2—C1—C12108.69 (11)C5—C4—H4B109.00
C6—C1—C11111.35 (12)H4A—C4—H4B108.00
C6—C1—C12108.53 (13)C4—C5—H5108.00
C11—C1—C12108.62 (14)C6—C5—H5108.00
C1—C2—C3112.38 (13)C51—C5—H5108.00
O3—C3—C2121.60 (17)C1—C6—H6A109.00
O3—C3—C4122.51 (15)C1—C6—H6B109.00
C2—C3—C4115.89 (12)C5—C6—H6A109.00
C3—C4—C5112.38 (13)C5—C6—H6B109.00
C4—C5—C6110.02 (12)H6A—C6—H6B108.00
C4—C5—C51110.09 (12)C1—C11—H11A109.00
C6—C5—C51113.81 (11)C1—C11—H11B109.00
C1—C6—C5112.03 (11)C1—C11—H11C109.00
N12—C12—C1178.70 (18)H11A—C11—H11B109.00
C5—C51—C52119.32 (12)H11A—C11—H11C109.00
C5—C51—C56122.83 (13)H11B—C11—H11C109.00
C52—C51—C56117.83 (15)C54—C15—H15A109.00
C51—C52—C53121.07 (12)C54—C15—H15B109.00
C52—C53—C54121.23 (14)C54—C15—H15C109.00
C15—C54—C53121.54 (16)H15A—C15—H15B109.00
C15—C54—C55120.88 (16)H15A—C15—H15C109.00
C53—C54—C55117.58 (17)H15B—C15—H15C109.00
C54—C55—C56121.31 (13)C51—C52—H52119.00
C51—C56—C55120.95 (14)C53—C52—H52119.00
C1—C2—H2A109.00C52—C53—H53119.00
C1—C2—H2B109.00C54—C53—H53119.00
C3—C2—H2A109.00C54—C55—H55119.00
C3—C2—H2B109.00C56—C55—H55119.00
H2A—C2—H2B108.00C51—C56—H56120.00
C3—C4—H4A109.00C55—C56—H56120.00
C6—C1—C2—C352.74 (16)C4—C5—C51—C5288.85 (14)
C11—C1—C2—C3175.47 (14)C4—C5—C51—C5689.28 (15)
C12—C1—C2—C365.40 (19)C6—C5—C51—C52147.10 (12)
C2—C1—C6—C558.85 (15)C6—C5—C51—C5634.77 (17)
C11—C1—C6—C5178.91 (12)C5—C51—C52—C53178.29 (12)
C12—C1—C6—C559.39 (14)C56—C51—C52—C530.1 (2)
C1—C2—C3—O3130.73 (15)C5—C51—C56—C55179.06 (13)
C1—C2—C3—C449.13 (17)C52—C51—C56—C550.9 (2)
O3—C3—C4—C5131.91 (13)C51—C52—C53—C541.5 (2)
C2—C3—C4—C547.96 (15)C52—C53—C54—C15176.87 (13)
C3—C4—C5—C651.08 (14)C52—C53—C54—C552.2 (2)
C3—C4—C5—C51177.30 (10)C15—C54—C55—C56177.71 (14)
C4—C5—C6—C158.21 (15)C53—C54—C55—C561.3 (2)
C51—C5—C6—C1177.70 (11)C54—C55—C56—C510.2 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y1, z+1/2; (iii) x, y+1, z+1; (iv) x, y+2, z+1; (v) x1/2, y1/2, z; (vi) x+1/2, y+1/2, z; (vii) x, y, z+1/2; (viii) x+1/2, y+3/2, z+1; (ix) x, y+1, z; (x) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cgvii0.992.613.5425 (15)157
Symmetry code: (vii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17NO
Mr227.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)160
a, b, c (Å)23.4475 (5), 6.0370 (1), 21.0740 (5)
β (°) 123.267 (1)
V3)2494.22 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
37687, 3640, 2682
Rint0.054
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.170, 1.08
No. of reflections3640
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.27

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cgi0.992.613.5425 (15)157
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007].

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanyam, M., Thiruvalluvar, A., Sabapathy Mohan, R. T. & Kamatchi, S. (2007). Acta Cryst. E63, o2715–o2716.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds