organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5,7-Tri­methyl-3-phenyl­sulfonyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 21 March 2008; accepted 29 March 2008; online 2 April 2008)

The title compound, C17H16O3S, was prepared by the oxidation of 2,5,7-trimethyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring exhibits a dihedral angle of 81.16 (4)° with the plane of the benzofuran fragment. The crystal structure is stabilized by ππ inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.874 (2) Å] and by C—H⋯π inter­actions between a phenyl H atom of the phenyl­sulfonyl substituent and the furan ring of adjacent mol­ecules. In addition, the crystal structure exhibits intra- and inter­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar substituted benzofuran compounds, see: Choi et al. (2007a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1823-o1824.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4042.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O3S

  • Mr = 300.36

  • Monoclinic, P 21 /n

  • a = 9.2468 (7) Å

  • b = 8.4238 (7) Å

  • c = 18.963 (2) Å

  • β = 91.535 (2)°

  • V = 1476.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 (2) K

  • 0.40 × 0.40 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 8704 measured reflections

  • 3212 independent reflections

  • 2544 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.03

  • 3212 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1i 0.95 2.81 3.747 (3) 169
C16—H16C⋯O3ii 0.98 2.48 3.403 (2) 158
C17—H17A⋯O2 0.98 2.42 3.135 (3) 129
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+1, -z. Cg1 is the centroid of the O1/C8/C1/C2/C7 furan ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to earlier communications on the synthesis and structure of substituted benzofuran analogues, viz. 2,5-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007a) and 2,5-dimethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2007b). Herein we report the molecular and crystal structure of the title compound, 2,5,7-trimethyl-3-phenylsulfonyl-1-benzofuran (Fig. 1).

The benzofuran unit is almost planar, with a mean deviation of 0.009 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) is almost perpendicular to the plane of the benzofuran ring system [81.16 (4) °] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by aromatic ππ stacking interactions between the furan and the benzene rings from neighbouring molecules. The Cg1···Cg2ii distance is 3.874 (2)Å (Cg1 and Cg2 are the centroids of the O1/C8/C1/C2/C7 furan ring and the C2—C7 benzene ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by C—H···π interactions between a phenyl H atom of the phenylsulfonyl substituent and the furan ring of the benzofuran unit, with a C12—H12···Cgi separation of 2.81 Å (Fig. 2 and Table 1; Cg1 is the centroid of the O1/C8/C1/C2/C7 furan ring, symmetry code as in Fig. 2). Additionally, intra- and intermolecular C—H···O interactions in the structure were observed (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar substituted benzofuran compounds, see: Choi et al. (2007a,b).

Experimental top

3-Chloroperoxybenzoic acid (77%, 471 mg, 2.1 mmol) was added in small portions to a stirred solution of 2,5,7-trimethyl-3-phenylsulfanyl-1-benzofuran (268 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 81%, m.p. 399–400 K; Rf = 0.61 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.41 (s, 6H), 2.80 (s, 3H), 6.92 (s, 1H), 7.47–7.52 (m, 4H), 8.01 (d, J = 7.68 Hz, 2H); EI—MS 300 [M+].

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.99 Å for methylene H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and methylene, Uiso(H) =1.5Ueq(C) for H atoms for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoides drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ, C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) -x + 1, -y + 2, -z; (ii) -x + 2, -y + 1, -z.]
2,5,7-Trimethyl-3-phenylsulfonyl-1-benzofuran top
Crystal data top
C17H16O3SF(000) = 632
Mr = 300.36Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 4291 reflections
a = 9.2468 (7) Åθ = 2.5–28.3°
b = 8.4238 (7) ŵ = 0.23 mm1
c = 18.963 (2) ÅT = 173 K
β = 91.535 (2)°Block, colorless
V = 1476.6 (2) Å30.40 × 0.40 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2544 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.0°, θmin = 2.5°
Detector resolution: 10.0 pixels mm-1h = 1111
ϕ and ω scansk = 710
8704 measured reflectionsl = 2423
3212 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.104H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.6422P]
where P = (Fo2 + 2Fc2)/3
3212 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C17H16O3SV = 1476.6 (2) Å3
Mr = 300.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2468 (7) ŵ = 0.23 mm1
b = 8.4238 (7) ÅT = 173 K
c = 18.963 (2) Å0.40 × 0.40 × 0.10 mm
β = 91.535 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2544 reflections with I > 2σ(I)
8704 measured reflectionsRint = 0.041
3212 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3212 reflectionsΔρmin = 0.38 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.71396 (5)0.59940 (5)0.11202 (2)0.02746 (13)
O11.04792 (13)0.77976 (15)0.01610 (7)0.0331 (3)
O20.77401 (15)0.57958 (16)0.18201 (6)0.0386 (3)
O30.63915 (14)0.46890 (14)0.07823 (7)0.0346 (3)
C10.84920 (18)0.6601 (2)0.05599 (9)0.0270 (4)
C20.84265 (18)0.6499 (2)0.02041 (9)0.0260 (4)
C30.74772 (19)0.5861 (2)0.07118 (9)0.0290 (4)
H30.66250.53210.05790.035*
C40.7809 (2)0.6035 (2)0.14184 (9)0.0330 (4)
C50.9071 (2)0.6844 (2)0.16049 (10)0.0346 (4)
H50.92660.69570.20920.042*
C61.00483 (19)0.7488 (2)0.11156 (10)0.0328 (4)
C70.96763 (19)0.7270 (2)0.04190 (9)0.0291 (4)
C80.97377 (19)0.7376 (2)0.07465 (9)0.0304 (4)
C90.59363 (18)0.7624 (2)0.11293 (9)0.0263 (4)
C100.48964 (19)0.7768 (2)0.05910 (9)0.0318 (4)
H100.48300.70050.02230.038*
C110.3956 (2)0.9051 (2)0.06032 (11)0.0402 (5)
H110.32320.91650.02420.048*
C120.4063 (2)1.0159 (2)0.11345 (12)0.0450 (5)
H120.34161.10350.11370.054*
C130.5111 (2)1.0004 (2)0.16670 (11)0.0428 (5)
H130.51801.07760.20320.051*
C140.6058 (2)0.8729 (2)0.16692 (10)0.0329 (4)
H140.67770.86150.20330.040*
C150.6791 (2)0.5378 (3)0.19827 (10)0.0461 (5)
H15A0.64970.43010.18530.069*
H15B0.72820.53480.24340.069*
H15C0.59340.60580.20270.069*
C161.1407 (2)0.8345 (2)0.13129 (12)0.0438 (5)
H16A1.14860.93390.10460.066*
H16B1.13700.85810.18190.066*
H16C1.22490.76750.12020.066*
C171.0431 (2)0.7849 (2)0.14286 (10)0.0398 (5)
H17A0.97870.75860.18140.060*
H17B1.06140.89940.14270.060*
H17C1.13480.72780.14950.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0317 (2)0.0259 (2)0.0248 (2)0.00101 (17)0.00055 (16)0.00232 (17)
O10.0278 (6)0.0313 (7)0.0401 (7)0.0011 (5)0.0010 (5)0.0019 (6)
O20.0440 (8)0.0429 (8)0.0287 (7)0.0047 (6)0.0027 (6)0.0058 (6)
O30.0403 (7)0.0252 (6)0.0383 (7)0.0040 (5)0.0022 (6)0.0008 (5)
C10.0264 (8)0.0274 (9)0.0273 (8)0.0029 (7)0.0003 (6)0.0001 (7)
C20.0276 (8)0.0229 (8)0.0276 (8)0.0051 (7)0.0019 (6)0.0015 (7)
C30.0301 (9)0.0280 (9)0.0289 (9)0.0026 (7)0.0005 (7)0.0000 (7)
C40.0383 (10)0.0317 (9)0.0289 (9)0.0091 (8)0.0003 (7)0.0010 (8)
C50.0430 (10)0.0332 (10)0.0281 (9)0.0124 (8)0.0082 (8)0.0045 (8)
C60.0334 (10)0.0260 (9)0.0395 (10)0.0081 (7)0.0098 (8)0.0050 (8)
C70.0287 (8)0.0238 (8)0.0348 (9)0.0043 (7)0.0007 (7)0.0003 (7)
C80.0294 (9)0.0274 (9)0.0343 (9)0.0047 (7)0.0008 (7)0.0013 (7)
C90.0253 (8)0.0252 (8)0.0286 (8)0.0030 (7)0.0045 (7)0.0023 (7)
C100.0320 (9)0.0308 (9)0.0324 (9)0.0035 (7)0.0006 (7)0.0012 (8)
C110.0303 (10)0.0424 (11)0.0480 (12)0.0021 (8)0.0011 (8)0.0113 (9)
C120.0404 (11)0.0350 (11)0.0605 (13)0.0097 (9)0.0177 (10)0.0049 (10)
C130.0488 (12)0.0338 (10)0.0465 (12)0.0003 (9)0.0147 (9)0.0076 (9)
C140.0339 (9)0.0345 (10)0.0307 (9)0.0040 (8)0.0066 (7)0.0033 (8)
C150.0492 (12)0.0601 (14)0.0285 (10)0.0059 (11)0.0055 (8)0.0026 (9)
C160.0401 (11)0.0361 (11)0.0561 (13)0.0031 (9)0.0161 (10)0.0097 (9)
C170.0359 (10)0.0416 (11)0.0413 (11)0.0006 (9)0.0096 (8)0.0055 (9)
Geometric parameters (Å, º) top
S—O21.4346 (13)C9—C101.389 (2)
S—O31.4401 (13)C10—C111.388 (3)
S—C11.7394 (17)C10—H100.9500
S—C91.7674 (17)C11—C121.375 (3)
O1—C81.367 (2)C11—H110.9500
O1—C71.384 (2)C12—C131.387 (3)
C1—C81.363 (2)C12—H120.9500
C1—C21.451 (2)C13—C141.386 (3)
C2—C31.393 (2)C13—H130.9500
C2—C71.396 (2)C14—H140.9500
C3—C41.390 (2)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.405 (3)C15—H15C0.9800
C4—C151.511 (3)C16—H16A0.9800
C5—C61.388 (3)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C6—C71.386 (2)C17—H17A0.9800
C6—C161.505 (3)C17—H17B0.9800
C8—C171.483 (2)C17—H17C0.9800
C9—C141.386 (2)
O2—S—O3119.48 (8)C11—C10—C9118.54 (17)
O2—S—C1109.43 (8)C11—C10—H10120.7
O3—S—C1107.29 (8)C9—C10—H10120.7
O2—S—C9108.03 (8)C12—C11—C10120.53 (19)
O3—S—C9107.59 (8)C12—C11—H11119.7
C1—S—C9103.94 (8)C10—C11—H11119.7
C8—O1—C7106.96 (13)C11—C12—C13120.35 (19)
C8—C1—C2107.46 (15)C11—C12—H12119.8
C8—C1—S126.78 (14)C13—C12—H12119.8
C2—C1—S125.53 (13)C14—C13—C12120.26 (19)
C3—C2—C7119.27 (16)C14—C13—H13119.9
C3—C2—C1136.18 (16)C12—C13—H13119.9
C7—C2—C1104.55 (15)C13—C14—C9118.66 (18)
C4—C3—C2118.31 (17)C13—C14—H14120.7
C4—C3—H3120.8C9—C14—H14120.7
C2—C3—H3120.8C4—C15—H15A109.5
C3—C4—C5119.98 (17)C4—C15—H15B109.5
C3—C4—C15119.65 (18)H15A—C15—H15B109.5
C5—C4—C15120.36 (17)C4—C15—H15C109.5
C6—C5—C4123.47 (17)H15A—C15—H15C109.5
C6—C5—H5118.3H15B—C15—H15C109.5
C4—C5—H5118.3C6—C16—H16A109.5
C7—C6—C5114.32 (17)C6—C16—H16B109.5
C7—C6—C16122.04 (18)H16A—C16—H16B109.5
C5—C6—C16123.64 (17)C6—C16—H16C109.5
O1—C7—C6124.99 (16)H16A—C16—H16C109.5
O1—C7—C2110.38 (15)H16B—C16—H16C109.5
C6—C7—C2124.63 (17)C8—C17—H17A109.5
C1—C8—O1110.64 (15)C8—C17—H17B109.5
C1—C8—C17134.26 (17)H17A—C17—H17B109.5
O1—C8—C17115.10 (15)C8—C17—H17C109.5
C14—C9—C10121.66 (17)H17A—C17—H17C109.5
C14—C9—S119.35 (14)H17B—C17—H17C109.5
C10—C9—S118.98 (13)
O2—S—C1—C824.52 (19)C3—C2—C7—O1179.24 (14)
O3—S—C1—C8155.54 (16)C1—C2—C7—O10.79 (18)
C9—S—C1—C890.68 (17)C3—C2—C7—C61.4 (3)
O2—S—C1—C2161.63 (14)C1—C2—C7—C6178.60 (16)
O3—S—C1—C230.61 (17)C2—C1—C8—O10.6 (2)
C9—S—C1—C283.18 (16)S—C1—C8—O1174.20 (12)
C8—C1—C2—C3179.23 (19)C2—C1—C8—C17179.81 (19)
S—C1—C2—C35.9 (3)S—C1—C8—C175.4 (3)
C8—C1—C2—C70.81 (19)C7—O1—C8—C10.07 (19)
S—C1—C2—C7174.03 (13)C7—O1—C8—C17179.78 (15)
C7—C2—C3—C40.7 (2)O2—S—C9—C1420.07 (16)
C1—C2—C3—C4179.30 (18)O3—S—C9—C14150.32 (14)
C2—C3—C4—C50.3 (3)C1—S—C9—C1496.11 (15)
C2—C3—C4—C15179.10 (17)O2—S—C9—C10160.35 (13)
C3—C4—C5—C60.8 (3)O3—S—C9—C1030.10 (15)
C15—C4—C5—C6179.52 (17)C1—S—C9—C1083.47 (15)
C4—C5—C6—C70.1 (3)C14—C9—C10—C110.5 (3)
C4—C5—C6—C16179.55 (17)S—C9—C10—C11179.95 (13)
C8—O1—C7—C6178.91 (16)C9—C10—C11—C120.5 (3)
C8—O1—C7—C20.48 (18)C10—C11—C12—C130.2 (3)
C5—C6—C7—O1179.76 (15)C11—C12—C13—C140.1 (3)
C16—C6—C7—O10.1 (3)C12—C13—C14—C90.2 (3)
C5—C6—C7—C20.9 (3)C10—C9—C14—C130.1 (3)
C16—C6—C7—C2179.37 (16)S—C9—C14—C13179.70 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.952.813.747 (3)169
C16—H16C···O3ii0.982.483.403 (2)158
C17—H17A···O20.982.423.135 (3)129
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H16O3S
Mr300.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.2468 (7), 8.4238 (7), 18.963 (2)
β (°) 91.535 (2)
V3)1476.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.40 × 0.40 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8704, 3212, 2544
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.04
No. of reflections3212
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.38

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.952.813.747 (3)168.7
C16—H16C···O3ii0.982.483.403 (2)157.9
C17—H17A···O20.982.423.135 (3)129.4
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1823–o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds