organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,6,6-Tri­methyl-1H-chromeno[6,7-d]thia­zol-2(6H)-one

aDepartment of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, People's Republic of China
*Correspondence e-mail: pxia@fudan.edu.cn

(Received 10 March 2008; accepted 17 April 2008; online 23 April 2008)

The title compound, C13H13NO2S, was prepared by a thermocyclization reaction from 3-methyl-6-(2-methyl­but-3-yn-2-yl­oxy)benzo[d]thia­zol-2(3H)-one. In the crystal structure, the methyl­thia­zole unit is planar, while the pyran ring assumes a screw-boat conformation. Intra­molecular C—H⋯O hydrogen bonding helps to stabilize the molecular structure.

Related literature

For general background, see: Gunatilaka et al. (1994[Gunatilaka, L., Kingston, D., Wijeratne, K., Bandara, R., Hofmann, G. & Johnson, R. (1994). J. Nat. Prod. 57, 518-520.]); Ucar et al. (1998[Ucar, H., Van derpoorten, K., Cacciaguerra, S., Spampinato, S., Stables, J. P., Depovere, P., Isa, M., Masereel, B., Delarge, J. & Poupaert, J. H. (1998). J. Med. Chem. 41, 1138-1145.]). For details of the synthesis, see: Delhomel et al. (2001[Delhomel, J. F., Yous, S., Depreux, P. & Lesieur, D. (2001). J. Heterocycl. Chem. 38, 633-639.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO2S

  • Mr = 247.30

  • Triclinic, [P \overline 1]

  • a = 7.376 (2) Å

  • b = 8.395 (2) Å

  • c = 10.536 (2) Å

  • α = 106.13 (2)°

  • β = 98.16 (2)°

  • γ = 94.08 (2)°

  • V = 616.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2765 measured reflections

  • 2207 independent reflections

  • 1387 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections frequency: 60 min intensity decay: 0.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.216

  • S = 1.05

  • 2207 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.56 3.331 (5) 140
Symmetry code: (i) x, y+1, z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1984[Enraf-Nonius (1984). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2-Dimethyl-2H-benzopyran fused thiazolone is a novel potential bioactive core (Gunatilaka et al. 1994; Ucar et al. 1998). As part of our research program on new antitumor and antiviral agents based on bioisosterism, we synthesized the title compound and report here its crystal structure (Fig. 1).

The compound is a three rings-fused heterocycle compound. The methyl thiazole moiety shows a planar structure. The pyran ring assumes a screw-boat conformation. The C6–C7 bond distance of 1.312 (5) Å indicates a typical CC double bond. Intramolecular C—H···O hydrogen bonding helps to stabilize the crystal structure (Table 1 and Fig. 2).

Related literature top

For general background, see: Gunatilaka et al. (1994); Ucar et al. (1998). For details of the synthesis, see: Delhomel et al. (2001).

Experimental top

The title compound was synthesized by the thermo-cyclization reaction of 3-methyl-6-(2-methylbut-3-yn-2-yloxy)benzo[d]thiazol-2(3H)-one. A mixture of 6-hydroxy-3-methyl-2(3H)-benzothiazolone (508 mg, 2.6 mmol) (Delhomel et al. 2001), 3-methyl-3-chloro-but-1-yne (320 mg, 3.12 mmol) and K2CO3 (1.43 g, 10.4 mmol) was stirred in acetone (30 ml) for 5 h under reflux condition, then filtered and removed the solvent. To the residue was added N,N-diethylaniline (5 ml) and further refluxed for 2 h. The resulting solution was poured to ice water (100 ml) and extracted with acetyl acetate, and the organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was isolated by chromatography on silica gel column with petroleum ether/EtOAc (18/1) as eluent to afford the pure compound. The solid was collected and recrystallized from acetyl acetate to give colorless crystals which were available for the single-crystal X-ray diffraction analysis. Yield: 33.5%.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, and refined in riding mode with Uiso(H) =1.2Ueq(C) for aromatic H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1984); cell refinement: CAD-4 Software (Enraf–Nonius, 1984); data reduction: XCAD, PSI and EAC (Enraf–Nonius, 1984); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the c axis, showing one demensional supra-molecular chain connected by C—H···Oi hydrogen bonding [symmetry code: (i) = x, y + 1, z + 1). H atoms not involved in hydrogen bonding have been omitted.
1,6,6-Trimethyl-6H-chromeno[6,7-d]thiazol-2(3H)-one top
Crystal data top
C13H13NO2SZ = 2
Mr = 247.30F(000) = 260
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -P 1Melting point = 376–378 K
a = 7.376 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.395 (2) ÅCell parameters from 25 reflections
c = 10.536 (2) Åθ = 10.2–13.7°
α = 106.13 (2)°µ = 0.25 mm1
β = 98.16 (2)°T = 298 K
γ = 94.08 (2)°Parallelepiped, colourless
V = 616.2 (3) Å30.20 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 25.2°, θmin = 2.0°
Graphite monochromatorh = 18
ω/2θ scansk = 1010
2765 measured reflectionsl = 1212
2207 independent reflections3 standard reflections every 60 min
1387 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1546P)2]
where P = (Fo2 + 2Fc2)/3
2207 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
C13H13NO2Sγ = 94.08 (2)°
Mr = 247.30V = 616.2 (3) Å3
Triclinic, P1Z = 2
a = 7.376 (2) ÅMo Kα radiation
b = 8.395 (2) ŵ = 0.25 mm1
c = 10.536 (2) ÅT = 298 K
α = 106.13 (2)°0.20 × 0.20 × 0.20 mm
β = 98.16 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.023
2765 measured reflections3 standard reflections every 60 min
2207 independent reflections intensity decay: 0.5%
1387 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.05Δρmax = 0.91 e Å3
2207 reflectionsΔρmin = 0.68 e Å3
157 parameters
Special details top

Experimental. 1H NMR (CDCl3, 400 MHz): δ 6.87 (s, 1H, 9-H); 6.64 (s, 1H, 4-H); 6.35 (1H, d, J = 9.78 Hz, 8-H); 5.68 (d, 1H, J = 9.78 Hz, 7-H); 3.40 (s, 3H, 1-CH3); 1.43 (s, 6H, 6-CH3). MS: m/z (%) 247 (M+, 22.17).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72819 (14)0.52182 (13)0.25523 (9)0.0529 (4)
N10.7791 (4)0.3420 (4)0.0937 (3)0.0438 (7)
O10.8000 (4)0.2061 (4)0.3119 (3)0.0670 (9)
O20.6410 (4)0.9748 (3)0.1700 (2)0.0456 (7)
C10.7748 (5)0.3288 (5)0.2252 (4)0.0510 (10)
C20.8103 (5)0.2021 (5)0.0421 (4)0.0572 (11)
H2A0.84030.11150.11140.086*
H2B0.70080.16710.01280.086*
H2C0.91050.23480.03210.086*
C30.7480 (4)0.4981 (4)0.0139 (3)0.0383 (8)
C40.7478 (4)0.5454 (4)0.1217 (4)0.0410 (8)
H40.76950.46960.17030.049*
C50.7150 (4)0.7070 (4)0.1869 (3)0.0384 (8)
C60.7087 (5)0.7649 (5)0.3289 (4)0.0471 (9)
H60.70870.68910.37860.056*
C70.7028 (5)0.9237 (5)0.3877 (4)0.0509 (10)
H70.69380.95790.47820.061*
C80.7103 (5)1.0517 (4)0.3131 (3)0.0454 (9)
C90.9067 (6)1.1285 (5)0.3310 (4)0.0629 (12)
H9A0.98091.04370.29380.094*
H9B0.95341.17740.42480.094*
H9C0.91081.21320.28600.094*
C100.5804 (6)1.1829 (6)0.3549 (4)0.0661 (13)
H10A0.59121.26390.30680.099*
H10B0.61261.23740.44940.099*
H10C0.45581.13010.33490.099*
C110.6830 (4)0.8184 (4)0.1118 (3)0.0376 (8)
C120.6816 (5)0.7719 (4)0.0248 (3)0.0403 (8)
H120.65860.84700.07390.048*
C130.7152 (5)0.6107 (4)0.0871 (3)0.0407 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0508 (6)0.0578 (7)0.0427 (6)0.0037 (4)0.0053 (4)0.0046 (4)
N10.0257 (14)0.0416 (17)0.0569 (18)0.0002 (12)0.0024 (12)0.0056 (14)
O10.0605 (19)0.0622 (19)0.0608 (18)0.0140 (15)0.0033 (14)0.0090 (15)
O20.0475 (15)0.0445 (14)0.0390 (13)0.0094 (11)0.0031 (10)0.0073 (11)
C10.0264 (18)0.058 (2)0.052 (2)0.0016 (16)0.0012 (15)0.0037 (18)
C20.032 (2)0.050 (2)0.082 (3)0.0036 (17)0.0020 (19)0.012 (2)
C30.0212 (15)0.0409 (19)0.0482 (19)0.0024 (13)0.0028 (13)0.0083 (16)
C40.0258 (17)0.046 (2)0.050 (2)0.0022 (14)0.0010 (14)0.0166 (17)
C50.0239 (16)0.048 (2)0.0385 (18)0.0033 (14)0.0017 (13)0.0108 (15)
C60.042 (2)0.054 (2)0.045 (2)0.0060 (16)0.0023 (16)0.0151 (17)
C70.047 (2)0.065 (3)0.0359 (18)0.0069 (18)0.0001 (16)0.0098 (18)
C80.041 (2)0.049 (2)0.0383 (19)0.0072 (16)0.0015 (15)0.0032 (16)
C90.046 (2)0.066 (3)0.067 (3)0.006 (2)0.005 (2)0.013 (2)
C100.068 (3)0.072 (3)0.049 (2)0.029 (2)0.000 (2)0.003 (2)
C110.0227 (16)0.0403 (19)0.0435 (18)0.0010 (13)0.0011 (13)0.0065 (15)
C120.0338 (18)0.044 (2)0.0393 (18)0.0031 (14)0.0026 (14)0.0121 (15)
C130.0298 (17)0.044 (2)0.0401 (18)0.0064 (14)0.0014 (13)0.0060 (15)
Geometric parameters (Å, º) top
S1—C131.740 (4)C5—C61.447 (5)
S1—C11.783 (4)C6—C71.312 (5)
N1—C11.354 (5)C6—H60.9300
N1—C31.401 (4)C7—C81.500 (5)
N1—C21.444 (5)C7—H70.9300
O1—C11.218 (4)C8—C91.507 (5)
O2—C111.364 (4)C8—C101.525 (5)
O2—C81.464 (4)C9—H9A0.9599
C2—H2A0.9599C9—H9B0.9599
C2—H2B0.9599C9—H9C0.9599
C2—H2C0.9599C10—H10A0.9599
C3—C41.373 (5)C10—H10B0.9599
C3—C131.389 (5)C10—H10C0.9599
C4—C51.395 (5)C11—C121.381 (5)
C4—H40.9300C12—C131.388 (5)
C5—C111.395 (5)C12—H120.9300
C13—S1—C191.10 (17)C8—C7—H7119.1
C1—N1—C3115.4 (3)O2—C8—C7110.5 (3)
C1—N1—C2121.4 (3)O2—C8—C9109.2 (3)
C3—N1—C2123.2 (3)C7—C8—C9109.5 (3)
C11—O2—C8118.1 (3)O2—C8—C10103.6 (3)
O1—C1—N1126.6 (4)C7—C8—C10111.9 (3)
O1—C1—S1123.7 (3)C9—C8—C10112.1 (3)
N1—C1—S1109.8 (3)C8—C9—H9A109.5
N1—C2—H2A109.5C8—C9—H9B109.5
N1—C2—H2B109.5H9A—C9—H9B109.5
H2A—C2—H2B109.5C8—C9—H9C109.5
N1—C2—H2C109.5H9A—C9—H9C109.5
H2A—C2—H2C109.5H9B—C9—H9C109.5
H2B—C2—H2C109.5C8—C10—H10A109.5
C4—C3—C13120.2 (3)C8—C10—H10B109.5
C4—C3—N1127.2 (3)H10A—C10—H10B109.5
C13—C3—N1112.6 (3)C8—C10—H10C109.5
C3—C4—C5120.2 (3)H10A—C10—H10C109.5
C3—C4—H4119.9H10B—C10—H10C109.5
C5—C4—H4119.9O2—C11—C12117.5 (3)
C11—C5—C4118.8 (3)O2—C11—C5120.8 (3)
C11—C5—C6117.9 (3)C12—C11—C5121.6 (3)
C4—C5—C6123.4 (3)C11—C12—C13118.4 (3)
C7—C6—C5120.3 (4)C11—C12—H12120.8
C7—C6—H6119.8C13—C12—H12120.8
C5—C6—H6119.8C12—C13—C3120.8 (3)
C6—C7—C8121.8 (3)C12—C13—S1128.0 (3)
C6—C7—H7119.1C3—C13—S1111.2 (3)
C3—N1—C1—O1179.1 (3)C6—C7—C8—O225.8 (5)
C2—N1—C1—O12.0 (5)C6—C7—C8—C994.5 (4)
C3—N1—C1—S10.2 (3)C6—C7—C8—C10140.6 (4)
C2—N1—C1—S1178.6 (2)C8—O2—C11—C12155.9 (3)
C13—S1—C1—O1179.8 (3)C8—O2—C11—C527.9 (4)
C13—S1—C1—N10.4 (2)C4—C5—C11—O2176.6 (3)
C1—N1—C3—C4178.9 (3)C6—C5—C11—O22.2 (5)
C2—N1—C3—C42.2 (5)C4—C5—C11—C120.5 (5)
C1—N1—C3—C131.0 (4)C6—C5—C11—C12178.2 (3)
C2—N1—C3—C13177.9 (3)O2—C11—C12—C13176.9 (3)
C13—C3—C4—C50.2 (5)C5—C11—C12—C130.8 (5)
N1—C3—C4—C5179.7 (3)C11—C12—C13—C30.5 (5)
C3—C4—C5—C110.1 (5)C11—C12—C13—S1177.9 (3)
C3—C4—C5—C6178.6 (3)C4—C3—C13—C120.0 (5)
C11—C5—C6—C710.8 (5)N1—C3—C13—C12180.0 (3)
C4—C5—C6—C7170.5 (3)C4—C3—C13—S1178.7 (2)
C5—C6—C7—C82.6 (5)N1—C3—C13—S11.3 (3)
C11—O2—C8—C737.9 (4)C1—S1—C13—C12179.5 (3)
C11—O2—C8—C982.5 (4)C1—S1—C13—C31.0 (2)
C11—O2—C8—C10157.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.563.331 (5)140
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H13NO2S
Mr247.30
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.376 (2), 8.395 (2), 10.536 (2)
α, β, γ (°)106.13 (2), 98.16 (2), 94.08 (2)
V3)616.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2765, 2207, 1387
Rint0.023
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.216, 1.05
No. of reflections2207
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.68

Computer programs: CAD-4 Software (Enraf–Nonius, 1984), XCAD, PSI and EAC (Enraf–Nonius, 1984), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.563.331 (5)140.4
Symmetry code: (i) x, y+1, z+1.
 

References

First citationDelhomel, J. F., Yous, S., Depreux, P. & Lesieur, D. (2001). J. Heterocycl. Chem. 38, 633–639.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1984). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.  Google Scholar
First citationGunatilaka, L., Kingston, D., Wijeratne, K., Bandara, R., Hofmann, G. & Johnson, R. (1994). J. Nat. Prod. 57, 518–520.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUcar, H., Van derpoorten, K., Cacciaguerra, S., Spampinato, S., Stables, J. P., Depovere, P., Isa, M., Masereel, B., Delarge, J. & Poupaert, J. H. (1998). J. Med. Chem. 41, 1138–1145.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds