organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(N′-benzoyl­thio­ureido)benzene

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 18 February 2008; accepted 27 March 2008; online 2 April 2008)

The title compound, C22H18N4O2S2, was characterized by 1H and 13C NMR, solid-state IR spectroscopy and X-ray crystallographic techniques. The crystal structure determination reveals that the twisting modes of the two side arms are different [C—N—C—O and C—N—C—N torsion angles = −1.2 (3) and 1.1 (3)°, respectively, in one arm and 24.1 (3) and −5.1 (3)°, respectively, in the other]. The crystal structure involves N—H⋯O and N—H⋯S hydrogen bonds.

Related literature

For related structures: see Arslan et al. (2004[Arslan, H., Flörke, U. & Külcü, N. (2004). Acta Chim. Slov. 51, 787-792.]); Avşar et al. (2003[Avşar, G., Arslan, H., Haupt, H.-J. & Külcü, N. (2003). Turk. J. Chem. 27, 281-285.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N4O2S2

  • Mr = 434.52

  • Triclinic, [P \overline 1]

  • a = 7.179 (1) Å

  • b = 12.064 (2) Å

  • c = 12.476 (2) Å

  • α = 77.88 (5)°

  • β = 86.96 (5)°

  • γ = 77.91 (5)°

  • V = 1032.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 (2) K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 12922 measured reflections

  • 4671 independent reflections

  • 3234 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.118

  • S = 1.04

  • 4671 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O6 0.88 1.88 2.633 (2) 142
N2—HN2⋯O7 0.88 1.99 2.680 (2) 134
N4—HN4⋯S2i 0.88 2.61 3.478 (2) 170
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT and DENZO. Nonius BV, Delft, The Netherland.]); cell refinement: DENZO (Nonius, 1998[Nonius (1998). COLLECT and DENZO. Nonius BV, Delft, The Netherland.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C22H18N4O2S2, was characterized by 1H and 13C NMR, solid-state IR and X-ray crystallographic techniques. The X-ray structure determination reveals that the compound crystallizes in the triclinic space group P-1 with one molecule in the asymmetric unit. The molecular geometry is illustrated in Fig. 1. The S1—C1 [1.6574 (18)Å], the S2—C8 [1.660 (2)Å], the O7—C16 [1.219 (2)Å] and O6—C9 [1.222 (2)Å] distances indicates that these correspond to double bonds and are comparable to those observed for 1-(biphenyl-4-carbonyl)-3-p-tolyl-thiourea [1.647 (3)Å for C—S, 1.217 (3) and 1.224 (3)Å for C—O respectively (Arslan et al., 2004)]. The C—N bond lengths are in the range [1.335 (2) - 1.435 (2)Å] and are shorter than the normal single C—N bond length, indicating double bond character (Avşar et al., 2003). The two side arms are not twisted in the same way. One of the arms is slightly twisted as reflected by the two torsion angle C1—N3—C9—O6 [-1.2 (3)°] and C9—N3—C1—N1 [1.1 (3) °]. The torsion angles C8—N4—C16—O7 [24.1 (3)°] and C16—N4—C8—N2 [-5.1 (3)°] in the other side arm indicate that this one is more strongly twisted. Intramolecular hydrogen-bond contacts involve the NH groups and the O atoms of the amide groups as well as the N atoms of the thiourea groups while intermolecular hydrogen-bond is observed between the NH groups and the S atoms of the thiourea groups (Table 2)

Related literature top

For related structures: see Arslan et al. (2004); Avşar et al. (2003).

Experimental top

All purchased chemicals and solvents were reagent grade and used without further purifcation. Melting points were determined with a Büchi 570 melting-point apparatus and were uncorrected. The 1H NMR spectra were measured with a Bruker AM-400 spectrometer, using tetramethylsilane as the internal standard. The solid-state IR spectra were recorded from KBr discs on a Nicolet spectrophotometer. To a mixture of 9.718 g (100 mmol) of potassium thiocyanate and 100 ml of acetone was added dropwise a solution of 14.071 g (100 mmol) of benzoyl chloride in 50 ml of acetone. The resulting mixture was stirred under reflux for 1 h and cooled to room temperature. A solution of 5.407 g (50 mmol) of 1,2-diaminobenzene in 20 ml of acetone was added. The yellow solution obtained was stirred at room temperature during 2 h. 300 ml of 1 N HCl was added to dissolve the precipitated KCl. A white solid appeared after five minutes. The compound was filtered and washed with 3 x 50 ml of water and dried under vacuum. Recrystallization from a mixture of methanol and chloroform (1:1) gave 18.52 g (85.7%) of the title compound. M.p. 360±362 K (uncorrected. Mass spectrum, m/z= 434 (M+). 1H NMR (CDCl3): δ 7.38–7.93 (m, 14H, ArH), 9.30 (s, 2H, SH), 12.36 (s, 2H, OH); 13C NMR (CDCl3): δ 126.97, 127.70, 128.15, 129.10, 131.14, 131.60, 133.10, 166.90, 180. IR (cm-1,KBr): 3210, 1673, 1596, 1470, 1319, 1262, 1149, 857, 688. Analysis calculated for C22H18N4O2S2: C 60.81, H 4.18, N 12.89, S 14.76%; found: C 60.80, H 4.59, N 12.87, S 14.80%. Monocrystals suitable for X-ray analysis was obtained from slow evaporation of a dimethylformamide solution of the product.

Refinement top

All H atoms were placed geometrically and refined with a riding model. Uiso(H) for H was assigned as 1.2 Ueq of the attached C or N atoms.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Nonius, 1998); data reduction: DENZO (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.
[Figure 2] Fig. 2. The tautomerism in the title compound.
1,2-Bis(N'-benzoylthioureido)benzene top
Crystal data top
C22H18N4O2S2Z = 2
Mr = 434.52F(000) = 452
Triclinic, P1Dx = 1.397 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.179 (1) ÅCell parameters from 6418 reflections
b = 12.064 (2) Åθ = 1.0–27.5°
c = 12.476 (2) ŵ = 0.29 mm1
α = 77.88 (5)°T = 173 K
β = 86.96 (5)°Prism, colorless
γ = 77.91 (5)°0.10 × 0.10 × 0.10 mm
V = 1032.9 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
3234 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 27.4°, θmin = 3.1°
ω scansh = 98
12922 measured reflectionsk = 1515
4671 independent reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.048P)2 + 0.1332P]
where P = (Fo2 + 2Fc2)/3
4671 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H18N4O2S2γ = 77.91 (5)°
Mr = 434.52V = 1032.9 (3) Å3
Triclinic, P1Z = 2
a = 7.179 (1) ÅMo Kα radiation
b = 12.064 (2) ŵ = 0.29 mm1
c = 12.476 (2) ÅT = 173 K
α = 77.88 (5)°0.10 × 0.10 × 0.10 mm
β = 86.96 (5)°
Data collection top
Nonius KappaCCD
diffractometer
3234 reflections with I > 2σ(I)
12922 measured reflectionsRint = 0.047
4671 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
4671 reflectionsΔρmin = 0.24 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51586 (8)0.37259 (4)0.93513 (5)0.0727 (2)
S20.83170 (8)0.17089 (4)0.50551 (4)0.06579 (18)
O60.69327 (18)0.01181 (10)0.86202 (10)0.0574 (3)
O70.5045 (2)0.09194 (11)0.70005 (13)0.0680 (4)
N10.5437 (2)0.23196 (11)0.78892 (12)0.0473 (3)
HN10.59320.16100.78090.057*
N20.5204 (2)0.12967 (12)0.61750 (12)0.0529 (4)
HN20.45170.07970.65040.064*
N30.6479 (2)0.15035 (12)0.96355 (12)0.0515 (4)
HN30.66230.16081.03010.062*
N40.7603 (2)0.02950 (12)0.61097 (12)0.0536 (4)
HN40.86990.05730.58180.064*
C10.5672 (2)0.25055 (15)0.88870 (15)0.0487 (4)
C20.4547 (2)0.30447 (14)0.69408 (14)0.0464 (4)
C30.3759 (3)0.42184 (16)0.68239 (17)0.0617 (5)
H30.38540.46050.74020.074*
C40.2842 (3)0.48218 (17)0.5872 (2)0.0740 (6)
H40.23060.56230.58010.089*
C50.2688 (3)0.4288 (2)0.5025 (2)0.0798 (7)
H50.20440.47130.43740.096*
C60.3477 (3)0.31235 (19)0.51256 (18)0.0724 (6)
H60.33760.27470.45410.087*
C70.4408 (3)0.25085 (15)0.60686 (15)0.0516 (4)
C80.6935 (3)0.08886 (14)0.58002 (13)0.0499 (4)
C90.7082 (2)0.03836 (14)0.95003 (14)0.0432 (4)
C100.7920 (2)0.04822 (14)1.04687 (14)0.0439 (4)
C110.8139 (3)0.02222 (17)1.14823 (16)0.0581 (5)
H110.77080.05481.15880.070*
C120.8976 (3)0.1075 (2)1.23359 (17)0.0704 (6)
H120.91320.08861.30230.084*
C130.9583 (3)0.2187 (2)1.22008 (19)0.0710 (6)
H131.01600.27701.27920.085*
C140.9358 (3)0.24622 (18)1.1207 (2)0.0716 (6)
H140.97730.32371.11130.086*
C150.8529 (3)0.16125 (16)1.03435 (16)0.0577 (5)
H150.83770.18080.96590.069*
C160.6757 (3)0.10936 (15)0.68221 (15)0.0526 (4)
C170.8076 (3)0.21596 (14)0.73653 (14)0.0489 (4)
C180.9977 (3)0.21949 (15)0.75364 (15)0.0553 (5)
H181.05070.15340.72490.066*
C191.1108 (3)0.31812 (19)0.81204 (17)0.0675 (5)
H191.24110.31960.82380.081*
C201.0355 (4)0.41383 (19)0.85309 (19)0.0795 (7)
H201.11360.48190.89310.095*
C210.8486 (4)0.41166 (18)0.8367 (2)0.0851 (7)
H210.79730.47840.86560.102*
C220.7330 (3)0.31380 (17)0.77883 (18)0.0671 (5)
H220.60280.31320.76790.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0863 (4)0.0478 (3)0.0852 (4)0.0036 (3)0.0164 (3)0.0301 (3)
S20.0795 (4)0.0420 (3)0.0619 (3)0.0045 (2)0.0121 (3)0.0005 (2)
O60.0759 (9)0.0422 (7)0.0499 (7)0.0008 (6)0.0060 (6)0.0115 (6)
O70.0617 (9)0.0473 (8)0.0933 (11)0.0070 (7)0.0039 (7)0.0139 (7)
N10.0511 (8)0.0349 (7)0.0515 (9)0.0007 (6)0.0017 (6)0.0090 (6)
N20.0600 (9)0.0381 (8)0.0557 (9)0.0012 (7)0.0002 (7)0.0074 (7)
N30.0593 (9)0.0430 (8)0.0502 (9)0.0006 (7)0.0080 (7)0.0139 (7)
N40.0681 (10)0.0359 (8)0.0503 (9)0.0028 (7)0.0040 (7)0.0085 (7)
C10.0435 (9)0.0428 (10)0.0598 (11)0.0055 (7)0.0006 (8)0.0136 (8)
C20.0430 (9)0.0369 (9)0.0525 (10)0.0003 (7)0.0050 (8)0.0031 (8)
C30.0693 (13)0.0397 (10)0.0671 (13)0.0032 (9)0.0049 (10)0.0062 (9)
C40.0797 (15)0.0424 (11)0.0831 (16)0.0110 (10)0.0013 (12)0.0008 (11)
C50.0891 (16)0.0591 (13)0.0713 (15)0.0162 (12)0.0161 (12)0.0041 (11)
C60.0861 (15)0.0581 (13)0.0622 (13)0.0073 (11)0.0157 (11)0.0064 (10)
C70.0535 (10)0.0379 (9)0.0553 (11)0.0037 (8)0.0004 (8)0.0049 (8)
C80.0668 (12)0.0384 (9)0.0400 (9)0.0022 (8)0.0079 (8)0.0088 (7)
C90.0383 (9)0.0412 (9)0.0501 (10)0.0093 (7)0.0036 (7)0.0091 (8)
C100.0332 (8)0.0460 (10)0.0506 (10)0.0102 (7)0.0046 (7)0.0043 (8)
C110.0636 (12)0.0558 (12)0.0549 (11)0.0167 (10)0.0032 (9)0.0061 (9)
C120.0716 (14)0.0806 (16)0.0575 (12)0.0253 (12)0.0119 (10)0.0019 (11)
C130.0523 (12)0.0764 (16)0.0692 (15)0.0135 (11)0.0067 (10)0.0209 (12)
C140.0662 (13)0.0516 (12)0.0828 (16)0.0014 (10)0.0049 (11)0.0031 (11)
C150.0589 (12)0.0489 (11)0.0595 (12)0.0048 (9)0.0052 (9)0.0053 (9)
C160.0672 (13)0.0398 (10)0.0523 (11)0.0073 (9)0.0018 (9)0.0159 (8)
C170.0652 (12)0.0359 (9)0.0435 (9)0.0045 (8)0.0058 (8)0.0108 (7)
C180.0713 (13)0.0439 (10)0.0480 (10)0.0079 (9)0.0011 (9)0.0078 (8)
C190.0661 (13)0.0658 (13)0.0600 (12)0.0041 (11)0.0022 (10)0.0071 (10)
C200.0836 (17)0.0568 (13)0.0730 (15)0.0153 (12)0.0142 (12)0.0095 (11)
C210.0904 (18)0.0458 (12)0.1012 (18)0.0055 (12)0.0261 (14)0.0099 (12)
C220.0682 (13)0.0479 (11)0.0770 (14)0.0055 (10)0.0124 (11)0.0044 (10)
Geometric parameters (Å, º) top
S1—C11.6574 (18)C6—H60.9500
S2—C81.660 (2)C9—C101.482 (2)
O6—C91.222 (2)C10—C151.381 (3)
O7—C161.219 (2)C10—C111.390 (3)
N1—C11.335 (2)C11—C121.379 (3)
N1—C21.409 (2)C11—H110.9500
N1—HN10.8800C12—C131.364 (3)
N2—C81.336 (2)C12—H120.9500
N2—C71.435 (2)C13—C141.375 (3)
N2—HN20.8800C13—H130.9500
N3—C91.373 (2)C14—C151.384 (3)
N3—C11.400 (2)C14—H140.9500
N3—HN30.8800C15—H150.9500
N4—C161.384 (2)C16—C171.484 (3)
N4—C81.385 (2)C17—C181.383 (3)
N4—HN40.8800C17—C221.390 (3)
C2—C31.390 (3)C18—C191.379 (3)
C2—C71.395 (3)C18—H180.9500
C3—C41.376 (3)C19—C201.368 (3)
C3—H30.9500C19—H190.9500
C4—C51.368 (3)C20—C211.361 (3)
C4—H40.9500C20—H200.9500
C5—C61.382 (3)C21—C221.378 (3)
C5—H50.9500C21—H210.9500
C6—C71.375 (3)C22—H220.9500
C1—N1—C2132.18 (15)C15—C10—C11118.55 (18)
C1—N1—HN1113.9C15—C10—C9117.42 (16)
C2—N1—HN1113.9C11—C10—C9124.03 (16)
C8—N2—C7123.32 (15)C12—C11—C10120.43 (19)
C8—N2—HN2118.3C12—C11—H11119.8
C7—N2—HN2118.3C10—C11—H11119.8
C9—N3—C1130.47 (15)C13—C12—C11120.5 (2)
C9—N3—HN3114.8C13—C12—H12119.7
C1—N3—HN3114.8C11—C12—H12119.7
C16—N4—C8127.91 (16)C12—C13—C14119.8 (2)
C16—N4—HN4116.0C12—C13—H13120.1
C8—N4—HN4116.0C14—C13—H13120.1
N1—C1—N3113.59 (14)C13—C14—C15120.1 (2)
N1—C1—S1129.80 (15)C13—C14—H14119.9
N3—C1—S1116.61 (13)C15—C14—H14119.9
C3—C2—C7118.45 (17)C10—C15—C14120.55 (19)
C3—C2—N1125.64 (17)C10—C15—H15119.7
C7—C2—N1115.87 (15)C14—C15—H15119.7
C4—C3—C2120.1 (2)O7—C16—N4121.91 (18)
C4—C3—H3119.9O7—C16—C17122.55 (18)
C2—C3—H3119.9N4—C16—C17115.53 (17)
C5—C4—C3121.14 (19)C18—C17—C22118.80 (18)
C5—C4—H4119.4C18—C17—C16122.79 (16)
C3—C4—H4119.4C22—C17—C16118.25 (17)
C4—C5—C6119.4 (2)C19—C18—C17120.57 (18)
C4—C5—H5120.3C19—C18—H18119.7
C6—C5—H5120.3C17—C18—H18119.7
C7—C6—C5120.3 (2)C20—C19—C18120.0 (2)
C7—C6—H6119.9C20—C19—H19120.0
C5—C6—H6119.9C18—C19—H19120.0
C6—C7—C2120.62 (17)C21—C20—C19120.1 (2)
C6—C7—N2120.04 (18)C21—C20—H20120.0
C2—C7—N2119.32 (16)C19—C20—H20120.0
N2—C8—N4116.00 (17)C20—C21—C22120.8 (2)
N2—C8—S2124.29 (13)C20—C21—H21119.6
N4—C8—S2119.66 (14)C22—C21—H21119.6
O6—C9—N3121.30 (16)C21—C22—C17119.7 (2)
O6—C9—C10121.83 (15)C21—C22—H22120.1
N3—C9—C10116.87 (15)C17—C22—H22120.1
C2—N1—C1—N3173.63 (15)N3—C9—C10—C15179.91 (15)
C2—N1—C1—S16.5 (3)O6—C9—C10—C11179.29 (16)
C9—N3—C1—N11.1 (3)N3—C9—C10—C110.6 (2)
C9—N3—C1—S1178.77 (14)C15—C10—C11—C121.1 (3)
C1—N1—C2—C34.2 (3)C9—C10—C11—C12178.39 (16)
C1—N1—C2—C7173.60 (17)C10—C11—C12—C130.7 (3)
C7—C2—C3—C41.0 (3)C11—C12—C13—C140.0 (3)
N1—C2—C3—C4176.74 (18)C12—C13—C14—C150.4 (3)
C2—C3—C4—C50.1 (3)C11—C10—C15—C140.7 (3)
C3—C4—C5—C60.4 (4)C9—C10—C15—C14178.77 (16)
C4—C5—C6—C70.0 (4)C13—C14—C15—C100.0 (3)
C5—C6—C7—C20.9 (3)C8—N4—C16—O724.1 (3)
C5—C6—C7—N2179.2 (2)C8—N4—C16—C17154.85 (16)
C3—C2—C7—C61.4 (3)O7—C16—C17—C18153.22 (18)
N1—C2—C7—C6176.58 (18)N4—C16—C17—C1825.7 (2)
C3—C2—C7—N2179.69 (16)O7—C16—C17—C2222.0 (3)
N1—C2—C7—N21.7 (2)N4—C16—C17—C22159.06 (17)
C8—N2—C7—C685.3 (2)C22—C17—C18—C190.3 (3)
C8—N2—C7—C296.4 (2)C16—C17—C18—C19174.92 (17)
C7—N2—C8—N4170.75 (15)C17—C18—C19—C200.4 (3)
C7—N2—C8—S26.4 (2)C18—C19—C20—C210.3 (3)
C16—N4—C8—N25.1 (3)C19—C20—C21—C220.1 (4)
C16—N4—C8—S2172.23 (14)C20—C21—C22—C170.0 (4)
C1—N3—C9—O61.2 (3)C18—C17—C22—C210.1 (3)
C1—N3—C9—C10178.76 (15)C16—C17—C22—C21175.32 (19)
O6—C9—C10—C150.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O60.881.882.633 (2)141.8
N2—HN2···O70.881.992.680 (2)133.9
N4—HN4···S2i0.882.613.478 (2)169.9
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H18N4O2S2
Mr434.52
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.179 (1), 12.064 (2), 12.476 (2)
α, β, γ (°)77.88 (5), 86.96 (5), 77.91 (5)
V3)1032.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12922, 4671, 3234
Rint0.047
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.118, 1.04
No. of reflections4671
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.24

Computer programs: COLLECT (Nonius, 1998), DENZO (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—C11.6574 (18)N2—C81.336 (2)
S2—C81.660 (2)N2—C71.435 (2)
O6—C91.222 (2)N3—C91.373 (2)
O7—C161.219 (2)N3—C11.400 (2)
N1—C11.335 (2)N4—C161.384 (2)
N1—C21.409 (2)N4—C81.385 (2)
C1—N1—C2132.18 (15)N2—C8—S2124.29 (13)
C8—N2—C7123.32 (15)N4—C8—S2119.66 (14)
C9—N3—C1130.47 (15)O6—C9—N3121.30 (16)
C16—N4—C8127.91 (16)O6—C9—C10121.83 (15)
N1—C1—S1129.80 (15)O7—C16—N4121.91 (18)
N3—C1—S1116.61 (13)O7—C16—C17122.55 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O60.881.882.633 (2)141.8
N2—HN2···O70.881.992.680 (2)133.9
N4—HN4···S2i0.882.613.478 (2)169.9
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors thank the Fondation SONATEL for financial support (CDP 75/06) and Professor R. Welter (Laboratoire DECOMET, UMR CNRS, Université Louis Pasteur 4, Strasbourg, France) for assistance.

References

First citationArslan, H., Flörke, U. & Külcü, N. (2004). Acta Chim. Slov. 51, 787–792.  CAS Google Scholar
First citationAvşar, G., Arslan, H., Haupt, H.-J. & Külcü, N. (2003). Turk. J. Chem. 27, 281–285.  Google Scholar
First citationNonius (1998). COLLECT and DENZO. Nonius BV, Delft, The Netherland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds