organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Erlotinib hydro­chloride: an anti­cancer agent

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 190, India, and bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 11 April 2008; accepted 23 April 2008; online 30 April 2008)

In the cation of the title compound, C22H24N3O4+·Cl, an active ingredient of the anti­cancer drug also known as Tarceva, the quinazoline ring system is planar within 0.044 (3) Å. The dihedral angle formed by the mean planes of the two six-membered quinazoline rings is 3.2 (1)°. Both N-bound H atoms participate in N—H⋯Cl bonds, which link the ions into infinite chains running along the b axis. C—H⋯O inter­actions involving neighboring cations provide additional stabilization of these aggregates.

Related literature

For related literature, see: Herbst et al. (2005[Herbst, R. S., Prager, D., Hermann, R., Fehrenbacher, L., Johnson, B. E., Sandler, A., Kris, M. G., Tran, H. T., Klein, P., Li, X., Ramies, D., Johnson, D. H. & Miller, V. A. (2005). J. Clin. Oncol. 23, 5892-5899.]); Minna & Dowell (2005[Minna, J. D. & Dowell, J. (2005). Nat. Rev. Drug Discov. pp. S14-S15.]); Li et al. (2007[Li, Z., Xu, M., Xing, S., Ho, W. T., Ishii, T., Li, Q., Fu, X. & Zhao, Z. J. (2007). J. Biol. Chem. 282, 3428-3432.]); Xia (2005[Xia, M. (2005). Acta Cryst. E61, o3380-o3382.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N3O4+·Cl

  • Mr = 429.89

  • Monoclinic, P 21 /c

  • a = 14.5351 (15) Å

  • b = 18.4863 (19) Å

  • c = 8.1222 (8) Å

  • β = 102.966 (2)°

  • V = 2126.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 (2) K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: none

  • 24377 measured reflections

  • 5001 independent reflections

  • 3649 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.151

  • S = 1.16

  • 5001 reflections

  • 275 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cl1 0.86 2.46 3.277 (2) 160
N1—HN1⋯Cl1i 0.86 2.23 3.066 (2) 165
C1—H1⋯O4i 0.93 2.46 3.372 (3) 167
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Erlotinib hydrochloride, (I), also known under its tradename Tarceva, is a potent reversible epidermal growth factor receptor tyrosine kinase inhibitor with single agent activity in patients with non-small lung cancer, pancreatic cancer and several other types of cancer (Herbst et al., 2005). It is the first drug to demonstrate an increase in survival in phase III trials in patients with advanced non-small cell lung cancer (Minna & Dowell, 2005). It has recently been shown to be potent inhibitor of JAK2 V617F activity; JAK2 V617F is a mutant of tyrosine kinase JAK2 (Li et al., 2007). As no crystal structure of the title compound has yet been published, we have undertaken the single-crystal X-ray diffraction study and report here its results.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The C21—C22 bond length [1.170 (4) Å] is consistent with its acetylenic character, as evidenced by literature value of 1.174 (11) Å (see Allen et al., 1987). The geometry of the quinazoline ring system is comparable to that in the reported related structure (Xia, 2005).

The bicyclic system is effectively planar with a maximum deviation of 0.044 (3) Å for the C1 atom. The dihedral angle formed by the mean planes of two six membered rings of quinazoline moiety is 3.2 (1)°. The benzene ring C15—C20 and its attached ethynyl group are coplanar with a maximum deviation -0.011 (3) Å for the C20 atom. The dihedral angle between this ring and quinazoline ring system is 34.4 (1)°. The short contacts H3···H4 (2.12 Å) and H7···H9A (2.14 Å) result in substantial widening of the C2—N3—C15 and C6—O1—C9 bond angles [127.4 (2)° and 117.1 (2)°, respectively].

Both N-bound H atoms (HN1 and H3) participate in H-bonds with the Cl1 anion (Table 2). These bonds link cations and anions into the infinite chains running along the b axis of the crystal. The C1—H1···O4 interactions involving neighboring cations provide additional stabilization for these chains (Fig. 2).

Related literature top

For related literature, see: Herbst et al. (2005); Minna & Dowell (2005); Li et al. (2007); Xia (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

In order to obtain crystals suitable for X-ray study, commercially available erlotinib hydrochloride was dissolved in a methanol-water solution (90:10v/v); the solvents were then allowed to evaporate slowly.

Refinement top

The acetylenic H22 atom was located in a difference Fourier map and refined isotropically [C22—H22 0.95 (3) Å]; all other H atoms were positioned geometrically with C—H distances of 0.93–0.97 Å, N—H 0.86 Å and were included in the refinement in the riding motion approximation with Uiso= 1.5Ueq(C) for methyl H and 1.2Ueq for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003)'; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The structure and atom-numbering scheme for (I); displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of (I) viewed along the c axis; H-bonds are shown as dashed lines; H atoms, not involved in H-bonds, have been omitted.
Erlotinib hydrochloride top
Crystal data top
C22H24N3O4+·ClF(000) = 904
Mr = 429.89Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9448 reflections
a = 14.5351 (15) Åθ = 2.2–23.4°
b = 18.4863 (19) ŵ = 0.21 mm1
c = 8.1222 (8) ÅT = 293 K
β = 102.966 (2)°Block, colourless
V = 2126.8 (4) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
3649 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 28.0°, θmin = 1.8°
ω scansh = 1819
24377 measured reflectionsk = 2424
5001 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.7563P]
where P = (Fo2 + 2Fc2)/3
5001 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C22H24N3O4+·ClV = 2126.8 (4) Å3
Mr = 429.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5351 (15) ŵ = 0.21 mm1
b = 18.4863 (19) ÅT = 293 K
c = 8.1222 (8) Å0.26 × 0.22 × 0.20 mm
β = 102.966 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
3649 reflections with I > 2σ(I)
24377 measured reflectionsRint = 0.050
5001 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.33 e Å3
5001 reflectionsΔρmin = 0.25 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50200 (5)0.34427 (3)0.62635 (9)0.0469 (2)
O10.27725 (11)0.61695 (9)0.9544 (2)0.0395 (4)
O20.10485 (14)0.70220 (13)0.9170 (3)0.0648 (6)
O30.29876 (12)0.48732 (9)0.8521 (2)0.0417 (4)
O40.20059 (13)0.31485 (10)0.6875 (3)0.0514 (5)
N10.57019 (14)0.69146 (10)0.8273 (3)0.0395 (5)
HN10.56030.73550.85270.047*
N20.67238 (14)0.60941 (11)0.7423 (3)0.0408 (5)
N30.63506 (13)0.48880 (10)0.7058 (3)0.0350 (5)
H30.59450.45500.70650.042*
C10.64787 (18)0.67467 (13)0.7780 (4)0.0435 (7)
H10.68870.71230.76780.052*
C20.61060 (16)0.55508 (12)0.7464 (3)0.0318 (5)
C30.52182 (16)0.56803 (12)0.7918 (3)0.0310 (5)
C40.45169 (16)0.51536 (12)0.7961 (3)0.0321 (5)
H40.46040.46810.76370.039*
C50.37123 (16)0.53333 (13)0.8474 (3)0.0324 (5)
C60.35795 (16)0.60529 (13)0.9019 (3)0.0326 (5)
C70.42426 (17)0.65734 (12)0.8963 (3)0.0346 (5)
H70.41580.70440.93050.042*
C80.50471 (16)0.63882 (12)0.8385 (3)0.0320 (5)
C90.26703 (18)0.68616 (14)1.0300 (4)0.0417 (6)
H9A0.27420.72480.95300.050*
H9B0.31510.69191.13330.050*
C100.17127 (19)0.68926 (15)1.0675 (4)0.0448 (6)
H10A0.15740.64391.11660.054*
H10B0.16890.72771.14780.054*
C110.0123 (3)0.7093 (3)0.9450 (7)0.1109 (16)
H11A0.03140.71780.83920.166*
H11B0.01060.74921.01970.166*
H11C0.00470.66560.99490.166*
C120.30023 (17)0.41876 (13)0.7695 (4)0.0422 (6)
H12A0.35120.38890.83180.051*
H12B0.30930.42560.65580.051*
C130.2062 (2)0.38355 (15)0.7650 (4)0.0510 (7)
H13A0.19740.37840.87930.061*
H13B0.15600.41420.70290.061*
C140.1801 (3)0.3188 (2)0.5094 (5)0.0765 (11)
H14A0.17740.27090.46310.115*
H14B0.22860.34600.47400.115*
H14C0.12030.34230.46990.115*
C150.72087 (16)0.46773 (12)0.6616 (3)0.0327 (5)
C160.71529 (18)0.41268 (14)0.5436 (3)0.0396 (6)
H160.65750.39120.49680.048*
C170.7960 (2)0.38986 (16)0.4959 (4)0.0474 (7)
H170.79220.35290.41690.057*
C180.88191 (19)0.42120 (15)0.5641 (4)0.0473 (7)
H180.93560.40600.52960.057*
C190.88874 (17)0.47541 (13)0.6842 (3)0.0395 (6)
C200.80763 (17)0.49842 (13)0.7347 (3)0.0371 (6)
H200.81180.53410.81680.045*
C210.9793 (2)0.50773 (16)0.7563 (4)0.0490 (7)
C221.0541 (2)0.5325 (2)0.8100 (5)0.0653 (9)
H221.115 (2)0.5534 (16)0.849 (4)0.063 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0508 (4)0.0276 (3)0.0642 (5)0.0062 (3)0.0173 (3)0.0023 (3)
O10.0339 (9)0.0328 (9)0.0559 (11)0.0003 (7)0.0190 (8)0.0044 (8)
O20.0438 (12)0.0814 (16)0.0696 (15)0.0176 (11)0.0135 (10)0.0081 (12)
O30.0353 (9)0.0315 (9)0.0628 (12)0.0071 (7)0.0207 (9)0.0071 (8)
O40.0525 (12)0.0327 (10)0.0694 (14)0.0093 (9)0.0145 (10)0.0046 (9)
N10.0373 (12)0.0223 (10)0.0611 (14)0.0008 (9)0.0158 (10)0.0023 (10)
N20.0325 (11)0.0270 (11)0.0661 (15)0.0004 (9)0.0181 (10)0.0036 (10)
N30.0276 (10)0.0264 (10)0.0527 (13)0.0003 (8)0.0127 (9)0.0009 (9)
C10.0330 (14)0.0291 (13)0.0715 (19)0.0040 (11)0.0184 (13)0.0048 (12)
C20.0279 (12)0.0266 (12)0.0412 (14)0.0007 (9)0.0083 (10)0.0030 (10)
C30.0280 (12)0.0289 (12)0.0361 (13)0.0010 (9)0.0073 (10)0.0027 (10)
C40.0311 (12)0.0232 (11)0.0424 (14)0.0007 (9)0.0091 (10)0.0008 (10)
C50.0299 (12)0.0299 (12)0.0377 (13)0.0032 (10)0.0080 (10)0.0028 (10)
C60.0297 (12)0.0329 (13)0.0361 (13)0.0023 (10)0.0095 (10)0.0009 (10)
C70.0361 (13)0.0237 (11)0.0447 (14)0.0023 (10)0.0107 (11)0.0030 (10)
C80.0299 (12)0.0263 (12)0.0394 (13)0.0007 (9)0.0068 (10)0.0027 (10)
C90.0431 (15)0.0349 (14)0.0490 (16)0.0055 (12)0.0147 (12)0.0035 (12)
C100.0493 (16)0.0390 (15)0.0512 (16)0.0085 (12)0.0221 (13)0.0014 (13)
C110.045 (2)0.152 (4)0.135 (4)0.034 (2)0.019 (2)0.013 (4)
C120.0350 (14)0.0305 (13)0.0636 (18)0.0034 (11)0.0162 (12)0.0027 (12)
C130.0448 (16)0.0404 (15)0.073 (2)0.0095 (12)0.0240 (15)0.0085 (14)
C140.093 (3)0.066 (2)0.077 (3)0.032 (2)0.031 (2)0.0167 (19)
C150.0338 (13)0.0260 (12)0.0403 (14)0.0051 (10)0.0125 (11)0.0077 (10)
C160.0385 (14)0.0353 (14)0.0443 (15)0.0027 (11)0.0079 (11)0.0015 (11)
C170.0542 (17)0.0441 (16)0.0466 (16)0.0070 (13)0.0167 (13)0.0070 (13)
C180.0421 (16)0.0517 (17)0.0538 (17)0.0127 (13)0.0230 (13)0.0022 (14)
C190.0330 (13)0.0352 (14)0.0533 (17)0.0038 (11)0.0158 (12)0.0107 (12)
C200.0346 (13)0.0285 (12)0.0496 (16)0.0018 (10)0.0123 (11)0.0001 (11)
C210.0387 (16)0.0495 (17)0.064 (2)0.0052 (13)0.0237 (14)0.0062 (14)
C220.0416 (19)0.077 (2)0.082 (2)0.0098 (17)0.0233 (17)0.0084 (19)
Geometric parameters (Å, º) top
O1—C61.352 (3)C9—H9B0.9700
O1—C91.441 (3)C10—H10A0.9700
O2—C101.397 (3)C10—H10B0.9700
O2—C111.419 (4)C11—H11A0.9600
O3—C51.361 (3)C11—H11B0.9600
O3—C121.436 (3)C11—H11C0.9600
O4—C131.412 (3)C12—C131.507 (3)
O4—C141.412 (4)C12—H12A0.9700
N1—C11.317 (3)C12—H12B0.9700
N1—C81.378 (3)C13—H13A0.9700
N1—HN10.8600C13—H13B0.9700
N2—C11.309 (3)C14—H14A0.9600
N2—C21.353 (3)C14—H14B0.9600
N3—C21.337 (3)C14—H14C0.9600
N3—C151.427 (3)C15—C161.388 (3)
N3—H30.8600C15—C201.389 (3)
C1—H10.9300C16—C171.382 (4)
C2—C31.440 (3)C16—H160.9300
C3—C81.400 (3)C17—C181.375 (4)
C3—C41.416 (3)C17—H170.9300
C4—C51.368 (3)C18—C191.386 (4)
C4—H40.9300C18—H180.9300
C5—C61.429 (3)C19—C201.399 (3)
C6—C71.370 (3)C19—C211.444 (4)
C7—C81.397 (3)C20—H200.9300
C7—H70.9300C21—C221.170 (4)
C9—C101.491 (3)C22—H220.95 (3)
C9—H9A0.9700
C6—O1—C9117.09 (19)H10A—C10—H10B108.3
C10—O2—C11111.7 (3)O2—C11—H11A109.5
C5—O3—C12116.48 (18)O2—C11—H11B109.5
C13—O4—C14112.8 (2)H11A—C11—H11B109.5
C1—N1—C8120.4 (2)O2—C11—H11C109.5
C1—N1—HN1119.8H11A—C11—H11C109.5
C8—N1—HN1119.8H11B—C11—H11C109.5
C1—N2—C2117.6 (2)O3—C12—C13106.5 (2)
C2—N3—C15127.4 (2)O3—C12—H12A110.4
C2—N3—H3116.3C13—C12—H12A110.4
C15—N3—H3116.3O3—C12—H12B110.4
N2—C1—N1125.4 (2)C13—C12—H12B110.4
N2—C1—H1117.3H12A—C12—H12B108.6
N1—C1—H1117.3O4—C13—C12111.1 (2)
N3—C2—N2117.4 (2)O4—C13—H13A109.4
N3—C2—C3121.2 (2)C12—C13—H13A109.4
N2—C2—C3121.4 (2)O4—C13—H13B109.4
C8—C3—C4117.6 (2)C12—C13—H13B109.4
C8—C3—C2116.7 (2)H13A—C13—H13B108.0
C4—C3—C2125.7 (2)O4—C14—H14A109.5
C5—C4—C3120.7 (2)O4—C14—H14B109.5
C5—C4—H4119.7H14A—C14—H14B109.5
C3—C4—H4119.7O4—C14—H14C109.5
O3—C5—C4125.2 (2)H14A—C14—H14C109.5
O3—C5—C6114.5 (2)H14B—C14—H14C109.5
C4—C5—C6120.3 (2)C16—C15—C20120.1 (2)
O1—C6—C7124.4 (2)C16—C15—N3117.1 (2)
O1—C6—C5115.7 (2)C20—C15—N3122.8 (2)
C7—C6—C5119.9 (2)C17—C16—C15119.7 (2)
C6—C7—C8119.2 (2)C17—C16—H16120.1
C6—C7—H7120.4C15—C16—H16120.1
C8—C7—H7120.4C18—C17—C16120.6 (3)
N1—C8—C7119.4 (2)C18—C17—H17119.7
N1—C8—C3118.3 (2)C16—C17—H17119.7
C7—C8—C3122.2 (2)C17—C18—C19120.2 (2)
O1—C9—C10108.1 (2)C17—C18—H18119.9
O1—C9—H9A110.1C19—C18—H18119.9
C10—C9—H9A110.1C18—C19—C20119.6 (2)
O1—C9—H9B110.1C18—C19—C21120.0 (2)
C10—C9—H9B110.1C20—C19—C21120.4 (2)
H9A—C9—H9B108.4C15—C20—C19119.6 (2)
O2—C10—C9108.7 (2)C15—C20—H20120.2
O2—C10—H10A109.9C19—C20—H20120.2
C9—C10—H10A109.9C22—C21—C19177.3 (3)
O2—C10—H10B109.9C21—C22—H22178 (2)
C9—C10—H10B109.9
C2—N2—C1—N14.2 (4)C1—N1—C8—C31.7 (4)
C8—N1—C1—N22.7 (4)C6—C7—C8—N1177.9 (2)
C15—N3—C2—N21.5 (4)C6—C7—C8—C32.4 (4)
C15—N3—C2—C3178.7 (2)C4—C3—C8—N1177.0 (2)
C1—N2—C2—N3178.4 (2)C2—C3—C8—N14.1 (3)
C1—N2—C2—C31.3 (4)C4—C3—C8—C73.4 (4)
N3—C2—C3—C8177.5 (2)C2—C3—C8—C7175.5 (2)
N2—C2—C3—C82.7 (3)C6—O1—C9—C10176.3 (2)
N3—C2—C3—C41.2 (4)C11—O2—C10—C9177.2 (3)
N2—C2—C3—C4178.5 (2)O1—C9—C10—O276.9 (3)
C8—C3—C4—C51.2 (3)C5—O3—C12—C13170.3 (2)
C2—C3—C4—C5177.5 (2)C14—O4—C13—C1279.6 (3)
C12—O3—C5—C411.3 (3)O3—C12—C13—O4179.3 (2)
C12—O3—C5—C6168.7 (2)C2—N3—C15—C16146.2 (2)
C3—C4—C5—O3178.3 (2)C2—N3—C15—C2035.6 (4)
C3—C4—C5—C61.7 (4)C20—C15—C16—C171.7 (4)
C9—O1—C6—C78.6 (3)N3—C15—C16—C17179.9 (2)
C9—O1—C6—C5172.4 (2)C15—C16—C17—C180.1 (4)
O3—C5—C6—O11.8 (3)C16—C17—C18—C191.1 (4)
C4—C5—C6—O1178.3 (2)C17—C18—C19—C200.5 (4)
O3—C5—C6—C7177.3 (2)C17—C18—C19—C21179.5 (3)
C4—C5—C6—C72.7 (4)C16—C15—C20—C192.4 (4)
O1—C6—C7—C8179.6 (2)N3—C15—C20—C19179.6 (2)
C5—C6—C7—C80.6 (4)C18—C19—C20—C151.3 (4)
C1—N1—C8—C7177.9 (2)C21—C19—C20—C15178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl10.862.463.277 (2)160
N1—HN1···Cl1i0.862.233.066 (2)165
C1—H1···O4i0.932.463.372 (3)167
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H24N3O4+·Cl
Mr429.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.5351 (15), 18.4863 (19), 8.1222 (8)
β (°) 102.966 (2)
V3)2126.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24377, 5001, 3649
Rint0.050
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.151, 1.16
No. of reflections5001
No. of parameters275
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003)', SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl10.862.463.277 (2)160
N1—HN1···Cl1i0.862.233.066 (2)165
C1—H1···O4i0.932.463.372 (3)167
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

SS thanks the Vice Chancellor and the management of Kalasalingam University, Anand Nagar, Krishnankoil, for their support and encouragement.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHerbst, R. S., Prager, D., Hermann, R., Fehrenbacher, L., Johnson, B. E., Sandler, A., Kris, M. G., Tran, H. T., Klein, P., Li, X., Ramies, D., Johnson, D. H. & Miller, V. A. (2005). J. Clin. Oncol. 23, 5892–5899.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Z., Xu, M., Xing, S., Ho, W. T., Ishii, T., Li, Q., Fu, X. & Zhao, Z. J. (2007). J. Biol. Chem. 282, 3428–3432.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMinna, J. D. & Dowell, J. (2005). Nat. Rev. Drug Discov. pp. S14–S15.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, M. (2005). Acta Cryst. E61, o3380–o3382.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds