organic compounds
1-[3,5-Bis(trifluoromethyl)phenyl]-3-(2-pyridyl)thiourea
aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: yue821003@163.com
The title compound, C14H9F6N3S, exhibits a nearly planar conformation in the solid state, with a dihedral angle between the planes of the benzene and pyridine rings of 14.86 (3)°. The pyridine N atom allows for the formation of a six-membered N—H⋯Npy hydrogen-bonded ring, thus forcing the two amide H atoms of the thiourea group to point in opposite directions. The second N—H group forms an intermolecular N—H⋯S hydrogen bond with the S atom of an adjacent molecule. The F atoms of the two trifluoromethyl groups display rotational disorder around the C—CF3 axis, with an occupancy ratio of 0.54 (1):0.46 (1).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808009768/zl2103sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808009768/zl2103Isup2.hkl
The title compound was synthesized by treating 3,5-bis-trifluoromethyl-phenyl isothiocyanate (2.71 g, 10 mmol) with 2-amino pyridine (0.94 g, 10 mmol) in MeCN (30 ml) under stirring at room temperature for 24 h. Suitable crystals of the title compound were obtained by slow evaporation of an actonitrile solution at room temperature (3.28 g, 10 mmol). Yield 90%, m.p. 431–433 K, 1H NMR (500 MHz, CDCl3): 6.91 (d, J = 8 Hz, 1H), 7.08–7.11 (m, 1H), 7.73–7.77 (m, 2H), 8.27 (s, 1H), 8.29–8.31 (m, 2H), 8.95 (s, 1H), 14.17 (s, 1H).
Large solvent accessible voids are found in the crystal. The volumes (31 Å3 per cavity, four equivalent cavities per unit cell) of these voids are not quite large enough to host acetonitrile molecules, the solvent of crystallization, and no significant residual electron density is seen in difference Fourier syntheses maps. The largest residual electron density peak and the deepest negative density in these voids are 0.40 (0.97 Å from S1) and -0.30 (1.30 Å from C4), respectively. Also, an attempted correction for the electron density within the voids using the Squeeze algorithm implemented in the program PLATON (Spek, 2003) does not significantly improve the quality of the dataset or
The fluorine atoms of the two CF3 groups exhibit around the C4—C13 and C6—C14 bonds with an occupancy ratio of 0.54 (1) to 0.46 (1). They are refined with restraints for the C—F bond lengths and the F···F interatomic distances to maintain nearly tetrahedral geometry. All C—F bond lengths are restrained to 1.35 (5) Å and the displacement parameters of the disordered F atoms are restrained to an approximate isotropic behaviour. All carbon-bond H atoms are placed in calculated positions with C—H = 0.93 Å (aromatic) and refined using a riding model, with Uiso(H) = 1.2eq(C). N-bound H atoms are located in a difference map and refined with an N—H distance restraint of 0.83 (2) Å.Data collection: SMART (Bruker, 2001); cell
SMART [SAINT-Plus?] (Bruker, 2000); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).C14H9F6N3S | Dx = 1.554 Mg m−3 |
Mr = 365.30 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 4062 reflections |
a = 15.0907 (17) Å | θ = 5.4–45.0° |
b = 7.7491 (9) Å | µ = 0.27 mm−1 |
c = 26.709 (3) Å | T = 293 K |
V = 3123.3 (6) Å3 | Prismatic, colourless |
Z = 8 | 0.41 × 0.31 × 0.18 mm |
F(000) = 1472 |
Bruker SMART CCD area-detector diffractometer | 3406 independent reflections |
Radiation source: fine-focus sealed tube | 2585 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.102 |
ϕ and ω scans | θmax = 27.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −19→19 |
Tmin = 0.873, Tmax = 0.962 | k = −9→9 |
17235 measured reflections | l = −26→34 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.151 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.075P)2 + 0.3374P] where P = (Fo2 + 2Fc2)/3 |
3406 reflections | (Δ/σ)max = 0.040 |
280 parameters | Δρmax = 0.40 e Å−3 |
13 restraints | Δρmin = −0.30 e Å−3 |
C14H9F6N3S | V = 3123.3 (6) Å3 |
Mr = 365.30 | Z = 8 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 15.0907 (17) Å | µ = 0.27 mm−1 |
b = 7.7491 (9) Å | T = 293 K |
c = 26.709 (3) Å | 0.41 × 0.31 × 0.18 mm |
Bruker SMART CCD area-detector diffractometer | 3406 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2585 reflections with I > 2σ(I) |
Tmin = 0.873, Tmax = 0.962 | Rint = 0.102 |
17235 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 13 restraints |
wR(F2) = 0.151 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.40 e Å−3 |
3406 reflections | Δρmin = −0.30 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.44883 (4) | 1.05153 (11) | 0.42753 (2) | 0.0699 (3) | |
N1 | 0.37456 (12) | 0.8647 (3) | 0.49769 (7) | 0.0499 (5) | |
N2 | 0.28358 (12) | 0.9220 (3) | 0.43161 (6) | 0.0468 (5) | |
N3 | 0.22735 (11) | 0.7940 (2) | 0.51757 (6) | 0.0480 (5) | |
C1 | 0.36381 (13) | 0.9414 (3) | 0.45239 (8) | 0.0456 (5) | |
C2 | 0.25117 (14) | 0.9797 (3) | 0.38500 (7) | 0.0406 (5) | |
C3 | 0.30288 (14) | 1.0050 (3) | 0.34296 (7) | 0.0435 (5) | |
H3 | 0.3640 | 0.9898 | 0.3445 | 0.052* | |
C4 | 0.26236 (15) | 1.0534 (3) | 0.29841 (7) | 0.0426 (5) | |
C5 | 0.17215 (15) | 1.0763 (3) | 0.29537 (8) | 0.0477 (5) | |
H5 | 0.1459 | 1.1092 | 0.2653 | 0.057* | |
C6 | 0.12109 (14) | 1.0495 (3) | 0.33762 (8) | 0.0472 (5) | |
C7 | 0.15999 (14) | 1.0010 (3) | 0.38225 (8) | 0.0451 (5) | |
H7 | 0.1251 | 0.9825 | 0.4104 | 0.054* | |
C8 | 0.31247 (13) | 0.7912 (3) | 0.53057 (7) | 0.0431 (5) | |
C9 | 0.34218 (16) | 0.7222 (3) | 0.57550 (8) | 0.0538 (6) | |
H9 | 0.4023 | 0.7189 | 0.5830 | 0.065* | |
C10 | 0.28091 (17) | 0.6595 (3) | 0.60830 (9) | 0.0575 (6) | |
H10 | 0.2989 | 0.6127 | 0.6387 | 0.069* | |
C11 | 0.19245 (17) | 0.6658 (3) | 0.59626 (9) | 0.0597 (6) | |
H11 | 0.1496 | 0.6260 | 0.6184 | 0.072* | |
C12 | 0.16964 (15) | 0.7320 (3) | 0.55103 (9) | 0.0565 (6) | |
H12 | 0.1098 | 0.7343 | 0.5427 | 0.068* | |
C13 | 0.31954 (17) | 1.0781 (3) | 0.25314 (8) | 0.0550 (6) | |
C14 | 0.02309 (17) | 1.0700 (4) | 0.33485 (10) | 0.0693 (8) | |
F1 | 0.3600 (6) | 1.2197 (7) | 0.2520 (3) | 0.092 (3) | 0.540 (15) |
F2 | 0.3770 (6) | 0.9559 (14) | 0.2476 (4) | 0.106 (4) | 0.540 (15) |
F3 | 0.2703 (4) | 1.0759 (17) | 0.21099 (16) | 0.105 (3) | 0.540 (15) |
F4 | −0.0158 (11) | 0.927 (2) | 0.3219 (7) | 0.114 (5) | 0.540 (15) |
F5 | −0.0038 (9) | 1.1890 (19) | 0.3061 (5) | 0.111 (6) | 0.540 (15) |
F6 | −0.0122 (7) | 1.1014 (17) | 0.3796 (3) | 0.118 (4) | 0.540 (15) |
F1' | 0.3995 (6) | 1.140 (2) | 0.2647 (2) | 0.112 (5) | 0.460 (15) |
F2' | 0.3344 (11) | 0.9413 (13) | 0.2292 (4) | 0.116 (5) | 0.460 (15) |
F3' | 0.2887 (7) | 1.1881 (17) | 0.2217 (4) | 0.117 (5) | 0.460 (15) |
F4' | −0.0137 (13) | 0.957 (3) | 0.3042 (8) | 0.115 (7) | 0.460 (15) |
F5' | 0.0011 (10) | 1.2244 (16) | 0.3174 (6) | 0.111 (4) | 0.460 (15) |
F6' | −0.0171 (6) | 1.0587 (17) | 0.3773 (3) | 0.097 (4) | 0.460 (15) |
H1 | 0.4219 (13) | 0.877 (3) | 0.5105 (9) | 0.065 (8)* | |
H2 | 0.2456 (16) | 0.882 (3) | 0.4511 (9) | 0.047 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0397 (3) | 0.1245 (7) | 0.0456 (4) | −0.0239 (3) | −0.0094 (2) | 0.0228 (3) |
N1 | 0.0327 (9) | 0.0801 (14) | 0.0370 (9) | −0.0038 (9) | −0.0087 (7) | 0.0105 (9) |
N2 | 0.0334 (9) | 0.0741 (13) | 0.0328 (9) | −0.0062 (8) | −0.0037 (7) | 0.0073 (8) |
N3 | 0.0371 (9) | 0.0676 (12) | 0.0394 (9) | −0.0050 (8) | −0.0015 (7) | 0.0030 (8) |
C1 | 0.0331 (10) | 0.0688 (15) | 0.0350 (11) | −0.0001 (9) | −0.0020 (8) | 0.0014 (9) |
C2 | 0.0369 (10) | 0.0511 (12) | 0.0337 (10) | −0.0034 (9) | −0.0056 (8) | −0.0019 (8) |
C3 | 0.0377 (10) | 0.0552 (12) | 0.0376 (11) | 0.0001 (9) | −0.0011 (8) | −0.0029 (9) |
C4 | 0.0482 (12) | 0.0452 (12) | 0.0345 (10) | −0.0035 (9) | −0.0018 (9) | −0.0024 (8) |
C5 | 0.0523 (13) | 0.0542 (13) | 0.0368 (11) | −0.0019 (10) | −0.0104 (9) | 0.0051 (9) |
C6 | 0.0369 (11) | 0.0579 (14) | 0.0468 (12) | −0.0021 (9) | −0.0095 (9) | 0.0039 (10) |
C7 | 0.0372 (11) | 0.0609 (13) | 0.0371 (11) | −0.0041 (9) | −0.0025 (8) | 0.0031 (9) |
C8 | 0.0405 (11) | 0.0522 (12) | 0.0367 (10) | −0.0028 (9) | −0.0020 (8) | −0.0010 (9) |
C9 | 0.0520 (13) | 0.0655 (15) | 0.0440 (12) | −0.0024 (11) | −0.0084 (10) | 0.0098 (10) |
C10 | 0.0692 (16) | 0.0621 (15) | 0.0410 (12) | −0.0048 (12) | −0.0018 (11) | 0.0076 (10) |
C11 | 0.0642 (15) | 0.0647 (16) | 0.0502 (14) | −0.0094 (12) | 0.0109 (11) | 0.0040 (11) |
C12 | 0.0433 (12) | 0.0751 (17) | 0.0511 (13) | −0.0084 (11) | 0.0034 (10) | 0.0018 (11) |
C13 | 0.0656 (16) | 0.0613 (16) | 0.0380 (12) | −0.0007 (13) | 0.0038 (10) | 0.0004 (11) |
C14 | 0.0443 (14) | 0.103 (2) | 0.0601 (17) | −0.0011 (15) | −0.0095 (12) | 0.0122 (16) |
F1 | 0.127 (6) | 0.066 (3) | 0.082 (5) | −0.042 (3) | 0.050 (4) | −0.018 (2) |
F2 | 0.124 (6) | 0.103 (7) | 0.092 (5) | 0.055 (6) | 0.063 (4) | 0.033 (5) |
F3 | 0.103 (3) | 0.140 (9) | 0.0328 (17) | −0.036 (5) | −0.0070 (17) | 0.001 (3) |
F4 | 0.051 (5) | 0.135 (7) | 0.157 (13) | −0.041 (4) | −0.005 (6) | −0.035 (8) |
F5 | 0.058 (4) | 0.147 (15) | 0.089 (5) | 0.026 (7) | −0.018 (3) | 0.067 (7) |
F6 | 0.062 (5) | 0.144 (8) | 0.097 (6) | 0.044 (4) | 0.004 (3) | −0.038 (5) |
F1' | 0.081 (5) | 0.151 (15) | 0.065 (3) | −0.077 (6) | 0.010 (3) | 0.009 (6) |
F2' | 0.148 (12) | 0.070 (5) | 0.088 (7) | −0.011 (7) | 0.077 (7) | −0.023 (5) |
F3' | 0.113 (9) | 0.121 (8) | 0.077 (6) | 0.054 (7) | 0.040 (6) | 0.066 (6) |
F4' | 0.062 (7) | 0.147 (14) | 0.126 (11) | 0.003 (7) | −0.056 (7) | −0.076 (10) |
F5' | 0.056 (5) | 0.098 (5) | 0.140 (11) | 0.031 (3) | 0.005 (5) | 0.042 (5) |
F6' | 0.035 (3) | 0.138 (7) | 0.088 (6) | −0.008 (4) | −0.002 (3) | 0.066 (6) |
S1—C1 | 1.678 (2) | C8—C9 | 1.388 (3) |
N1—C1 | 1.358 (3) | C9—C10 | 1.363 (3) |
N1—C8 | 1.405 (3) | C9—H9 | 0.9300 |
N1—H1 | 0.798 (17) | C10—C11 | 1.374 (3) |
N2—C1 | 1.340 (3) | C10—H10 | 0.9300 |
N2—C2 | 1.410 (3) | C11—C12 | 1.357 (3) |
N2—H2 | 0.83 (2) | C11—H11 | 0.9300 |
N3—C8 | 1.331 (3) | C12—H12 | 0.9300 |
N3—C12 | 1.337 (3) | C13—F1 | 1.256 (5) |
C2—C3 | 1.381 (3) | C13—F2' | 1.259 (8) |
C2—C7 | 1.388 (3) | C13—F3' | 1.285 (5) |
C3—C4 | 1.389 (3) | C13—F2 | 1.292 (7) |
C3—H3 | 0.9300 | C13—F1' | 1.335 (6) |
C4—C5 | 1.375 (3) | C13—F3 | 1.349 (5) |
C4—C13 | 1.498 (3) | C14—F5 | 1.268 (9) |
C5—C6 | 1.382 (3) | C14—F6' | 1.288 (8) |
C5—H5 | 0.9300 | C14—F4 | 1.301 (13) |
C6—C7 | 1.381 (3) | C14—F4' | 1.319 (13) |
C6—C14 | 1.489 (3) | C14—F5' | 1.326 (10) |
C7—H7 | 0.9300 | C14—F6 | 1.331 (8) |
C1—N1—C8 | 130.91 (18) | N3—C12—C11 | 124.4 (2) |
C1—N1—H1 | 116 (2) | N3—C12—H12 | 117.8 |
C8—N1—H1 | 112.3 (19) | C11—C12—H12 | 117.8 |
C1—N2—C2 | 130.04 (19) | F1—C13—F2' | 129.6 (6) |
C1—N2—H2 | 113.9 (16) | F1—C13—F3' | 65.2 (5) |
C2—N2—H2 | 115.5 (16) | F2'—C13—F3' | 106.9 (6) |
C8—N3—C12 | 116.63 (19) | F1—C13—F2 | 108.1 (6) |
N2—C1—N1 | 115.33 (19) | F3'—C13—F2 | 130.9 (4) |
N2—C1—S1 | 125.73 (17) | F2'—C13—F1' | 105.0 (6) |
N1—C1—S1 | 118.94 (15) | F3'—C13—F1' | 103.9 (6) |
C3—C2—C7 | 120.02 (18) | F2—C13—F1' | 71.5 (7) |
C3—C2—N2 | 124.51 (19) | F1—C13—F3 | 104.9 (4) |
C7—C2—N2 | 115.35 (18) | F2'—C13—F3 | 70.3 (6) |
C2—C3—C4 | 119.1 (2) | F2—C13—F3 | 105.4 (5) |
C2—C3—H3 | 120.5 | F1'—C13—F3 | 134.0 (4) |
C4—C3—H3 | 120.5 | F1—C13—C4 | 114.3 (3) |
C5—C4—C3 | 121.40 (19) | F2'—C13—C4 | 113.9 (5) |
C5—C4—C13 | 120.41 (19) | F3'—C13—C4 | 113.8 (3) |
C3—C4—C13 | 118.2 (2) | F2—C13—C4 | 112.6 (4) |
C4—C5—C6 | 118.98 (19) | F1'—C13—C4 | 112.4 (3) |
C4—C5—H5 | 120.5 | F3—C13—C4 | 110.8 (3) |
C6—C5—H5 | 120.5 | F5—C14—F6' | 115.6 (8) |
C7—C6—C5 | 120.6 (2) | F5—C14—F4 | 108.3 (11) |
C7—C6—C14 | 119.6 (2) | F6'—C14—F4 | 87.9 (10) |
C5—C6—C14 | 119.8 (2) | F5—C14—F4' | 88.3 (12) |
C6—C7—C2 | 119.97 (19) | F6'—C14—F4' | 107.6 (11) |
C6—C7—H7 | 120.0 | F6'—C14—F5' | 104.6 (9) |
C2—C7—H7 | 120.0 | F4—C14—F5' | 124.2 (11) |
N3—C8—C9 | 122.95 (19) | F4'—C14—F5' | 105.9 (12) |
N3—C8—N1 | 118.28 (18) | F5—C14—F6 | 106.4 (9) |
C9—C8—N1 | 118.76 (19) | F4—C14—F6 | 102.3 (10) |
C10—C9—C8 | 118.3 (2) | F4'—C14—F6 | 120.7 (11) |
C10—C9—H9 | 120.9 | F5'—C14—F6 | 92.8 (9) |
C8—C9—H9 | 120.9 | F5—C14—C6 | 115.2 (7) |
C9—C10—C11 | 119.7 (2) | F6'—C14—C6 | 114.6 (5) |
C9—C10—H10 | 120.1 | F4—C14—C6 | 111.8 (9) |
C11—C10—H10 | 120.1 | F4'—C14—C6 | 112.2 (10) |
C12—C11—C10 | 117.9 (2) | F5'—C14—C6 | 111.2 (7) |
C12—C11—H11 | 121.0 | F6—C14—C6 | 111.9 (5) |
C10—C11—H11 | 121.0 | ||
C2—N2—C1—N1 | −178.0 (2) | C8—N3—C12—C11 | −0.8 (4) |
C2—N2—C1—S1 | 2.6 (4) | C10—C11—C12—N3 | −1.0 (4) |
C8—N1—C1—N2 | −11.5 (4) | C5—C4—C13—F1 | 101.7 (6) |
C8—N1—C1—S1 | 167.9 (2) | C3—C4—C13—F1 | −79.2 (6) |
C1—N2—C2—C3 | 28.6 (4) | C5—C4—C13—F2' | −93.6 (10) |
C1—N2—C2—C7 | −155.3 (2) | C3—C4—C13—F2' | 85.6 (10) |
C7—C2—C3—C4 | 0.7 (3) | C5—C4—C13—F3' | 29.4 (9) |
N2—C2—C3—C4 | 176.6 (2) | C3—C4—C13—F3' | −151.5 (9) |
C2—C3—C4—C5 | −0.1 (3) | C5—C4—C13—F2 | −134.4 (7) |
C2—C3—C4—C13 | −179.3 (2) | C3—C4—C13—F2 | 44.7 (7) |
C3—C4—C5—C6 | −0.3 (3) | C5—C4—C13—F1' | 147.1 (10) |
C13—C4—C5—C6 | 178.9 (2) | C3—C4—C13—F1' | −33.7 (10) |
C4—C5—C6—C7 | 0.1 (3) | C5—C4—C13—F3 | −16.6 (7) |
C4—C5—C6—C14 | −178.7 (2) | C3—C4—C13—F3 | 162.5 (6) |
C5—C6—C7—C2 | 0.4 (3) | C7—C6—C14—F5 | 145.4 (9) |
C14—C6—C7—C2 | 179.3 (2) | C5—C6—C14—F5 | −35.8 (10) |
C3—C2—C7—C6 | −0.8 (3) | C7—C6—C14—F6' | 7.6 (8) |
N2—C2—C7—C6 | −177.1 (2) | C5—C6—C14—F6' | −173.6 (7) |
C12—N3—C8—C9 | 2.4 (3) | C7—C6—C14—F4 | −90.4 (9) |
C12—N3—C8—N1 | −176.2 (2) | C5—C6—C14—F4 | 88.4 (9) |
C1—N1—C8—N3 | −0.6 (4) | C7—C6—C14—F4' | −115.6 (12) |
C1—N1—C8—C9 | −179.3 (2) | C5—C6—C14—F4' | 63.3 (12) |
N3—C8—C9—C10 | −2.1 (4) | C7—C6—C14—F5' | 126.0 (8) |
N1—C8—C9—C10 | 176.5 (2) | C5—C6—C14—F5' | −55.2 (8) |
C8—C9—C10—C11 | 0.1 (4) | C7—C6—C14—F6 | 23.7 (7) |
C9—C10—C11—C12 | 1.4 (4) | C5—C6—C14—F6 | −157.5 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N3 | 0.83 (2) | 1.92 (2) | 2.641 (3) | 144 (2) |
N1—H1···S1i | 0.80 (2) | 2.62 (2) | 3.3931 (19) | 165 (3) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H9F6N3S |
Mr | 365.30 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 293 |
a, b, c (Å) | 15.0907 (17), 7.7491 (9), 26.709 (3) |
V (Å3) | 3123.3 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.41 × 0.31 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.873, 0.962 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17235, 3406, 2585 |
Rint | 0.102 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.151, 1.06 |
No. of reflections | 3406 |
No. of parameters | 280 |
No. of restraints | 13 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.40, −0.30 |
Computer programs: SMART (Bruker, 2001), SMART [SAINT-Plus?] (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N3 | 0.83 (2) | 1.92 (2) | 2.641 (3) | 144 (2) |
N1—H1···S1i | 0.798 (17) | 2.617 (18) | 3.3931 (19) | 165 (3) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Acknowledgements
We acknowledge the help of Professor Jie Sun of Shanghai Institute of Organic Chemistry.
References
Akiyama, T., Itoh, J. & Fuchibe, K. (2006). Adv. Synth. Catal. 348, 999–1010. Web of Science CrossRef CAS Google Scholar
Bruker (2000). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Struga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796–799. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea compounds have been extensively studied over the last few years due to their pharmacological and biological activities (Struga et al., 2007). Recently, excellent results have been also achieved with the use of the bifunctional thiourea catalysts, which effectively activate carbonyl groups and imines through double hydrogen-bonding interactions in asymmetric synthesis (Akiyama et al., 2006). Herein, we synthesized the title compound (I) and determined its crystal structure (Fig.1). The benzene and pyridine rings in the structural unit of (I) are almost perfectly coplanar with a dihedral angle between their planes of only 14.86 (3)°. Like other 2-pyridyl thioureas, the title compound exhibits both intramolecular and intermolecular hydrogen bonding interactions. The pyridine nitrogen N3 allows for the formation of a six membered N—H···Npyr hydrogen bonded ring which forces the two amide hydrogen atoms of the thiourea group to point in opposite directions. At the same time, the N1—H1 and C9—H9 moieties of the pyridine ring form intermolecular N—H···S and C—H···S hydrogen bonds with the S atom of an adjacent molecule (Fig. 2). This weak hydrogen-bonding network leads to the formation of infinite chains of molecules thus stabilizing the crystal packing.