organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Bi­phenyl-2,3,3′,4′-tetra­carboxylic acid monohydrate

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: gaosunday@yahoo.com.cn

(Received 29 March 2008; accepted 8 April 2008; online 16 April 2008)

In the organic molecule of the title compound, C16H10O8·H2O, the dihedral angle between the two benzene rings is 42.30 (11)°. Extensive O—H⋯O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For general background, see: Adadie & Sillion (1991[Adadie, M. J. M. & Sillion, B. (1991). Editors. Polyimides and Other High-Temperature Polymers. Amsterdam: Elsevier.]); Hasegawa et al. (1999[Hasegawa, M., Sensui, N., Shindo, Y. & Yokota, R. (1999). Macromolecules, 32, 387-396.]); Hergenrother et al. (2004[Hergenrother, P. M., Watson, K. A., Smith, J. G. Jr, Connell, J. W. & Yokota, R. (2004). Polymer, 45, 5441-5449.]); Iataaki & Yoshimoto (1973[Iataaki, H. & Yoshimoto, H. (1973). J. Org. Chem. 38, 76-79.]); Yang & Su (2005[Yang, C.-P. & Su, Y.-Y. (2005). Polymer, 46, 5797-5807.]). For a related structure, see: Holý et al. (2004[Holý, P., Sehnal, P., Tichý, M., Závada, J. & Císarová, I. (2004). Tetrahedron Asymmetry, 15, 3805-3810.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10O8·H2O

  • Mr = 348.26

  • Triclinic, [P \overline 1]

  • a = 6.860 (3) Å

  • b = 11.339 (5) Å

  • c = 11.562 (4) Å

  • α = 118.14 (3)°

  • β = 97.34 (3)°

  • γ = 94.47 (4)°

  • V = 776.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 294 (2) K

  • 0.44 × 0.36 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3389 measured reflections

  • 2889 independent reflections

  • 2074 reflections with I > 2σ(I)

  • Rint = 0.004

  • 3 standard reflections every 250 reflections intensity decay: 1.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.178

  • S = 0.98

  • 2889 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.87 2.661 (3) 163
O3—H3⋯O6ii 0.82 1.89 2.640 (3) 152
O5—H5⋯O9iii 0.82 1.76 2.578 (3) 173
O8—H8⋯O7iv 0.82 1.84 2.634 (3) 164
O9—H91⋯O4 0.92 (4) 1.84 (4) 2.761 (3) 178 (3)
O9—H92⋯O6 0.86 (5) 1.99 (5) 2.853 (3) 178 (4)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z; (iii) x-1, y, z; (iv) -x-1, -y, -z+1.

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aromatic polyimides are well accepted as high-performance polymeric materials because of their excellent thermal and mechanical properties at elevated temperatures (Adadie & Sillion, 1991); 2,3,3',4'-biphenyltetracarboxylic dianhydride is the most important monomer of aromatic polyimides and particularly useful in the preparation of soluble polyimides with high glass transition temperature and high thermoplasticity (Hasegawa et al., 1999; Hergenrother et al., 2004; Yang & Su, 2005). The title compound is a starting reagent for preparing 2,3,3',4'-biphenyltetracarboxylic dianhydride (Iataaki & Yoshimoto, 1973).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the two phenyl rings of 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid is 42.30 (11)°, which is markedly differ from 88.69° found in the 1,1'-biphenyl-2,2',3,3'-tetracarboxylic acid monohydrate (Holý et al., 2004). This might be a result of intermolecular O—H···O interactions and steric effects of the title compound. The lattice water molecule links with 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid via O—H···O hydrogen bonding (Table 1). The extensive O—H···O hydrogen bonding between 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid molecules helps to stabilize the crystal structure.

Related literature top

For general background, see: Adadie & Sillion (1991); Hasegawa et al. (1999); Hergenrother et al. (2004); Iataaki & Yoshimoto (1973); Yang & Su (2005). For a related structure, see: Holý et al. (2004).

Experimental top

2,3,3',4'-Tetramethyl biphenyltetracarboxylate (20.0 g, 52 mmol), concentrated hydrochloric acid (10 ml) and acetic acid (50 ml) in water (50 ml) were refluxed for 4 h. On concentrating the reaction mixture afforded the crude 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid. Recrystallization of the crude acid from water gave 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid (m.p. 468–470 K) (Iataaki & Yoshimoto, 1973). Colorless single crystals suitable for X-ray diffraction were obtained at room temperature by slow evaporation of water over a period of several days.

Refinement top

H atoms of the water molecule were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93 Å and O—H = 0.82 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
1,1'-Biphenyl-2,3,3',4'-tetracarboxylic acid monohydrate top
Crystal data top
C16H10O8·H2OZ = 2
Mr = 348.26F(000) = 360
Triclinic, P1Dx = 1.489 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.860 (3) ÅCell parameters from 20 reflections
b = 11.339 (5) Åθ = 4.5–7.5°
c = 11.562 (4) ŵ = 0.13 mm1
α = 118.14 (3)°T = 294 K
β = 97.34 (3)°Block, colourless
γ = 94.47 (4)°0.44 × 0.36 × 0.18 mm
V = 776.7 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.005
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.0°
Graphite monochromatorh = 88
ω/2θ scansk = 513
3389 measured reflectionsl = 1312
2889 independent reflections3 standard reflections every 250 reflections
2074 reflections with I > 2σ(I) intensity decay: 1.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: mixed
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 0.98Calculated w = 1/[σ2(Fo2) + (0.1334P)2]
where P = (Fo2 + 2Fc2)/3
2889 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H10O8·H2Oγ = 94.47 (4)°
Mr = 348.26V = 776.7 (5) Å3
Triclinic, P1Z = 2
a = 6.860 (3) ÅMo Kα radiation
b = 11.339 (5) ŵ = 0.13 mm1
c = 11.562 (4) ÅT = 294 K
α = 118.14 (3)°0.44 × 0.36 × 0.18 mm
β = 97.34 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.005
3389 measured reflections3 standard reflections every 250 reflections
2889 independent reflections intensity decay: 1.4%
2074 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.35 e Å3
2889 reflectionsΔρmin = 0.31 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3911 (3)0.4576 (2)0.0916 (2)0.0520 (6)
O20.3354 (3)0.6316 (2)0.0600 (2)0.0554 (6)
H20.43550.61600.02680.066*
O30.0748 (3)0.25686 (17)0.03658 (17)0.0392 (5)
H30.14260.19610.01670.047*
O40.2316 (3)0.32664 (18)0.24633 (18)0.0397 (5)
O50.5242 (3)0.05309 (17)0.10577 (18)0.0399 (5)
H50.60580.00720.14420.048*
O60.2050 (3)0.02764 (18)0.10600 (19)0.0467 (5)
O70.3954 (3)0.00002 (18)0.37645 (19)0.0455 (5)
O80.4933 (3)0.17283 (19)0.54348 (19)0.0462 (5)
H80.50460.11860.57130.055*
C10.0408 (3)0.4734 (2)0.2032 (2)0.0276 (5)
C20.1241 (4)0.5721 (2)0.1745 (2)0.0310 (6)
C30.0495 (4)0.6933 (3)0.2149 (3)0.0387 (6)
H3A0.10480.75820.19580.046*
C40.1069 (5)0.7174 (3)0.2834 (3)0.0481 (7)
H40.15730.79830.31030.058*
C50.1882 (4)0.6206 (3)0.3119 (3)0.0385 (6)
H5A0.29290.63800.35840.046*
C60.1176 (4)0.4980 (2)0.2728 (2)0.0288 (5)
C70.2085 (3)0.3987 (2)0.3089 (2)0.0267 (5)
C80.2530 (4)0.4447 (2)0.4356 (2)0.0302 (5)
H8A0.23220.53710.49540.036*
C90.3284 (4)0.3537 (2)0.4735 (2)0.0309 (5)
H90.35890.38600.55830.037*
C100.3590 (3)0.2150 (2)0.3867 (2)0.0273 (5)
C110.3206 (3)0.1679 (2)0.2579 (2)0.0269 (5)
C120.2489 (3)0.2590 (2)0.2192 (2)0.0282 (5)
H120.22730.22710.13240.034*
C130.2963 (4)0.5479 (3)0.1050 (3)0.0346 (6)
C140.1296 (3)0.3453 (2)0.1646 (2)0.0285 (5)
C150.3477 (4)0.0196 (2)0.1528 (2)0.0301 (5)
C160.4193 (4)0.1204 (2)0.4366 (2)0.0308 (5)
O90.2047 (4)0.0732 (2)0.2263 (2)0.0527 (6)
H910.211 (5)0.159 (4)0.235 (3)0.066 (10)*
H920.081 (7)0.041 (4)0.191 (4)0.082 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0489 (12)0.0604 (13)0.0783 (15)0.0237 (10)0.0399 (11)0.0501 (12)
O20.0559 (14)0.0647 (14)0.0816 (16)0.0250 (11)0.0441 (12)0.0548 (13)
O30.0459 (11)0.0341 (9)0.0338 (10)0.0160 (8)0.0142 (8)0.0104 (8)
O40.0435 (11)0.0402 (10)0.0395 (10)0.0162 (8)0.0110 (8)0.0207 (8)
O50.0384 (10)0.0297 (9)0.0430 (11)0.0004 (8)0.0090 (8)0.0112 (8)
O60.0426 (12)0.0340 (10)0.0509 (12)0.0112 (8)0.0223 (9)0.0065 (8)
O70.0701 (14)0.0338 (10)0.0485 (11)0.0211 (9)0.0328 (10)0.0256 (9)
O80.0685 (14)0.0376 (10)0.0486 (11)0.0177 (9)0.0372 (10)0.0261 (9)
C10.0296 (13)0.0263 (11)0.0272 (12)0.0041 (9)0.0086 (9)0.0125 (9)
C20.0302 (13)0.0348 (12)0.0328 (12)0.0045 (10)0.0100 (10)0.0193 (10)
C30.0455 (16)0.0335 (13)0.0478 (15)0.0080 (11)0.0193 (12)0.0256 (12)
C40.062 (2)0.0344 (14)0.0627 (19)0.0210 (13)0.0308 (15)0.0287 (13)
C50.0379 (15)0.0367 (13)0.0493 (16)0.0143 (11)0.0251 (12)0.0224 (12)
C60.0315 (13)0.0271 (11)0.0284 (12)0.0047 (9)0.0107 (9)0.0128 (10)
C70.0234 (12)0.0275 (11)0.0312 (12)0.0067 (9)0.0112 (9)0.0139 (10)
C80.0339 (13)0.0236 (11)0.0298 (12)0.0048 (10)0.0131 (10)0.0085 (9)
C90.0326 (13)0.0321 (12)0.0277 (12)0.0053 (10)0.0128 (10)0.0125 (10)
C100.0256 (12)0.0292 (12)0.0320 (12)0.0072 (9)0.0116 (9)0.0168 (10)
C110.0227 (12)0.0262 (11)0.0311 (12)0.0047 (9)0.0087 (9)0.0124 (10)
C120.0298 (12)0.0285 (11)0.0280 (12)0.0048 (9)0.0111 (9)0.0138 (10)
C130.0336 (14)0.0382 (13)0.0383 (14)0.0040 (11)0.0118 (10)0.0226 (11)
C140.0265 (12)0.0301 (12)0.0299 (12)0.0039 (9)0.0127 (9)0.0137 (10)
C150.0325 (13)0.0268 (11)0.0306 (12)0.0040 (10)0.0112 (10)0.0126 (10)
C160.0334 (14)0.0318 (12)0.0316 (12)0.0077 (10)0.0109 (10)0.0174 (10)
O90.0371 (13)0.0471 (12)0.0768 (16)0.0105 (10)0.0122 (11)0.0315 (11)
Geometric parameters (Å, º) top
O1—C131.214 (3)C4—C51.384 (4)
O2—C131.307 (3)C4—H40.9300
O2—H20.8200C5—C61.393 (4)
O3—C141.318 (3)C5—H5A0.9300
O3—H30.8200C6—C71.494 (3)
O4—C141.213 (3)C7—C81.389 (3)
O5—C151.302 (3)C7—C121.403 (3)
O5—H50.8200C8—C91.388 (3)
O6—C151.218 (3)C8—H8A0.9300
O7—C161.242 (3)C9—C101.390 (3)
O8—C161.286 (3)C9—H90.9300
O8—H80.8200C10—C111.394 (3)
C1—C61.402 (3)C10—C161.493 (3)
C1—C21.409 (3)C11—C121.387 (3)
C1—C141.509 (3)C11—C151.518 (3)
C2—C31.391 (4)C12—H120.9300
C2—C131.483 (4)O9—H910.92 (4)
C3—C41.383 (4)O9—H920.86 (5)
C3—H3A0.9300
C13—O2—H2109.5C7—C8—H8A119.8
C14—O3—H3109.5C8—C9—C10121.0 (2)
C15—O5—H5109.5C8—C9—H9119.5
C16—O8—H8109.5C10—C9—H9119.5
C6—C1—C2119.7 (2)C9—C10—C11119.0 (2)
C6—C1—C14120.6 (2)C9—C10—C16119.1 (2)
C2—C1—C14119.6 (2)C11—C10—C16121.8 (2)
C3—C2—C1120.2 (2)C12—C11—C10119.9 (2)
C3—C2—C13120.2 (2)C12—C11—C15115.4 (2)
C1—C2—C13119.6 (2)C10—C11—C15124.7 (2)
C4—C3—C2120.0 (2)C11—C12—C7121.1 (2)
C4—C3—H3A120.0C11—C12—H12119.4
C2—C3—H3A120.0C7—C12—H12119.4
C3—C4—C5119.7 (2)O1—C13—O2123.5 (3)
C3—C4—H4120.1O1—C13—C2122.4 (2)
C5—C4—H4120.1O2—C13—C2114.1 (2)
C4—C5—C6121.8 (3)O4—C14—O3125.3 (2)
C4—C5—H5A119.1O4—C14—C1122.0 (2)
C6—C5—H5A119.1O3—C14—C1112.5 (2)
C5—C6—C1118.5 (2)O6—C15—O5120.3 (2)
C5—C6—C7119.4 (2)O6—C15—C11119.1 (2)
C1—C6—C7122.1 (2)O5—C15—C11120.3 (2)
C8—C7—C12118.4 (2)O7—C16—O8124.1 (2)
C8—C7—C6119.5 (2)O7—C16—C10120.3 (2)
C12—C7—C6122.1 (2)O8—C16—C10115.5 (2)
C9—C8—C7120.5 (2)H91—O9—H92100 (4)
C9—C8—H8A119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.872.661 (3)163
O3—H3···O6ii0.821.892.640 (3)152
O5—H5···O9iii0.821.762.578 (3)173
O8—H8···O7iv0.821.842.634 (3)164
O9—H91···O40.92 (4)1.84 (4)2.761 (3)178 (3)
O9—H92···O60.86 (5)1.99 (5)2.853 (3)178 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z; (iii) x1, y, z; (iv) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H10O8·H2O
Mr348.26
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)6.860 (3), 11.339 (5), 11.562 (4)
α, β, γ (°)118.14 (3), 97.34 (3), 94.47 (4)
V3)776.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.44 × 0.36 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3389, 2889, 2074
Rint0.005
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.178, 0.98
No. of reflections2889
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.31

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.872.661 (3)163.2
O3—H3···O6ii0.821.892.640 (3)151.6
O5—H5···O9iii0.821.762.578 (3)172.9
O8—H8···O7iv0.821.842.634 (3)163.8
O9—H91···O40.92 (4)1.84 (4)2.761 (3)178 (3)
O9—H92···O60.86 (5)1.99 (5)2.853 (3)178 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z; (iii) x1, y, z; (iv) x1, y, z+1.
 

Acknowledgements

The authors are grateful to the National Undergraduates' Innovative Experiment Project of China and the Undergraduates' Innovative Experiment Project of Sichuan University for financial support, and thank Mr Zhi-Hua Mao of Sichuan University for the diffraction data collection.

References

First citationAdadie, M. J. M. & Sillion, B. (1991). Editors. Polyimides and Other High-Temperature Polymers. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.  Google Scholar
First citationHasegawa, M., Sensui, N., Shindo, Y. & Yokota, R. (1999). Macromolecules, 32, 387–396.  Web of Science CrossRef CAS Google Scholar
First citationHergenrother, P. M., Watson, K. A., Smith, J. G. Jr, Connell, J. W. & Yokota, R. (2004). Polymer, 45, 5441–5449.  Web of Science CrossRef CAS Google Scholar
First citationHolý, P., Sehnal, P., Tichý, M., Závada, J. & Císarová, I. (2004). Tetrahedron Asymmetry, 15, 3805–3810.  Google Scholar
First citationIataaki, H. & Yoshimoto, H. (1973). J. Org. Chem. 38, 76–79.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, C.-P. & Su, Y.-Y. (2005). Polymer, 46, 5797–5807.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds