metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m651-m652

Poly[(μ-3,5-di­nitro-2-oxidobenzoato)(μ-3-hy­droxy­pyridine)copper(II)]

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 25 January 2008; accepted 6 April 2008; online 10 April 2008)

A new coordination polymer, [Cu(C7H2N2O7)(C5H5NO)]n, exhibits a double-chain structure, in which 3,5-dinitro-2-oxidobenzoate and 3-hydroxy­pyridine both act as bridging ligands, ­connecting adjacent copper(II) centers to form an infinite double-stranded chain. The asymmetric unit contains one CuII ion, one 3,5-dinitro-2-oxidobenzoate ligand and a 3-hydroxy­pyridine ligand. Coordination by one N atom and three O atoms from two different 3,5-dinitro-2-oxidobenzoate ligands and a 3-hydroxy­pyridine ligand creates a square-planar CuII center, which is augmented by a less tightly bonded fifth phenol O atom to form a square-pyramidal five-coordinate complex with an essentially planar base. The double-stranded chains are stabilized by intra­chain ππ inter­actions [the centroid-to-centroid distance between adjacent aromatic rings is 3.719 (7) Å], and further linked through O—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For related literature, see: Bradshaw et al. (2005[Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273-282.]); Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Fujita et al. (1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]); Gable et al. (1990[Gable, R. W., Hoskins, B. F. & Robson, R. (1990). J. Chem. Soc. Chem. Commun. pp. 1677-1678.]); Gao et al. (2005[Gao, S., Zhang, X.-F., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. C61, m133-m135.]); He et al. (2006[He, X., Bi, M. H., Ye, K. Q., Fang, Q. R., Zhang, P., Xu, J. N. & Wang, Y. (2006). Inorg. Chem. Commun. 9, 1165-1168.]); Li et al. (1999[Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.]); Losier & Zaworotko (1996[Losier, P. & Zaworotko, M. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 2779-2782.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Song & Xi (2006[Song, W.-D. & Xi, D.-L. (2006). Acta Cryst. E62, m3083-m3085.]) Song et al., 2006[Song, W.-D. & Xi, D.-L. (2006). Acta Cryst. E62, m3083-m3085.]; Song, Guo & Guo, 2007[Song, W.-D., Guo, X.-X. & Rong-Fa, G. (2007). Acta Cryst. E63, m737-m739.]; Song, Guo & He, 2007[Song, W.-D., Guo, X.-X. & He, H. (2007). Acta Cryst. E63, m610-m612.]; Song, Guo & Zhang, 2007[Song, W.-D., Guo, X.-X. & Zhang, C.-H. (2007). Acta Cryst. E63, m399-m401.]; Song, Yan et al., 2007[Song, W.-D., Yan, J.-B., Guo, X.-X. & Ng, S. W. (2007). Acta Cryst. E63, m1307-m1308.]); Stang & Olenyuk (1997[Stang, P. J. & Olenyuk, B. (1997). Acc. Chem. Res. 30, 502-518.]); Withersby et al. (1999[Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P. & Schroder, M. (1999). New J. Chem. 23, 573-576.]); Yaghi & Li (1995[Yaghi, O. M. & Li, H. (1995). J. Am. Chem. Soc. 117, 10401-10402.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H2N2O7)(C5H5NO)]

  • Mr = 384.75

  • Monoclinic, P 21 /n

  • a = 8.1055 (3) Å

  • b = 6.2208 (2) Å

  • c = 26.9837 (9) Å

  • β = 94.030 (3)°

  • V = 1357.23 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 296 (2) K

  • 0.25 × 0.16 × 0.09 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.681, Tmax = 0.865

  • 12917 measured reflections

  • 3094 independent reflections

  • 2275 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.092

  • S = 1.03

  • 3094 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O4i 0.82 1.94 2.738 (3) 165
Symmetry code: (i) x-1, y-2, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Inorganic-organic coordination polymers have been a focus of contemporary research interest not only because of the intriguing variety of architectures and topologies but also because of their potential application in gas storage, catalysis, as molecular magnets, in molecular recognition and photoluminescene (Stang & Olenyuk,1997; Moulton & Zaworotko, 2001; Eddaoudi et al., 2001; Bradshaw et al., 2005). Over the past few decades considerable efforts have documented many networks with various structural motifs including honeycomb, brick-wall, rectangular grid, bilayer, ladder, herringbone, diamondoid and octahedral geometries (Gable et al., 1990; Fujita et al., 1994; Yaghi & Li, 1995; Losier & Zaworotko, 1996; Withersby et al., 1999; Li et al., 1999). Building blocks based on aromatic acids, such as benzoic acid and/or its substituted derivatives, have been used in the construction of coordination polymers. However, there are few examples of metal derivatives of 3,5-dinitrosalicylic acid, and examples of crystal structure reports are limited to silver and tin complexes only. 3,5-Dinitrosalicylic acid is, owing to its versatile coordination modes, an important multidentate ligand for metal complexes (He et al., 2006). Recently, some new structures with the 3,5-dinitrosalicylicate have been synthesized by our group (Song & Xi (2006), 2006; Song, Guo & Guo, 2007; Song, Guo & He, 2007; Song,Guo & Zhang, 2007; Song, Yan et al., 2007).

With the intention of studying the influences of aromatic bridging ligands on the frameworks of possible structures, we chose another non-chelating ligand, 3-hydroxyprridine, as a second ligand (Gao et al., 2005), and a new coordination polymer, [Cu(C7H3N2O7)(C5H5NO)]n, (I), was successfully synthesized.

The coordination environment of the copper center in complex (I) is depicted in Fig. 1. The asymmetric unit contains one CuII ion, one 3,5-dinitro-2-oxidobenzoate ligand and a 3-hydroxypyridine ligand. Coordination by one N atom and three O atoms from two different 3,5-dinitro-2-oxidobenzoate ligands and 3-hydroxypyridine ligand create a square planar CuII center, which is augmented by a less tightly bonded fifth phenol oxygen atom to form a square pyramidal five-coordinated complex with a basically flat base. The compound exhibits a double chain structure, in which the 3,5-dinitro-2-oxidobenzoate and 3-hydroxypyridine both act as bridging ligands interconnecting adjacent copper(II) centers to form an infinite double stranded chain along the b axis of the unit cell (Fig 2.). These double stranded chains are stabilized by intra-chain π-π interactions, and further linked through O—H···O hydrogen bonding interaction involving the hydroxyl group of the 3-hydroxypyridine ligand as the H-donor and a nitryl group of the 3,5-dinitro-2-oxidobenzoate ligand as the acceptor, thus forming a three-dimensional supramolecular network (Fig. 3). The centroid-to-centroid distance of adjacent aromatic rings is 3.719 (7) Å.

Related literature top

For related literature, see: Bradshaw et al. (2005); Eddaoudi et al. (2001); Fujita et al. (1994); Gable et al. (1990); Gao et al. (2005); He et al. (2006); Li et al. (1999); Losier & Zaworotko (1996); Moulton & Zaworotko (2001); Song & Xi (2006) Song et al., 2006; Song, Guo & Guo, 2007; Song, Guo & He, 2007; Song, Guo & Zhang, 2007; Song, Yan et al., 2007); Stang & Olenyuk (1997); Withersby et al. (1999); Yaghi & Li (1995).

For related literature, see: .

Experimental top

A mixture of CuCl2 (0.134 g; 1 mmol), 3,5-dinitrosalicylic acid (0.228 g; 1 mmol), 3-hydroxypyridine (0.095 g; 1 mmol) and H2O (10 ml) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated to and maintained at 433 K for 5 days, and then cooled to room temperature at 5 K h-1. The blue plate single crystals were obtained in ca 78% yield based on CuCl2.

Refinement top

Aromatic and hydroxyl H atoms were placed in calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, O—H = 0.82 Å (hydroxyl group) and with Uiso(H) = 1.2 or 1.5 Ueq(C, O). Hydroxyl H atoms were allowed to rotate around the C—O direction to best fit the experimental electron denisty.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related to the labelled atoms by the symmetry operator (x, 0.5 - y, -1/2 + z).
[Figure 2] Fig. 2. One double stranded chain of (I).
[Figure 3] Fig. 3. A packing view of (I) along the b axis. Hydrogen bonds are depicted as broken lines.
Poly[(µ-3,5-dinitro-2-oxidobenzoato)(µ-3-hydroxypyridine)copper(II)] top
Crystal data top
[Cu(C7H2N2O7)(C5H5NO)]F(000) = 772
Mr = 384.75Dx = 1.883 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2895 reflections
a = 8.1055 (3) Åθ = 2.4–27.9°
b = 6.2208 (2) ŵ = 1.66 mm1
c = 26.9837 (9) ÅT = 296 K
β = 94.030 (3)°Plate, blue
V = 1357.23 (8) Å30.25 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3094 independent reflections
Radiation source: fine-focus sealed tube2275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.681, Tmax = 0.865k = 88
12917 measured reflectionsl = 3134
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
3094 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C7H2N2O7)(C5H5NO)]V = 1357.23 (8) Å3
Mr = 384.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1055 (3) ŵ = 1.66 mm1
b = 6.2208 (2) ÅT = 296 K
c = 26.9837 (9) Å0.25 × 0.16 × 0.09 mm
β = 94.030 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
3094 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2275 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.865Rint = 0.061
12917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
3094 reflectionsΔρmin = 0.45 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.12663 (5)0.27589 (5)0.187438 (14)0.02720 (13)
O10.2121 (3)0.3893 (3)0.12851 (7)0.0336 (5)
C30.4627 (4)0.8652 (4)0.15767 (12)0.0300 (7)
H30.51680.93530.18460.036*
C70.2967 (4)0.5637 (4)0.12445 (11)0.0266 (6)
C20.3785 (4)0.6762 (4)0.16517 (11)0.0257 (6)
C60.3114 (4)0.6587 (4)0.07688 (11)0.0303 (7)
C50.3921 (4)0.8497 (5)0.06963 (12)0.0339 (7)
H50.39570.90890.03810.041*
C40.4673 (4)0.9503 (4)0.11085 (12)0.0319 (7)
N20.2313 (3)0.5572 (4)0.03232 (10)0.0383 (7)
N30.5560 (3)1.1514 (4)0.10454 (13)0.0432 (7)
O50.5735 (3)1.2190 (4)0.06299 (10)0.0593 (8)
O40.6093 (3)1.2453 (3)0.14266 (11)0.0569 (7)
O60.1611 (3)0.6731 (4)0.00078 (10)0.0580 (7)
O70.2381 (4)0.3631 (4)0.02875 (9)0.0591 (7)
N10.0150 (3)0.0378 (3)0.14852 (9)0.0280 (6)
C100.1449 (4)0.2943 (4)0.09616 (13)0.0354 (8)
H100.19830.40560.07850.043*
C80.0260 (4)0.1437 (4)0.17174 (12)0.0308 (7)
H80.00070.15660.20580.037*
C90.1048 (4)0.3115 (4)0.14630 (12)0.0294 (7)
C120.0227 (4)0.0547 (4)0.09966 (12)0.0335 (7)
H120.00640.17900.08320.040*
C110.1036 (4)0.1078 (5)0.07304 (13)0.0377 (8)
H110.13030.09070.03920.045*
O80.1323 (3)0.4927 (3)0.17369 (9)0.0429 (6)
H8A0.20460.56570.15910.064*
C10.3686 (4)0.6059 (4)0.21742 (11)0.0272 (7)
O20.2620 (3)0.4681 (3)0.22901 (8)0.0378 (5)
O30.4641 (2)0.6940 (3)0.25017 (8)0.0290 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0369 (2)0.02288 (17)0.0209 (2)0.00557 (14)0.00425 (16)0.00164 (14)
O10.0472 (14)0.0299 (10)0.0231 (12)0.0138 (9)0.0003 (10)0.0021 (8)
C30.0300 (17)0.0254 (13)0.034 (2)0.0014 (11)0.0011 (14)0.0047 (12)
C70.0291 (17)0.0262 (13)0.0241 (17)0.0016 (11)0.0008 (13)0.0019 (11)
C20.0298 (17)0.0255 (13)0.0215 (17)0.0004 (11)0.0002 (13)0.0009 (11)
C60.0342 (18)0.0365 (15)0.0195 (18)0.0052 (12)0.0021 (14)0.0005 (12)
C50.0335 (19)0.0391 (15)0.0294 (19)0.0064 (13)0.0038 (15)0.0076 (14)
C40.0291 (17)0.0282 (13)0.038 (2)0.0066 (12)0.0038 (15)0.0039 (13)
N20.0425 (17)0.0507 (16)0.0216 (16)0.0148 (13)0.0006 (13)0.0006 (12)
N30.0349 (17)0.0343 (13)0.060 (2)0.0077 (12)0.0038 (16)0.0058 (14)
O50.0653 (19)0.0535 (14)0.060 (2)0.0221 (12)0.0112 (15)0.0213 (13)
O40.0575 (17)0.0447 (13)0.068 (2)0.0267 (11)0.0005 (15)0.0063 (12)
O60.0634 (19)0.0757 (17)0.0321 (16)0.0060 (14)0.0154 (13)0.0153 (13)
O70.090 (2)0.0474 (14)0.0379 (17)0.0132 (13)0.0070 (15)0.0116 (12)
N10.0331 (15)0.0236 (11)0.0265 (15)0.0028 (9)0.0037 (11)0.0018 (10)
C100.0395 (19)0.0282 (14)0.037 (2)0.0087 (12)0.0082 (16)0.0089 (13)
C80.0362 (18)0.0258 (13)0.0291 (19)0.0049 (12)0.0072 (15)0.0043 (12)
C90.0279 (17)0.0246 (13)0.035 (2)0.0017 (11)0.0038 (14)0.0030 (12)
C120.0430 (19)0.0294 (14)0.0269 (19)0.0071 (13)0.0052 (15)0.0006 (12)
C110.045 (2)0.0382 (16)0.0282 (19)0.0047 (14)0.0052 (16)0.0036 (14)
O80.0481 (16)0.0281 (10)0.0501 (16)0.0143 (9)0.0124 (12)0.0091 (10)
C10.0321 (17)0.0246 (13)0.0242 (18)0.0024 (11)0.0024 (14)0.0046 (11)
O20.0511 (15)0.0399 (11)0.0214 (12)0.0187 (10)0.0040 (10)0.0005 (9)
O30.0315 (12)0.0313 (10)0.0231 (12)0.0031 (8)0.0055 (9)0.0073 (8)
Geometric parameters (Å, º) top
Cu1—O11.9132 (19)N3—O51.215 (4)
Cu1—O21.929 (2)N3—O41.234 (4)
Cu1—O3i1.952 (2)N1—C121.336 (4)
Cu1—N11.996 (2)N1—C81.344 (3)
O1—C71.292 (3)C10—C111.370 (4)
C3—C41.373 (4)C10—C91.373 (5)
C3—C21.382 (4)C10—H100.9300
C3—H30.9300C8—C91.381 (4)
C7—C61.426 (4)C8—H80.9300
C7—C21.426 (4)C9—O81.375 (3)
C2—C11.484 (4)C12—C111.379 (4)
C6—C51.377 (4)C12—H120.9300
C6—N21.468 (4)C11—H110.9300
C5—C41.380 (4)O8—H8A0.8200
C5—H50.9300C1—O31.259 (3)
C4—N31.459 (3)C1—O21.271 (3)
N2—O71.213 (3)O3—Cu1ii1.952 (2)
N2—O61.224 (3)
O1—Cu1—O291.74 (8)O5—N3—O4123.3 (3)
O1—Cu1—O3i173.49 (8)O5—N3—C4119.7 (3)
O2—Cu1—O3i83.90 (8)O4—N3—C4117.1 (3)
O1—Cu1—N190.78 (9)C12—N1—C8118.6 (2)
O2—Cu1—N1169.99 (10)C12—N1—Cu1121.62 (18)
O3i—Cu1—N194.34 (9)C8—N1—Cu1119.7 (2)
C7—O1—Cu1127.25 (19)C11—C10—C9117.8 (3)
C4—C3—C2120.6 (3)C11—C10—H10121.1
C4—C3—H3119.7C9—C10—H10121.1
C2—C3—H3119.7N1—C8—C9121.6 (3)
O1—C7—C6120.2 (3)N1—C8—H8119.2
O1—C7—C2124.6 (3)C9—C8—H8119.2
C6—C7—C2115.2 (2)C10—C9—O8123.9 (3)
C3—C2—C7120.8 (3)C10—C9—C8120.0 (3)
C3—C2—C1116.8 (3)O8—C9—C8116.1 (3)
C7—C2—C1122.3 (2)N1—C12—C11121.6 (3)
C5—C6—C7123.8 (3)N1—C12—H12119.2
C5—C6—N2116.2 (3)C11—C12—H12119.2
C7—C6—N2119.9 (2)C10—C11—C12120.4 (3)
C6—C5—C4117.7 (3)C10—C11—H11119.8
C6—C5—H5121.2C12—C11—H11119.8
C4—C5—H5121.2C9—O8—H8A109.5
C3—C4—C5121.8 (3)O3—C1—O2121.0 (3)
C3—C4—N3118.9 (3)O3—C1—C2117.9 (3)
C5—C4—N3119.2 (3)O2—C1—C2121.0 (3)
O7—N2—O6123.5 (3)C1—O2—Cu1130.1 (2)
O7—N2—C6118.2 (3)C1—O3—Cu1ii117.95 (19)
O6—N2—C6118.2 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O4iii0.821.942.738 (3)165
Symmetry code: (iii) x1, y2, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H2N2O7)(C5H5NO)]
Mr384.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.1055 (3), 6.2208 (2), 26.9837 (9)
β (°) 94.030 (3)
V3)1357.23 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.25 × 0.16 × 0.09
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.681, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
12917, 3094, 2275
Rint0.061
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.092, 1.03
No. of reflections3094
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.45

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O4i0.821.942.738 (3)164.5
Symmetry code: (i) x1, y2, z.
 

Acknowledgements

The authors thank Guang Dong Ocean University for supporting this study.

References

First citationBradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationGable, R. W., Hoskins, B. F. & Robson, R. (1990). J. Chem. Soc. Chem. Commun. pp. 1677–1678.  CrossRef Web of Science Google Scholar
First citationGao, S., Zhang, X.-F., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. C61, m133–m135.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, X., Bi, M. H., Ye, K. Q., Fang, Q. R., Zhang, P., Xu, J. N. & Wang, Y. (2006). Inorg. Chem. Commun. 9, 1165–1168.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationLosier, P. & Zaworotko, M. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 2779–2782.  CSD CrossRef CAS Web of Science Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Guo, X.-X. & Rong-Fa, G. (2007). Acta Cryst. E63, m737–m739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Guo, X.-X. & He, H. (2007). Acta Cryst. E63, m610–m612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Guo, X.-X. & Zhang, C.-H. (2007). Acta Cryst. E63, m399–m401.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D. & Xi, D.-L. (2006). Acta Cryst. E62, m3083–m3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Yan, J.-B., Guo, X.-X. & Ng, S. W. (2007). Acta Cryst. E63, m1307–m1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStang, P. J. & Olenyuk, B. (1997). Acc. Chem. Res. 30, 502–518.  Web of Science CrossRef CAS Google Scholar
First citationWithersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P. & Schroder, M. (1999). New J. Chem. 23, 573–576.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaghi, O. M. & Li, H. (1995). J. Am. Chem. Soc. 117, 10401–10402.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m651-m652
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds