organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4,8,11-Tetra­kis(carb­oxy­meth­yl)-5,5,7,12,12,14-hexa­methyl-4,11-di­aza-1,8-diazo­nia­cyclo­tetra­decane dichloride dihydrate

aKey Laboratory of Tropical Biological Resources of the Ministry of Education, Hainan University, Haikou 570228, People's Republic of China, and Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Ocean, Hainan University, Haikou 570228, People's Republic of China, and bDepartment of Pharmaceutical Engineering, School of Ocean, Hainan University, Haikou 570228, People's Republic of China
*Correspondence e-mail: wangsf777@gmail.com

(Received 6 April 2008; accepted 16 April 2008; online 23 April 2008)

The title compound, C24H46N4O82+·2Cl·2H2O, was synthes­ized by the hydrolysis of tetra­ethyl 2,2′,2′′,2′′′-(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­decane-1,4,8,11-tetra­yl) tetra­acetate in hydro­chloric acid solution. The crystal structure of the title compound consists of a 14-membered C10N4 centrosymmetric cationic macrocycle which inter­acts with the chloride ions and water mol­ecules of crystallization to give a three-dimensional hydrogen-bonded network.

Related literature

For related literature, see: Marinelli et al. (2002[Marinelli, E. R., Neubeck, R., Song, B., Wagler, T., Ranganathan, R. S., Sukumaran, K., Wedeking, P., Nunn, A., Runge, V. & Tweedle, M. (2002). Acad. Radiol. 9, s251-s254.]); Wang (2001[Wang, S. F. (2001). Chin. J. Syn. Chem. 9, 223-226, 231.]); Xu et al. (1988[Xu, J. D., Ni, S. S. & Lin, Y. J. (1988). Inorg. Chem. , 4651-4657.]).

[Scheme 1]

Experimental

Crystal data
  • C24H46N4O82+·2Cl·2H2O

  • Mr = 625.58

  • Monoclinic, P 21 /n

  • a = 9.977 (5) Å

  • b = 13.475 (7) Å

  • c = 11.572 (6) Å

  • β = 104.220 (9)°

  • V = 1508.1 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 (2) K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 15242 measured reflections

  • 2946 independent reflections

  • 2036 reflections with I > 2σ(I)

  • Rint = 0.143

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.141

  • S = 0.98

  • 2946 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯Cl1i 0.82 2.24 3.012 (3) 158
O2—H2A⋯O1Wii 0.82 1.82 2.610 (3) 162
O1W—H2W⋯Cl1iii 0.76 (3) 2.40 (3) 3.152 (3) 169 (3)
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

N-functionalized macrocyclic acids are an important class of compounds for their utility as MRI contrast agents (Marinelli et al., 2002) and their strong chelating ability (Xu et al., 1988). For this reason, we have synthesized the title compound by the hydrolysis of tetraethyl 2,2',2'',2'''-(5,5,7,12,12,14-hexamethyl- 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl) tetraacetate (Wang et al., 2001) in hydrochloric acid solution.

The bond lengths and angles in the title compound are within normal ranges. The structural data confirm that the 14-membered macrocycle lies on a center of inversion and each N atom is linked to a carboxymethyl group. The macrocycle carries two positive charges arising from the protonation of N atoms. The net charge is balanced by two chloride ions. The cations and anions interact with each other and with the water molecules of crystallization to furnish a hydrogen-bonded network structure (Table 1). The structure of the title compound, showing 50% probability displacement ellipsoids is shown in Fig. 1 and a view of the hydrogen bonding in Fig. 2.

Related literature top

For related literature, see: Marinelli et al. (2002); Wang (2001); Xu et al. (1988).

Experimental top

Tetraethyl 2,2',2'',2'''-(5,5,7,12,12,14-hexamethyl- 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl)tetraacetate (0.625 g, 1 mmol) was dissolved in 200 ml of hydrochloric acid solution (v:v, 1:1) and allowed to stand in air at room temperature over a period of three weeks. Colourless block crystals suitable for X-ray diffraction analysis were formed at the bottom of the vessel (yield 87%).

Refinement top

The water hydrogen atoms were refined freely, resulting in O—H bond lengths of 0.76 (3) and 0.88 (5) Å. Other H atoms were positioned geometrically, with N—H = 0.91 Å, O—H = 0.82 Å, C—H = 0.96 Å for methyl, 0.97 Å for methylene and 0.98 Å for methine. Uiso(H) = xUeq(carrier atom), where x = 1.5 for O and methyl, x = 1.2 for all other carrier atoms. The value of Rint (0.14) is high because of the quality of the diffraction data.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: (a) 1-x, 2-y, -z.
[Figure 2] Fig. 2. A view of the hydrogen bonding. Dashed lines indicate hydrogen bonds.
1,4,8,11-Tetrakis(carboxymethyl)-5,5,7,12,12,14-hexamethyl- 4,11-diaza-1,8-diazoniacyclotetradecane dichloride dihydrate top
Crystal data top
C24H46N4O82+·2Cl·2H2OF(000) = 672
Mr = 625.58Dx = 1.378 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 17651 reflections
a = 9.977 (5) Åθ = 2.4–24.9°
b = 13.475 (7) ŵ = 0.27 mm1
c = 11.572 (6) ÅT = 293 K
β = 104.220 (9)°BLOCK, colorless
V = 1508.1 (13) Å30.10 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2036 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.143
Graphite monochromatorθmax = 26.0°, θmin = 2.4°
ϕ and ω scansh = 1212
15242 measured reflectionsk = 1616
2946 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0715P)2]
where P = (Fo2 + 2Fc2)/3
2946 reflections(Δ/σ)max = 0.032
194 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C24H46N4O82+·2Cl·2H2OV = 1508.1 (13) Å3
Mr = 625.58Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.977 (5) ŵ = 0.27 mm1
b = 13.475 (7) ÅT = 293 K
c = 11.572 (6) Å0.10 × 0.10 × 0.08 mm
β = 104.220 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2036 reflections with I > 2σ(I)
15242 measured reflectionsRint = 0.143
2946 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.63 e Å3
2946 reflectionsΔρmin = 0.37 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5351 (3)0.98193 (17)0.1532 (2)0.0292 (6)
H1A0.46670.94000.13060.035*
H1B0.53600.96640.23480.035*
C20.7189 (3)0.85672 (17)0.0818 (2)0.0335 (6)
H20.81500.85300.03490.040*
C30.6370 (3)0.78525 (17)0.0239 (2)0.0323 (6)
H3A0.64850.71890.05250.039*
H3B0.53980.80210.05110.039*
C40.6741 (3)0.78252 (17)0.1120 (2)0.0319 (6)
C50.5034 (2)0.90943 (16)0.1443 (2)0.0285 (6)
H5A0.47520.87260.20640.034*
H5B0.45160.88360.06820.034*
C60.7192 (4)0.8235 (2)0.2076 (3)0.0495 (8)
H6A0.62570.81560.25370.074*
H6B0.76730.76140.20410.074*
H6C0.76490.87260.24440.074*
C70.8226 (3)0.7482 (2)0.1616 (3)0.0422 (7)
H7A0.83710.68660.12480.063*
H7B0.83940.73910.24620.063*
H7C0.88500.79740.14500.063*
C80.5799 (3)0.70891 (19)0.1556 (3)0.0442 (7)
H8A0.60220.64250.13690.066*
H8B0.48510.72280.11690.066*
H8C0.59330.71540.24030.066*
C90.7378 (2)0.91341 (19)0.2780 (2)0.0328 (6)
H9A0.74220.85500.32780.039*
H9B0.69350.96600.31210.039*
C100.8828 (3)0.94509 (17)0.2765 (2)0.0303 (6)
C110.7806 (3)1.03008 (17)0.0922 (2)0.0338 (6)
H11A0.75621.05120.17490.041*
H11B0.86690.99370.07930.041*
C120.8052 (3)1.12186 (18)0.0142 (2)0.0319 (6)
Cl10.27157 (7)0.97170 (5)0.43440 (7)0.0480 (3)
N10.6734 (2)0.96203 (13)0.07355 (18)0.0270 (5)
H1N0.66600.97140.00250.032*
N20.6540 (2)0.89074 (14)0.15548 (17)0.0275 (5)
O10.74179 (19)1.14840 (14)0.05549 (17)0.0405 (5)
O20.9133 (2)1.17039 (15)0.0337 (2)0.0572 (6)
H2A0.92601.22120.00650.086*
O30.9143 (2)0.97572 (14)0.19069 (18)0.0449 (5)
O40.96439 (19)0.93712 (15)0.38441 (16)0.0434 (5)
H41.04090.95960.38490.065*
O1W0.5390 (3)0.84981 (16)0.4486 (2)0.0519 (6)
H2W0.594 (4)0.887 (2)0.479 (3)0.042 (10)*
H1W0.457 (5)0.877 (3)0.443 (4)0.092 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0262 (13)0.0260 (12)0.0318 (13)0.0029 (10)0.0005 (11)0.0006 (10)
C20.0304 (14)0.0251 (12)0.0417 (15)0.0084 (11)0.0026 (12)0.0014 (11)
C30.0336 (14)0.0220 (12)0.0357 (14)0.0030 (11)0.0019 (11)0.0050 (10)
C40.0332 (14)0.0217 (12)0.0356 (14)0.0055 (10)0.0012 (11)0.0029 (10)
C50.0218 (12)0.0263 (12)0.0340 (14)0.0011 (10)0.0002 (11)0.0031 (10)
C60.070 (2)0.0378 (15)0.0471 (18)0.0086 (15)0.0258 (16)0.0046 (13)
C70.0435 (17)0.0368 (14)0.0398 (15)0.0101 (13)0.0021 (13)0.0001 (12)
C80.0569 (19)0.0261 (13)0.0446 (16)0.0013 (13)0.0031 (14)0.0076 (12)
C90.0271 (13)0.0387 (14)0.0279 (13)0.0018 (11)0.0022 (11)0.0041 (11)
C100.0298 (14)0.0239 (12)0.0324 (14)0.0020 (10)0.0017 (11)0.0037 (10)
C110.0292 (13)0.0320 (13)0.0405 (15)0.0007 (11)0.0094 (12)0.0045 (11)
C120.0279 (14)0.0287 (13)0.0365 (14)0.0008 (11)0.0029 (12)0.0030 (11)
Cl10.0331 (4)0.0426 (4)0.0634 (5)0.0038 (3)0.0023 (3)0.0034 (3)
N10.0249 (11)0.0246 (10)0.0298 (11)0.0013 (8)0.0036 (9)0.0025 (8)
N20.0248 (11)0.0229 (10)0.0298 (11)0.0027 (8)0.0025 (9)0.0029 (8)
O10.0330 (10)0.0486 (11)0.0384 (11)0.0090 (9)0.0060 (9)0.0126 (9)
O20.0537 (14)0.0430 (12)0.0839 (17)0.0206 (10)0.0339 (13)0.0177 (11)
O30.0393 (12)0.0501 (12)0.0415 (12)0.0057 (9)0.0023 (9)0.0060 (9)
O40.0286 (10)0.0547 (12)0.0392 (11)0.0042 (9)0.0065 (9)0.0003 (9)
O1W0.0484 (15)0.0327 (11)0.0759 (17)0.0025 (11)0.0176 (13)0.0018 (11)
Geometric parameters (Å, º) top
C1—N11.483 (3)C7—H7B0.9600
C1—C5i1.523 (3)C7—H7C0.9600
C1—H1A0.9700C8—H8A0.9600
C1—H1B0.9700C8—H8B0.9600
C2—N11.500 (3)C8—H8C0.9600
C2—C31.521 (4)C9—N21.490 (3)
C2—C61.524 (4)C9—C101.513 (4)
C2—H20.9800C9—H9A0.9700
C3—C41.525 (4)C9—H9B0.9700
C3—H3A0.9700C10—O31.186 (3)
C3—H3B0.9700C10—O41.317 (3)
C4—C71.523 (4)C11—N11.465 (3)
C4—C81.535 (4)C11—C121.515 (4)
C4—N21.571 (3)C11—H11A0.9700
C5—N21.497 (3)C11—H11B0.9700
C5—C1i1.523 (3)C12—O11.196 (3)
C5—H5A0.9700C12—O21.327 (3)
C5—H5B0.9700N1—H1N0.9100
C6—H6A0.9600O2—H2A0.8200
C6—H6B0.9600O4—H40.8200
C6—H6C0.9600O1W—H2W0.76 (3)
C7—H7A0.9600O1W—H1W0.88 (5)
N1—C1—C5i110.10 (18)C4—C7—H7C109.5
N1—C1—H1A109.6H7A—C7—H7C109.5
C5i—C1—H1A109.6H7B—C7—H7C109.5
N1—C1—H1B109.6C4—C8—H8A109.5
C5i—C1—H1B109.6C4—C8—H8B109.5
H1A—C1—H1B108.2H8A—C8—H8B109.5
N1—C2—C3111.5 (2)C4—C8—H8C109.5
N1—C2—C6114.2 (2)H8A—C8—H8C109.5
C3—C2—C6111.3 (2)H8B—C8—H8C109.5
N1—C2—H2106.4N2—C9—C10111.2 (2)
C3—C2—H2106.4N2—C9—H9A109.4
C6—C2—H2106.4C10—C9—H9A109.4
C2—C3—C4116.7 (2)N2—C9—H9B109.4
C2—C3—H3A108.1C10—C9—H9B109.4
C4—C3—H3A108.1H9A—C9—H9B108.0
C2—C3—H3B108.1O3—C10—O4126.4 (3)
C4—C3—H3B108.1O3—C10—C9123.9 (2)
H3A—C3—H3B107.3O4—C10—C9109.6 (2)
C7—C4—C3111.3 (2)N1—C11—C12116.1 (2)
C7—C4—C8107.3 (2)N1—C11—H11A108.3
C3—C4—C8110.0 (2)C12—C11—H11A108.3
C7—C4—N2110.47 (19)N1—C11—H11B108.3
C3—C4—N2106.86 (18)C12—C11—H11B108.3
C8—C4—N2111.0 (2)H11A—C11—H11B107.4
N2—C5—C1i114.86 (19)O1—C12—O2123.7 (2)
N2—C5—H5A108.6O1—C12—C11127.7 (2)
C1i—C5—H5A108.6O2—C12—C11108.7 (2)
N2—C5—H5B108.6C11—N1—C1113.39 (19)
C1i—C5—H5B108.6C11—N1—C2109.8 (2)
H5A—C5—H5B107.5C1—N1—C2112.43 (18)
C2—C6—H6A109.5C11—N1—H1N106.9
C2—C6—H6B109.5C1—N1—H1N106.9
H6A—C6—H6B109.5C2—N1—H1N106.9
C2—C6—H6C109.5C9—N2—C5111.37 (19)
H6A—C6—H6C109.5C9—N2—C4114.14 (17)
H6B—C6—H6C109.5C5—N2—C4109.45 (17)
C4—C7—H7A109.5C12—O2—H2A109.5
C4—C7—H7B109.5C10—O4—H4109.5
H7A—C7—H7B109.5H2W—O1W—H1W107 (3)
N1—C2—C3—C475.6 (3)C6—C2—N1—C1171.7 (3)
C6—C2—C3—C4155.6 (2)C3—C2—N1—C171.7 (3)
C2—C3—C4—C762.6 (3)C6—C2—N1—C155.5 (3)
C2—C3—C4—C8178.6 (2)C10—C9—N2—C5151.36 (19)
C2—C3—C4—N258.1 (3)C10—C9—N2—C484.1 (2)
N2—C9—C10—O320.5 (3)C1i—C5—N2—C967.6 (3)
N2—C9—C10—O4162.1 (2)C1i—C5—N2—C4165.3 (2)
N1—C11—C12—O15.1 (4)C7—C4—N2—C934.3 (3)
N1—C11—C12—O2174.1 (2)C3—C4—N2—C9155.5 (2)
C12—C11—N1—C192.6 (3)C8—C4—N2—C984.6 (2)
C12—C11—N1—C2140.7 (2)C7—C4—N2—C5159.9 (2)
C5i—C1—N1—C1152.7 (3)C3—C4—N2—C578.9 (2)
C5i—C1—N1—C2178.0 (2)C8—C4—N2—C541.0 (2)
C3—C2—N1—C11161.1 (2)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···Cl1ii0.822.243.012 (3)158
O2—H2A···O1Wiii0.821.822.610 (3)162
O1W—H2W···Cl1iv0.76 (3)2.40 (3)3.152 (3)169 (3)
Symmetry codes: (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC24H46N4O82+·2Cl·2H2O
Mr625.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.977 (5), 13.475 (7), 11.572 (6)
β (°) 104.220 (9)
V3)1508.1 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15242, 2946, 2036
Rint0.143
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.141, 0.99
No. of reflections2946
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.37

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···Cl1i0.822.243.012 (3)158
O2—H2A···O1Wii0.821.822.610 (3)162
O1W—H2W···Cl1iii0.76 (3)2.40 (3)3.152 (3)169 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y+2, z+1.
 

Acknowledgements

The work was supported by a Key Grant (No. 206118) from the Ministry of Education and the Natural Science Foundation of Hainan Province (No. 80619).

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMarinelli, E. R., Neubeck, R., Song, B., Wagler, T., Ranganathan, R. S., Sukumaran, K., Wedeking, P., Nunn, A., Runge, V. & Tweedle, M. (2002). Acad. Radiol. 9, s251–s254.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. F. (2001). Chin. J. Syn. Chem. 9, 223–226, 231.  Google Scholar
First citationXu, J. D., Ni, S. S. & Lin, Y. J. (1988). Inorg. Chem. , 4651–4657.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds