metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ3-nicotinato-κ3O:O′:N)(μ2-nicotinato-κ3O,O′:N)iron(II)]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 March 2008; accepted 20 April 2008; online 26 April 2008)

In the crystal structure of the title compound, [Fe(C6H4NO2)2]n, one nicotinate group O,O′-chelates one Fe atom and binds through the N atom to the other Fe atom; the second nicotinate group bridges three Fe atoms through the N and two O atoms. The μ2- and μ3-bridging modes of the two nicotinate groups result in a polymeric three-dimensional network structure. The Fe atom shows octa­hedral coordination geometry but one of the Fe—O bonds is somewhat long [2.522 (2) Å].

Related literature

For zwitterionic tetra­aquadi(nicotinato-κN)iron(II), see: Liang et al. (2005[Liang, Y., Li, W. & Guo, B.-J. (2005). Acta Cryst. E61, m1782-m1784.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C6H4NO2)2]

  • Mr = 300.05

  • Monoclinic, P 21 /n

  • a = 10.8771 (7) Å

  • b = 9.6066 (6) Å

  • c = 12.7284 (8) Å

  • β = 111.619 (1)°

  • V = 1236.5 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 295 (2) K

  • 0.41 × 0.34 × 0.25 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.564, Tmax = 0.749

  • 7255 measured reflections

  • 2762 independent reflections

  • 2428 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.078

  • S = 1.02

  • 2762 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—O1 2.522 (2)
Fe1—O2 2.072 (1)
Fe1—O3 2.012 (1)
Fe1—O4i 2.061 (1)
Fe1—N1ii 2.212 (1)
Fe1—N2iii 2.224 (1)
O1—Fe1—O2 56.18 (5)
O1—Fe1—O3 96.95 (5)
O1—Fe1—O4i 142.30 (5)
O1—Fe1—N1ii 89.36 (5)
O1—Fe1—N2iii 93.18 (5)
O2—Fe1—O3 153.10 (6)
O2—Fe1—O4i 86.23 (5)
O2—Fe1—N1ii 92.17 (5)
O2—Fe1—N2iii 90.93 (5)
O3—Fe1—O4i 120.67 (6)
O3—Fe1—N1ii 88.50 (5)
O3—Fe1—N2iii 89.17 (5)
O4i—Fe1—N1ii 89.39 (6)
O4i—Fe1—N2iii 89.83 (6)
N1ii—Fe1—N2iii 176.74 (5)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The crystal structures of a large number of divalent metal dinicotinates are known; the compounds exists as water-coordinated compounds in which the nicotinate ion binds through the aromatic N atom and not through the carboxyl group, as exemplified by tetraaquadinicotinatoiron(II). The report on this compound lists the crystal structures of tetraaquametal dinicotinates (Liang et al., 2005). Tetraaquadinicotinatoiron is synthesized by reaction of the metal salt with nicotinic acid under aqueous conditions; under hydrothermal conditions, the synthesis has yielded the anhydrous compound (I). Iron dinicotinate (Fig. 1) has the nicotinate group engaged into two types of bridging interactions; one group O,O'-chelate to one Fe atom and binds through the N atom to the other Fe atom; the second nicotinate group bridges three Fe atoms through the N and two O atoms. The µ2 and µ3 bridging modes of the two nicotinate groups result in a polymeric three-dimensional network structure (Fig. 2). The Fe atom shows the common octahedral coordination geometry but one of the Fe–O bonds is somewhat long (Table 1).

Related literature top

For zwitterionc tetraaquadi(nicotinato-κN)iron(II), see: Liang et al. (2005).

Experimental top

Iron powder (0.056 g, 1 mmol), nicotinic acid (0.218 g 2 mmol) and water (10 ml) heated in a 23-ml, Teflon-lined, Parr bomb at 423 K for 3 days. The bomb was cooled to room temperature at a rate of 10 K per min to give yellow block-shaped crystals (in 10% yield based on nicotinic acid rate of 10 oC.h-1. The yellow block crystals of iron dinicoinate were obtained (yield 8.2% based on nicotinic acid).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and OLEX (Dolomanov et al., 2003); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. 50% Probability thermal ellipsoid plot illustrating the octahedral geometry at iron.
[Figure 2] Fig. 2. OLEX (Dolomanov et al., 2003) illustration of the three-dimensional network motif.
Poly[(µ3-nicotinato-κ3O:O':N)(µ2-nicotinato- κ3O,O':N)iron(II)] top
Crystal data top
[Fe(C6H4NO2)2]F(000) = 608
Mr = 300.05Dx = 1.612 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6064 reflections
a = 10.8771 (7) Åθ = 2.1–27.5°
b = 9.6066 (6) ŵ = 1.23 mm1
c = 12.7284 (8) ÅT = 295 K
β = 111.619 (1)°Block, yellow
V = 1236.5 (1) Å30.41 × 0.34 × 0.25 mm
Z = 4
Data collection top
Bruker APEX
diffractometer
2762 independent reflections
Radiation source: fine-focus sealed tube2428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.564, Tmax = 0.749k = 1012
7255 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.2265P]
where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Fe(C6H4NO2)2]V = 1236.5 (1) Å3
Mr = 300.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8771 (7) ŵ = 1.23 mm1
b = 9.6066 (6) ÅT = 295 K
c = 12.7284 (8) Å0.41 × 0.34 × 0.25 mm
β = 111.619 (1)°
Data collection top
Bruker APEX
diffractometer
2762 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2428 reflections with I > 2σ(I)
Tmin = 0.564, Tmax = 0.749Rint = 0.018
7255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
2762 reflectionsΔρmin = 0.27 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.40603 (2)0.37707 (2)0.580119 (18)0.02707 (10)
O10.28044 (15)0.19952 (16)0.64714 (12)0.0540 (4)
O20.43525 (13)0.34442 (14)0.74858 (11)0.0398 (3)
O30.32118 (11)0.33429 (14)0.41409 (10)0.0345 (3)
O40.45693 (13)0.46511 (14)0.36328 (12)0.0477 (3)
N10.25364 (13)0.02956 (15)0.94060 (12)0.0335 (3)
N20.06748 (13)0.27149 (15)0.09200 (12)0.0335 (3)
C10.35420 (18)0.24585 (18)0.73955 (15)0.0371 (4)
C20.35386 (17)0.18565 (18)0.84835 (14)0.0336 (4)
C30.25803 (17)0.09027 (18)0.84724 (15)0.0344 (4)
H30.19320.06710.77800.041*
C40.34759 (18)0.0657 (2)1.03903 (15)0.0396 (4)
H40.34620.02461.10470.048*
C50.4460 (2)0.1601 (2)1.04838 (16)0.0450 (5)
H50.50900.18241.11870.054*
C60.44980 (18)0.2211 (2)0.95150 (16)0.0415 (4)
H60.51560.28490.95540.050*
C70.35595 (15)0.39427 (16)0.34127 (14)0.0283 (3)
C80.26579 (15)0.37708 (15)0.22048 (14)0.0281 (3)
C90.15745 (16)0.29047 (17)0.19585 (13)0.0314 (3)
H90.14640.24240.25520.038*
C100.08654 (19)0.3417 (2)0.00799 (15)0.0400 (4)
H100.02510.33060.06510.048*
C110.19213 (19)0.4291 (2)0.02432 (15)0.0432 (4)
H110.20130.47530.03660.052*
C120.28458 (18)0.44749 (18)0.13239 (15)0.0368 (4)
H120.35720.50540.14560.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02436 (14)0.03310 (15)0.01968 (14)0.00138 (8)0.00333 (10)0.00096 (8)
O10.0695 (10)0.0593 (9)0.0300 (7)0.0046 (8)0.0145 (7)0.0019 (6)
O20.0405 (7)0.0448 (7)0.0379 (7)0.0017 (6)0.0188 (6)0.0113 (5)
O30.0304 (6)0.0479 (7)0.0207 (6)0.0014 (5)0.0042 (5)0.0011 (5)
O40.0393 (7)0.0507 (8)0.0417 (8)0.0193 (6)0.0014 (6)0.0023 (6)
N10.0301 (7)0.0397 (8)0.0282 (7)0.0009 (6)0.0080 (6)0.0040 (6)
N20.0311 (7)0.0408 (8)0.0225 (7)0.0059 (6)0.0027 (6)0.0003 (6)
C10.0419 (9)0.0396 (9)0.0332 (9)0.0092 (8)0.0176 (8)0.0055 (7)
C20.0358 (9)0.0359 (9)0.0311 (9)0.0018 (7)0.0146 (7)0.0027 (7)
C30.0331 (8)0.0396 (9)0.0267 (8)0.0007 (7)0.0065 (7)0.0021 (7)
C40.0389 (9)0.0504 (11)0.0267 (9)0.0055 (8)0.0089 (7)0.0053 (8)
C50.0426 (10)0.0566 (12)0.0285 (9)0.0122 (9)0.0045 (8)0.0005 (8)
C60.0403 (9)0.0462 (10)0.0368 (10)0.0110 (8)0.0127 (8)0.0018 (8)
C70.0255 (8)0.0286 (8)0.0262 (8)0.0026 (6)0.0044 (6)0.0032 (6)
C80.0270 (8)0.0311 (8)0.0240 (8)0.0006 (6)0.0066 (6)0.0023 (6)
C90.0305 (8)0.0383 (9)0.0224 (8)0.0044 (7)0.0061 (6)0.0015 (6)
C100.0433 (10)0.0458 (10)0.0222 (8)0.0046 (8)0.0017 (7)0.0014 (7)
C110.0519 (11)0.0481 (10)0.0274 (9)0.0099 (9)0.0121 (8)0.0059 (8)
C120.0378 (9)0.0398 (9)0.0313 (9)0.0093 (7)0.0109 (7)0.0003 (7)
Geometric parameters (Å, º) top
Fe1—O12.522 (2)C2—C31.384 (2)
Fe1—O22.072 (1)C2—C61.385 (3)
Fe1—O32.012 (1)C3—H30.9300
Fe1—O4i2.061 (1)C4—C51.375 (3)
Fe1—N1ii2.212 (1)C4—H40.9300
Fe1—N2iii2.224 (1)C5—C61.379 (3)
O1—C11.237 (2)C5—H50.9300
O2—C11.270 (2)C6—H60.9300
O3—C71.262 (2)C7—C81.497 (2)
O4—C71.233 (2)C8—C91.381 (2)
O4—Fe1i2.0611 (12)C8—C121.388 (2)
N1—C41.338 (2)C9—H90.9300
N1—C31.340 (2)C10—C111.375 (3)
N1—Fe1iv2.2124 (14)C10—H100.9300
N2—C91.336 (2)C11—C121.384 (2)
N2—C101.343 (2)C11—H110.9300
N2—Fe1v2.2243 (14)C12—H120.9300
C1—C21.502 (2)
O1—Fe1—O256.18 (5)N1—C3—C2123.49 (16)
O1—Fe1—O396.95 (5)N1—C3—H3118.3
O1—Fe1—O4i142.30 (5)C2—C3—H3118.3
O1—Fe1—N1ii89.36 (5)N1—C4—C5123.64 (17)
O1—Fe1—N2iii93.18 (5)N1—C4—H4118.2
O2—Fe1—O3153.10 (6)C5—C4—H4118.2
O2—Fe1—O4i86.23 (5)C4—C5—C6118.78 (18)
O2—Fe1—N1ii92.17 (5)C4—C5—H5120.6
O2—Fe1—N2iii90.93 (5)C6—C5—H5120.6
O3—Fe1—O4i120.67 (6)C5—C6—C2118.87 (17)
O3—Fe1—N1ii88.50 (5)C5—C6—H6120.6
O3—Fe1—N2iii89.17 (5)C2—C6—H6120.6
O4i—Fe1—N1ii89.39 (6)O4—C7—O3124.60 (16)
O4i—Fe1—N2iii89.83 (6)O4—C7—C8119.06 (15)
N1ii—Fe1—N2iii176.74 (5)O3—C7—C8116.33 (14)
C1—O1—Fe180.56 (11)C9—C8—C12118.53 (15)
C1—O2—Fe1100.52 (11)C9—C8—C7118.75 (15)
C7—O3—Fe1122.17 (11)C12—C8—C7122.70 (15)
C7—O4—Fe1i162.57 (13)N2—C9—C8124.03 (15)
C4—N1—C3116.93 (15)N2—C9—H9118.0
C4—N1—Fe1iv125.34 (12)C8—C9—H9118.0
C3—N1—Fe1iv117.73 (11)N2—C10—C11123.46 (16)
C9—N2—C10116.58 (14)N2—C10—H10118.3
C9—N2—Fe1v115.27 (11)C11—C10—H10118.3
C10—N2—Fe1v128.13 (12)C10—C11—C12119.27 (17)
O1—C1—O2122.67 (17)C10—C11—H11120.4
O1—C1—C2121.14 (17)C12—C11—H11120.4
O2—C1—C2116.18 (16)C11—C12—C8118.12 (16)
C3—C2—C6118.28 (16)C11—C12—H12120.9
C3—C2—C1120.21 (16)C8—C12—H12120.9
C6—C2—C1121.49 (16)
O3—Fe1—O1—C1177.00 (11)C1—C2—C3—N1178.18 (15)
O4i—Fe1—O1—C16.40 (16)C3—N1—C4—C50.0 (3)
O2—Fe1—O1—C11.54 (10)Fe1iv—N1—C4—C5179.39 (16)
N1ii—Fe1—O1—C194.59 (11)N1—C4—C5—C60.4 (3)
N2iii—Fe1—O1—C187.45 (11)C4—C5—C6—C20.4 (3)
O3—Fe1—O2—C11.69 (18)C3—C2—C6—C50.1 (3)
O4i—Fe1—O2—C1178.53 (11)C1—C2—C6—C5178.59 (17)
N1ii—Fe1—O2—C189.28 (11)Fe1i—O4—C7—O368.9 (5)
N2iii—Fe1—O2—C191.70 (11)Fe1i—O4—C7—C8110.7 (4)
O1—Fe1—O2—C11.51 (10)Fe1—O3—C7—O412.9 (2)
O4i—Fe1—O3—C75.56 (14)Fe1—O3—C7—C8166.66 (10)
O2—Fe1—O3—C7174.18 (11)O4—C7—C8—C9175.90 (15)
N1ii—Fe1—O3—C793.97 (13)O3—C7—C8—C94.5 (2)
N2iii—Fe1—O3—C783.75 (13)O4—C7—C8—C125.9 (2)
O1—Fe1—O3—C7176.85 (12)O3—C7—C8—C12173.73 (15)
Fe1—O1—C1—O22.49 (16)C10—N2—C9—C80.4 (3)
Fe1—O1—C1—C2176.46 (16)Fe1v—N2—C9—C8179.22 (13)
Fe1—O2—C1—O13.0 (2)C12—C8—C9—N21.1 (3)
Fe1—O2—C1—C2175.95 (12)C7—C8—C9—N2177.20 (15)
O1—C1—C2—C39.1 (3)C9—N2—C10—C110.3 (3)
O2—C1—C2—C3171.91 (16)Fe1v—N2—C10—C11178.38 (15)
O1—C1—C2—C6169.55 (18)N2—C10—C11—C120.2 (3)
O2—C1—C2—C69.5 (2)C10—C11—C12—C80.5 (3)
C4—N1—C3—C20.4 (3)C9—C8—C12—C111.1 (3)
Fe1iv—N1—C3—C2178.97 (13)C7—C8—C12—C11177.12 (16)
C6—C2—C3—N10.5 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+3/2; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C6H4NO2)2]
Mr300.05
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.8771 (7), 9.6066 (6), 12.7284 (8)
β (°) 111.619 (1)
V3)1236.5 (1)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.41 × 0.34 × 0.25
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.564, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
7255, 2762, 2428
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.02
No. of reflections2762
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.27

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and OLEX (Dolomanov et al., 2003), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Fe1—O12.522 (2)Fe1—O4i2.061 (1)
Fe1—O22.072 (1)Fe1—N1ii2.212 (1)
Fe1—O32.012 (1)Fe1—N2iii2.224 (1)
O1—Fe1—O256.18 (5)O2—Fe1—N2iii90.93 (5)
O1—Fe1—O396.95 (5)O3—Fe1—O4i120.67 (6)
O1—Fe1—O4i142.30 (5)O3—Fe1—N1ii88.50 (5)
O1—Fe1—N1ii89.36 (5)O3—Fe1—N2iii89.17 (5)
O1—Fe1—N2iii93.18 (5)O4i—Fe1—N1ii89.39 (6)
O2—Fe1—O3153.10 (6)O4i—Fe1—N2iii89.83 (6)
O2—Fe1—O4i86.23 (5)N1ii—Fe1—N2iii176.74 (5)
O2—Fe1—N1ii92.17 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

I thank Mr Yan-Zhen Zheng of Sun Yat-Sen University for synthesizing the compound and measuring the crystal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiang, Y., Li, W. & Guo, B.-J. (2005). Acta Cryst. E61, m1782–m1784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds