metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­bis­[μ-(2,4-di­chloro­phen­­oxy)acetato]calcium(II)] monohydrate]

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Fisheries, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China, and cCollege of Chemistry, South China University of Technology, Guangzhou 510640, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 18 February 2008; accepted 6 April 2008; online 10 April 2008)

In the title coordination polymer, {[Ca(C8H5Cl2O3)2(H2O)2]·H2O}n, the CaII atom is eight-coordinated by six O atoms from four different (2,4-dichloro­phen­oxy)acetate ligands and two water mol­ecules, and displays a distorted square-anti­prismatic coordination geometry. The compound forms an infinite zigzag chain through connection of the metal centers by (2,4-dichlorphen­oxy)acetate ligands and hydrogen bonding of coordinated and inter­stitial water mol­ecules. These chains are further hydrogen bonded with neighboring chains, forming a supra­molecular network.

Related literature

For related literature, see: Song et al. (2006[Song, W.-D. & Xi, D.-L. (2006). Acta Cryst. E62, m2594-m2596.]); Hao et al. (2006[Hao, X.-M., Gu, C.-S., Song, W.-D., Ma, D.-Y. & Liu, Z.-Y. (2006). Acta Cryst. E62, m2618-m2620.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C8H5Cl2O3)2(H2O)2]·H2O

  • Mr = 534.17

  • Monoclinic, P 21 /c

  • a = 17.8354 (7) Å

  • b = 6.8077 (3) Å

  • c = 18.5276 (8) Å

  • β = 101.297 (3)°

  • V = 2206.00 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 296 (2) K

  • 0.30 × 0.26 × 0.23 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.790, Tmax = 0.840

  • 15522 measured reflections

  • 5049 independent reflections

  • 2962 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.158

  • S = 1.00

  • 5049 reflections

  • 289 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H6W⋯O2i 0.848 (10) 2.176 (14) 3.013 (4) 169 (3)
O2W—H4W⋯O2ii 0.823 (10) 2.079 (16) 2.866 (3) 160 (4)
O2W—H3W⋯O1iii 0.822 (10) 2.205 (18) 2.986 (4) 159 (4)
O1W—H1W⋯O3Wiv 0.823 (10) 1.927 (11) 2.745 (4) 173 (4)
O3W—H5W⋯O1 0.850 (10) 1.986 (12) 2.830 (4) 172 (5)
O1W—H2W⋯Cl4 0.818 (10) 2.88 (2) 3.530 (3) 138 (3)
O1W—H2W⋯O6 0.818 (10) 2.20 (2) 2.938 (3) 150 (4)
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of 2,4-dichlorophenoxyacetate complexes, it has been found that the (2,4-dichlorphenoxy)acetate functions as a multidentate ligand [Song et al. (2006); Hao et al. (2006)], with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Ca complex obtained by the reaction of (2,4-dichlorphenoxy)acetate and calcium chloride in an alkaline aqueous solution.

As illustrated in Figure 1, the CaII atom exists in a distorted square-antiprismatic environment, defined by six O atoms from four different 2,4-dichlorophenoxyacetate ligands and two water molecules. The 2,4-dichlorophenoxyacetate ligands link the calcium ions to form infinite zigzag like chains, which are further stabilized by hydrogen bonding of the coordinated and interstitial water molecules O2W and O3W to carboxylate oxygen atoms (Table 1, Fig. 2). O1W, via a hydrogen bond to the ether oxygen atom O6, also stabilizes the chains, but also forms another intermolecular hydrogen bond to a water molecule O3W that is part of a neighboring chain, thus forming a supramolecular network of H-bonded chains.

Related literature top

For related literature, see: Song et al. (2006); Hao et al. (2006).

Experimental top

A mixture of calcium chloride (1 mmol), 2,4-dichlorophenoxyacetate (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

Carbon-bound H atoms were placed in calculated positions and were treated as riding on the parent C atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.39 Å, each within a standard deviation of 0.01 Å, and with Uiso(H) = 1.5 Ueq(O)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of (I).
Poly[[diaquabis[µ-(2,4-dichlorophenoxy)acetato]calcium(II)] monohydrate] top
Crystal data top
[Ca(C8H5Cl2O3)2(H2O)2]·H2OF(000) = 1088
Mr = 534.17Dx = 1.608 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5837 reflections
a = 17.8354 (7) Åθ = 2.8–27.9°
b = 6.8077 (3) ŵ = 0.81 mm1
c = 18.5276 (8) ÅT = 296 K
β = 101.297 (3)°Block, colorless
V = 2206.00 (16) Å30.30 × 0.26 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5049 independent reflections
Radiation source: fine-focus sealed tube2962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2223
Tmin = 0.790, Tmax = 0.840k = 88
15522 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0794P)2]
where P = (Fo2 + 2Fc2)/3
5049 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.55 e Å3
9 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Ca(C8H5Cl2O3)2(H2O)2]·H2OV = 2206.00 (16) Å3
Mr = 534.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.8354 (7) ŵ = 0.81 mm1
b = 6.8077 (3) ÅT = 296 K
c = 18.5276 (8) Å0.30 × 0.26 × 0.23 mm
β = 101.297 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
5049 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2962 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.840Rint = 0.047
15522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0509 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.55 e Å3
5049 reflectionsΔρmin = 0.60 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10806 (18)0.6762 (5)0.41264 (16)0.0380 (7)
C20.18125 (18)0.6618 (5)0.46951 (19)0.0450 (8)
H2A0.17070.60230.51400.054*
H2B0.21750.57900.45100.054*
C30.28244 (17)0.8609 (6)0.53280 (18)0.0448 (9)
C40.3216 (2)1.0370 (6)0.5327 (2)0.0570 (10)
C50.3898 (2)1.0689 (7)0.5798 (3)0.0700 (13)
H50.41561.18740.57910.084*
C60.4196 (2)0.9231 (7)0.6281 (2)0.0621 (11)
C70.3831 (2)0.7454 (7)0.6279 (2)0.0622 (11)
H70.40460.64630.66000.075*
C80.31519 (19)0.7145 (6)0.5804 (2)0.0555 (10)
H80.29080.59370.58010.067*
C90.24793 (17)1.0577 (5)0.26633 (18)0.0408 (8)
C100.2516 (2)1.2253 (6)0.2240 (2)0.0529 (10)
H100.21561.32430.23730.063*
C110.3083 (2)1.2475 (7)0.1617 (2)0.0632 (11)
H110.31121.36220.13400.076*
C120.3600 (2)1.1003 (8)0.1412 (2)0.0655 (12)
C130.3568 (2)0.9291 (7)0.1815 (2)0.0638 (12)
H130.39190.82890.16680.077*
C140.30089 (18)0.9088 (6)0.2439 (2)0.0481 (9)
C150.13933 (18)1.1724 (5)0.35198 (17)0.0400 (8)
H15A0.11351.14850.40230.048*
H15B0.16371.30010.35020.048*
C160.08085 (15)1.1739 (5)0.30233 (15)0.0290 (6)
Ca10.02416 (3)0.67481 (9)0.29818 (3)0.03103 (18)
Cl10.28379 (8)1.21602 (17)0.46954 (10)0.1105 (6)
Cl20.50445 (6)0.9670 (2)0.69082 (8)0.1050 (5)
Cl30.43126 (7)1.1255 (3)0.06300 (7)0.1062 (5)
Cl40.29530 (6)0.69273 (16)0.29402 (7)0.0722 (3)
O10.07745 (13)0.5164 (3)0.39084 (12)0.0501 (6)
O20.08134 (12)0.8394 (3)0.38986 (12)0.0456 (6)
O30.21318 (13)0.8512 (4)0.48578 (14)0.0531 (7)
O40.06060 (11)1.0138 (3)0.27914 (11)0.0369 (5)
O50.05492 (12)1.3347 (3)0.28650 (12)0.0387 (5)
O60.19623 (11)1.0256 (3)0.33051 (12)0.0427 (6)
O1W0.10329 (14)0.6837 (4)0.38884 (13)0.0494 (6)
H2W0.1418 (13)0.750 (5)0.3754 (18)0.074*
H1W0.0840 (18)0.731 (5)0.4291 (12)0.074*
O2W0.12281 (14)0.6700 (4)0.18973 (12)0.0480 (6)
H3W0.123 (2)0.766 (3)0.1629 (15)0.072*
H4W0.122 (2)0.577 (3)0.1615 (14)0.072*
O3W0.0390 (2)0.1918 (4)0.47185 (15)0.0702 (8)
H5W0.047 (3)0.286 (3)0.444 (2)0.105*
H6W0.049 (3)0.084 (3)0.453 (2)0.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0464 (17)0.033 (2)0.0330 (15)0.0011 (16)0.0041 (13)0.0020 (17)
C20.0487 (18)0.035 (2)0.0459 (17)0.0030 (16)0.0045 (14)0.0007 (18)
C30.0376 (16)0.045 (2)0.0480 (18)0.0036 (16)0.0011 (14)0.0061 (18)
C40.051 (2)0.038 (2)0.075 (2)0.0067 (18)0.0046 (18)0.008 (2)
C50.047 (2)0.053 (3)0.103 (3)0.003 (2)0.005 (2)0.016 (3)
C60.0421 (19)0.069 (3)0.068 (2)0.007 (2)0.0073 (17)0.020 (3)
C70.056 (2)0.070 (3)0.055 (2)0.013 (2)0.0043 (18)0.003 (2)
C80.0472 (19)0.059 (3)0.056 (2)0.0014 (19)0.0016 (16)0.005 (2)
C90.0363 (15)0.039 (2)0.0495 (18)0.0025 (15)0.0130 (14)0.0018 (18)
C100.0451 (18)0.045 (2)0.067 (2)0.0010 (18)0.0072 (17)0.009 (2)
C110.051 (2)0.067 (3)0.070 (3)0.010 (2)0.0087 (19)0.017 (2)
C120.044 (2)0.083 (3)0.067 (2)0.002 (2)0.0049 (18)0.000 (3)
C130.050 (2)0.075 (3)0.066 (2)0.015 (2)0.0083 (18)0.014 (3)
C140.0439 (18)0.045 (2)0.058 (2)0.0077 (17)0.0157 (16)0.007 (2)
C150.0465 (17)0.0297 (19)0.0453 (17)0.0031 (15)0.0128 (14)0.0073 (17)
C160.0321 (13)0.0212 (17)0.0317 (14)0.0017 (13)0.0012 (11)0.0023 (15)
Ca10.0361 (3)0.0204 (3)0.0360 (3)0.0013 (3)0.0055 (2)0.0010 (3)
Cl10.0981 (9)0.0400 (7)0.1650 (15)0.0089 (7)0.0439 (10)0.0245 (8)
Cl20.0585 (6)0.1143 (12)0.1209 (11)0.0061 (7)0.0348 (6)0.0308 (10)
Cl30.0697 (7)0.1599 (15)0.0775 (8)0.0059 (8)0.0140 (6)0.0030 (9)
Cl40.0734 (6)0.0479 (7)0.0945 (8)0.0211 (5)0.0145 (6)0.0040 (6)
O10.0637 (14)0.0287 (14)0.0493 (13)0.0065 (12)0.0102 (11)0.0002 (12)
O20.0485 (12)0.0296 (14)0.0523 (13)0.0008 (11)0.0060 (10)0.0041 (12)
O30.0491 (13)0.0330 (14)0.0660 (15)0.0001 (11)0.0159 (11)0.0012 (13)
O40.0465 (11)0.0192 (12)0.0479 (12)0.0012 (10)0.0163 (10)0.0007 (11)
O50.0455 (11)0.0198 (12)0.0528 (13)0.0056 (10)0.0143 (10)0.0036 (11)
O60.0399 (11)0.0360 (14)0.0535 (13)0.0074 (11)0.0121 (10)0.0018 (12)
O1W0.0600 (15)0.0416 (16)0.0490 (13)0.0065 (13)0.0161 (11)0.0002 (13)
O2W0.0533 (13)0.0359 (15)0.0495 (13)0.0035 (13)0.0031 (11)0.0039 (12)
O3W0.109 (2)0.0463 (18)0.0554 (16)0.0093 (19)0.0159 (15)0.0003 (15)
Geometric parameters (Å, º) top
C1—O11.248 (4)C14—Cl41.732 (4)
C1—O21.250 (4)C15—O61.424 (4)
C1—C21.512 (4)C15—C161.520 (4)
C2—O31.417 (4)C15—H15A0.9700
C2—H2A0.9700C15—H15B0.9700
C2—H2B0.9700C16—O51.246 (3)
C3—O31.367 (4)C16—O41.251 (3)
C3—C81.382 (5)C16—Ca1i2.888 (3)
C3—C41.387 (5)Ca1—O5ii2.379 (2)
C4—C51.370 (5)Ca1—O1W2.397 (2)
C4—Cl11.732 (4)Ca1—O2W2.398 (2)
C5—C61.370 (6)Ca1—O42.405 (2)
C5—H50.9300Ca1—O12.485 (2)
C6—C71.373 (6)Ca1—O4iii2.527 (2)
C6—Cl21.745 (4)Ca1—O22.536 (2)
C7—C81.367 (5)Ca1—O5iii2.550 (2)
C7—H70.9300Ca1—C16iii2.888 (3)
C8—H80.9300Ca1—Ca1iii4.0148 (6)
C9—O61.372 (4)Ca1—Ca1i4.0148 (6)
C9—C101.379 (5)O4—Ca1i2.527 (2)
C9—C141.392 (5)O5—Ca1iv2.379 (2)
C10—C111.386 (5)O5—Ca1i2.550 (2)
C10—H100.9300O1W—H2W0.818 (10)
C11—C121.364 (6)O1W—H1W0.823 (10)
C11—H110.9300O2W—H3W0.822 (10)
C12—C131.379 (6)O2W—H4W0.823 (10)
C12—Cl31.739 (4)O3W—H5W0.850 (10)
C13—C141.379 (5)O3W—H6W0.848 (10)
C13—H130.9300
O1—C1—O2123.5 (3)O2W—Ca1—O1152.75 (8)
O1—C1—C2115.6 (3)O4—Ca1—O1131.10 (8)
O2—C1—C2120.9 (3)O5ii—Ca1—O4iii71.29 (7)
O3—C2—C1110.2 (3)O1W—Ca1—O4iii155.21 (8)
O3—C2—H2A109.6O2W—Ca1—O4iii86.63 (8)
C1—C2—H2A109.6O4—Ca1—O4iii120.50 (6)
O3—C2—H2B109.6O1—Ca1—O4iii76.53 (8)
C1—C2—H2B109.6O5ii—Ca1—O2128.21 (8)
H2A—C2—H2B108.1O1W—Ca1—O288.91 (8)
O3—C3—C8126.0 (3)O2W—Ca1—O2153.37 (8)
O3—C3—C4115.7 (3)O4—Ca1—O279.51 (7)
C8—C3—C4118.3 (3)O1—Ca1—O251.97 (7)
C5—C4—C3121.4 (4)O4iii—Ca1—O297.10 (7)
C5—C4—Cl1119.9 (3)O5ii—Ca1—O5iii120.33 (6)
C3—C4—Cl1118.7 (3)O1W—Ca1—O5iii153.23 (8)
C4—C5—C6118.9 (4)O2W—Ca1—O5iii83.90 (8)
C4—C5—H5120.6O4—Ca1—O5iii70.50 (7)
C6—C5—H5120.6O1—Ca1—O5iii101.18 (8)
C5—C6—C7120.9 (3)O4iii—Ca1—O5iii51.11 (7)
C5—C6—Cl2119.0 (4)O2—Ca1—O5iii78.24 (7)
C7—C6—Cl2120.1 (3)O5ii—Ca1—C16iii96.11 (8)
C8—C7—C6119.8 (4)O1W—Ca1—C16iii175.59 (8)
C8—C7—H7120.1O2W—Ca1—C16iii85.51 (8)
C6—C7—H7120.1O4—Ca1—C16iii95.63 (8)
C7—C8—C3120.7 (4)O1—Ca1—C16iii88.12 (8)
C7—C8—H8119.7O4iii—Ca1—C16iii25.61 (7)
C3—C8—H8119.7O2—Ca1—C16iii86.73 (8)
O6—C9—C10125.0 (3)O5iii—Ca1—C16iii25.52 (7)
O6—C9—C14116.4 (3)O5ii—Ca1—Ca1iii36.91 (5)
C10—C9—C14118.6 (3)O1W—Ca1—Ca1iii122.70 (6)
C9—C10—C11120.6 (4)O2W—Ca1—Ca1iii78.57 (6)
C9—C10—H10119.7O4—Ca1—Ca1iii145.47 (6)
C11—C10—H10119.7O1—Ca1—Ca1iii75.42 (6)
C12—C11—C10119.6 (4)O4iii—Ca1—Ca1iii34.50 (5)
C12—C11—H11120.2O2—Ca1—Ca1iii118.48 (6)
C10—C11—H11120.2O5iii—Ca1—Ca1iii84.01 (5)
C11—C12—C13121.1 (4)C16iii—Ca1—Ca1iii59.25 (7)
C11—C12—Cl3120.2 (4)O5ii—Ca1—Ca1i148.24 (6)
C13—C12—Cl3118.7 (3)O1W—Ca1—Ca1i119.82 (6)
C14—C13—C12119.0 (4)O2W—Ca1—Ca1i79.94 (6)
C14—C13—H13120.5O4—Ca1—Ca1i36.54 (5)
C12—C13—H13120.5O1—Ca1—Ca1i118.95 (6)
C13—C14—C9121.0 (4)O4iii—Ca1—Ca1i84.92 (5)
C13—C14—Cl4119.4 (3)O2—Ca1—Ca1i74.18 (5)
C9—C14—Cl4119.6 (3)O5iii—Ca1—Ca1i34.07 (5)
O6—C15—C16111.8 (2)C16iii—Ca1—Ca1i59.49 (7)
O6—C15—H15A109.3Ca1iii—Ca1—Ca1i115.95 (3)
C16—C15—H15A109.3C1—O1—Ca193.37 (19)
O6—C15—H15B109.3C1—O2—Ca190.98 (19)
C16—C15—H15B109.3C3—O3—C2117.1 (3)
H15A—C15—H15B107.9C16—O4—Ca1150.93 (19)
O5—C16—O4122.7 (3)C16—O4—Ca1i93.54 (17)
O5—C16—C15118.6 (3)Ca1—O4—Ca1i108.96 (8)
O4—C16—C15118.7 (3)C16—O5—Ca1iv157.43 (19)
O5—C16—Ca1i61.88 (15)C16—O5—Ca1i92.60 (17)
O4—C16—Ca1i60.85 (14)Ca1iv—O5—Ca1i109.02 (8)
C15—C16—Ca1i177.18 (19)C9—O6—C15116.8 (3)
O5ii—Ca1—O1W86.07 (8)Ca1—O1W—H2W112 (3)
O5ii—Ca1—O2W78.00 (8)Ca1—O1W—H1W117 (3)
O1W—Ca1—O2W98.71 (9)H2W—O1W—H1W103.9 (16)
O5ii—Ca1—O4150.41 (8)Ca1—O2W—H3W114 (3)
O1W—Ca1—O484.21 (8)Ca1—O2W—H4W116 (3)
O2W—Ca1—O475.96 (8)H3W—O2W—H4W103.2 (16)
O5ii—Ca1—O176.38 (8)H5W—O3W—H6W109.8 (17)
O1W—Ca1—O188.67 (8)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1, z; (iii) x, y1/2, z+1/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H6W···O2ii0.85 (1)2.18 (1)3.013 (4)169 (3)
O2W—H4W···O2iii0.82 (1)2.08 (2)2.866 (3)160 (4)
O2W—H3W···O1i0.82 (1)2.21 (2)2.986 (4)159 (4)
O1W—H1W···O3Wv0.82 (1)1.93 (1)2.745 (4)173 (4)
O3W—H5W···O10.85 (1)1.99 (1)2.830 (4)172 (5)
O1W—H2W···Cl40.82 (1)2.88 (2)3.530 (3)138 (3)
O1W—H2W···O60.82 (1)2.20 (2)2.938 (3)150 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1, z; (iii) x, y1/2, z+1/2; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ca(C8H5Cl2O3)2(H2O)2]·H2O
Mr534.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.8354 (7), 6.8077 (3), 18.5276 (8)
β (°) 101.297 (3)
V3)2206.00 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.30 × 0.26 × 0.23
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.790, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
15522, 5049, 2962
Rint0.047
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.158, 1.00
No. of reflections5049
No. of parameters289
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.60

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H6W···O2i0.848 (10)2.176 (14)3.013 (4)169 (3)
O2W—H4W···O2ii0.823 (10)2.079 (16)2.866 (3)160 (4)
O2W—H3W···O1iii0.822 (10)2.205 (18)2.986 (4)159 (4)
O1W—H1W···O3Wiv0.823 (10)1.927 (11)2.745 (4)173 (4)
O3W—H5W···O10.850 (10)1.986 (12)2.830 (4)172 (5)
O1W—H2W···Cl40.818 (10)2.88 (2)3.530 (3)138 (3)
O1W—H2W···O60.818 (10)2.20 (2)2.938 (3)150 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationHao, X.-M., Gu, C.-S., Song, W.-D., Ma, D.-Y. & Liu, Z.-Y. (2006). Acta Cryst. E62, m2618–m2620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D. & Xi, D.-L. (2006). Acta Cryst. E62, m2594–m2596.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds