metal-organic compounds
Di-μ-nicotinato-κ2N:O;κ2O:N-bis[aqua(ethylenediamine-κ2N,N′)(nicotinato-κN)cadmium(II)] dihydrate
aDepartment of Inorganic Chemistry, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovakia
*Correspondence e-mail: jan.moncol@stuba.sk
The dinuclear molecule of the title compound, [Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2O, lies on an inversion centre and forms 12-membered (CdNC3O)2 metallacycles with the two Cd2+ ions bridged by two nicotinate ligands. Both Cd2+ ions display coordination polyhedra with a distorted octahedral geometry that includes two pyridine N atoms from bridging and terminal nicotinate anions, two amine N atoms from chelating ethylenediamine ligands, carboxylate O atoms from bridging nicotinate anions and water O atoms. Intermolecular O—H⋯O and N—H⋯O hydrogen bonds result in the formation of a three-dimensional network, and π–π stacking interactions are observed between symmetry-related pyridine rings of bridging as well as terminal nicotinate anions (the centroid–centroid distances are 3.59 and 3.69 Å, respectively, and the distances between parallel planes of the stacked pyridine rings are 3.53 and 3.43 Å, respectively). The two methylene groups of the ethylenediamine ligand are disordered over two positions; the site occupancy factors are ca 0.8 and 0.2.
Related literature
For related literature, see: Bernstein et al. (1995); Chen (2003); Clegg et al. (1995); Evans & Lin (2001); Janiak (2000); Kang et al. (2007); Liang & Li (2005); Lu & Kohler (2002); Lu et al. (2007); Luo et al. (2004); Song et al. (2006); Xian et al. (2007); Zhang et al. (1996); Zhang et al. (2004). For related structures, see: Ayyappan et al. (2001); Abu-Youssef (2005); Chen et al. (2001, 2008); Lin et al. (2000); Liu et al. (2005); Madalan et al. (2005); Wang et al. (2002); Wasson & LaDuca (2007); Wu et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: XSCANS (Siemens, 1994); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536808009756/zl2107sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808009756/zl2107Isup2.hkl
The title complex was formed in a methanolic solution (30 cm3) of Cd(nicotinate)2.H2O (1.25 mmol) by adding 1,2-ethylenediamine in the molar ratio of 1:1. The resulting solution was left to slowly evaporate at room temperature. Well shaped crystals, suitable for X-ray structure analysis were collected after a few days by filtration and finally dried in vacuo. Anal. Calc.: C, 37.14; H, 4.45; N, 12.37; Cd, 24.83; Found: C, 36.82; H, 4.53; N, 12.30; Cd, 24.65. Selected IR data (KBr) cm-1: 1611 vs,br νas(COO-); 1383 vs,br νs(COO-); 643m δ(pyridine ring in-plane bending); 432m χ(pyridine ring out-of-plane bending).
The 1,2-ethylenediamine ligand has orientational disorder [C13A—C14A and C13B—C14B] and the refined site-occupancy factors of both the disordered parts are 0.78 (1) and 0.22 (1), respectively. The disordered parts of the title compounds were restrained using SADI, DELU and SIMU commands (SHELXL97; Sheldrick, 2008). All H atoms of C–H (aromatic, methylene) and N–H (amine) bonds were placed in calculated positions (0.93, 0.97 and 0.89–0.92 Å, respectively); isotropic displaced parameters were fixed (Uiso(H) = 1.2 Uiso(C/N) of C or N atoms to which they were attached) using a riding model. The water H atoms were placed in calculed positions (O–H = 0.82–0.84 Å); isotropic displaced parameters were fixed (Uiso(H) = 1.5 Uiso(O)) of O atoms to which they were attached).
Data collection: XSCANS (Siemens, 1994); cell
XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).Fig. 1. Perspective view of (I), with the atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level. Bonds in the minor disordered parts are drawn as open-dashed lines. | |
Fig. 2. The hydrogen-bonds and πa-πa stacking interactions in the crystal packing of (I). Only the major disordered part is shown. [symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z; (iii) x, y - 1, z] | |
Fig. 3. The hydrogen-bonds and πb-πb stacking interactions in the crystal packing of (I). Only the major disordered part is shown. [symmetry codes: (iii) x, y - 1, z; (iv) x + 1, y, z; (v) -x, -y, -z + 1] |
[Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2O | Z = 1 |
Mr = 905.18 | F(000) = 456 |
Triclinic, P1 | Dx = 1.722 Mg m−3 |
Hall symbol: -P1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.678 (1) Å | Cell parameters from 25 reflections |
b = 10.364 (1) Å | θ = 2.1–8.9° |
c = 11.984 (2) Å | µ = 1.29 mm−1 |
α = 101.08 (1)° | T = 294 K |
β = 93.60 (1)° | Prism, colourless |
γ = 109.63 (1)° | 0.35 × 0.30 × 0.20 mm |
V = 873.1 (2) Å3 |
Siemens P4 diffractometer | 4491 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.055 |
Graphite monochromator | θmax = 30.0°, θmin = 1.8° |
2θ/ω scans | h = −1→10 |
Absorption correction: ψ scan (XEMP; Siemens, 1994) | k = −14→13 |
Tmin = 0.652, Tmax = 0.776 | l = −16→16 |
6118 measured reflections | 3 standard reflections every 97 reflections |
5071 independent reflections | intensity decay: 2.0% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0307P)2 + 0.1604P] where P = (Fo2 + 2Fc2)/3 |
5071 reflections | (Δ/σ)max = 0.001 |
245 parameters | Δρmax = 0.57 e Å−3 |
21 restraints | Δρmin = −0.62 e Å−3 |
[Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2O | γ = 109.63 (1)° |
Mr = 905.18 | V = 873.1 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.678 (1) Å | Mo Kα radiation |
b = 10.364 (1) Å | µ = 1.29 mm−1 |
c = 11.984 (2) Å | T = 294 K |
α = 101.08 (1)° | 0.35 × 0.30 × 0.20 mm |
β = 93.60 (1)° |
Siemens P4 diffractometer | 4491 reflections with I > 2σ(I) |
Absorption correction: ψ scan (XEMP; Siemens, 1994) | Rint = 0.055 |
Tmin = 0.652, Tmax = 0.776 | 3 standard reflections every 97 reflections |
6118 measured reflections | intensity decay: 2.0% |
5071 independent reflections |
R[F2 > 2σ(F2)] = 0.030 | 21 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.57 e Å−3 |
5071 reflections | Δρmin = −0.62 e Å−3 |
245 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cd1 | 0.50747 (2) | 0.217937 (14) | 0.263617 (13) | 0.03264 (6) | |
O1 | 0.3261 (3) | 0.3353 (2) | 0.35364 (17) | 0.0505 (5) | |
O1W | 0.7358 (3) | 0.13999 (17) | 0.18352 (18) | 0.0457 (4) | |
H1W | 0.7166 | 0.0558 | 0.1631 | 0.069* | |
H2W | 0.8505 | 0.1895 | 0.2005 | 0.069* | |
O2 | 0.1020 (3) | 0.3222 (2) | 0.21860 (16) | 0.0471 (4) | |
O2W | 0.1968 (6) | 0.0994 (5) | 0.4981 (3) | 0.1256 (15) | |
H3W | 0.1050 | 0.0314 | 0.5055 | 0.188* | |
H4W | 0.2579 | 0.1496 | 0.5595 | 0.188* | |
O3 | 0.6053 (4) | 0.8065 (2) | 0.2856 (2) | 0.0739 (8) | |
O4 | 0.6980 (4) | 0.87012 (19) | 0.12727 (19) | 0.0619 (6) | |
N1 | 0.2917 (3) | 0.6858 (2) | 0.56161 (17) | 0.0364 (4) | |
N2 | 0.6293 (3) | 0.41008 (18) | 0.17134 (17) | 0.0353 (4) | |
N3 | 0.2678 (3) | 0.0997 (2) | 0.11238 (19) | 0.0429 (4) | |
H3A | 0.1697 | 0.1239 | 0.1265 | 0.051* | 0.780 (10) |
H3B | 0.3071 | 0.1225 | 0.0476 | 0.051* | 0.780 (10) |
H3C | 0.2002 | 0.1532 | 0.1062 | 0.051* | 0.220 (10) |
H3D | 0.3192 | 0.0863 | 0.0479 | 0.051* | 0.220 (10) |
N4 | 0.3717 (3) | −0.0048 (2) | 0.30277 (19) | 0.0445 (5) | |
H4A | 0.4522 | −0.0522 | 0.2930 | 0.053* | 0.780 (10) |
H4B | 0.3529 | 0.0051 | 0.3776 | 0.053* | 0.780 (10) |
H4C | 0.4641 | −0.0346 | 0.3276 | 0.053* | 0.220 (10) |
H4D | 0.3025 | 0.0006 | 0.3600 | 0.053* | 0.220 (10) |
C1 | 0.2052 (3) | 0.3777 (2) | 0.3123 (2) | 0.0347 (4) | |
C2 | 0.1904 (3) | 0.5085 (2) | 0.38534 (19) | 0.0315 (4) | |
C3 | 0.2937 (3) | 0.5680 (2) | 0.4933 (2) | 0.0357 (4) | |
H3 | 0.3691 | 0.5233 | 0.5199 | 0.043* | |
C4 | 0.1810 (4) | 0.7494 (2) | 0.5236 (2) | 0.0412 (5) | |
H4 | 0.1777 | 0.8311 | 0.5702 | 0.049* | |
C5 | 0.0722 (4) | 0.6972 (3) | 0.4178 (2) | 0.0468 (6) | |
H5 | −0.0040 | 0.7429 | 0.3940 | 0.056* | |
C6 | 0.0771 (3) | 0.5761 (3) | 0.3470 (2) | 0.0407 (5) | |
H6 | 0.0058 | 0.5405 | 0.2749 | 0.049* | |
C7 | 0.6597 (4) | 0.7856 (2) | 0.1908 (2) | 0.0428 (5) | |
C8 | 0.6792 (3) | 0.6441 (2) | 0.1471 (2) | 0.0326 (4) | |
C9 | 0.6207 (3) | 0.5384 (2) | 0.20765 (19) | 0.0333 (4) | |
H9 | 0.5737 | 0.5576 | 0.2761 | 0.040* | |
C10 | 0.6977 (3) | 0.3842 (2) | 0.0733 (2) | 0.0386 (5) | |
H10 | 0.7041 | 0.2955 | 0.0478 | 0.046* | |
C11 | 0.7595 (4) | 0.4825 (3) | 0.0076 (2) | 0.0399 (5) | |
H11 | 0.8065 | 0.4605 | −0.0603 | 0.048* | |
C12 | 0.7494 (3) | 0.6147 (2) | 0.0455 (2) | 0.0358 (4) | |
H12 | 0.7895 | 0.6829 | 0.0030 | 0.043* | |
C13A | 0.2200 (8) | −0.0529 (4) | 0.1059 (4) | 0.0548 (13) | 0.780 (10) |
H13A | 0.3186 | −0.0828 | 0.0767 | 0.066* | 0.780 (10) |
H13B | 0.1052 | −0.1059 | 0.0539 | 0.066* | 0.780 (10) |
C14A | 0.1963 (8) | −0.0807 (5) | 0.2237 (4) | 0.0604 (14) | 0.780 (10) |
H14A | 0.0978 | −0.0504 | 0.2527 | 0.072* | 0.780 (10) |
H14B | 0.1602 | −0.1808 | 0.2193 | 0.072* | 0.780 (10) |
C13B | 0.1473 (18) | −0.0289 (13) | 0.1436 (17) | 0.056 (4) | 0.220 (10) |
H13C | 0.0625 | −0.0923 | 0.0769 | 0.067* | 0.220 (10) |
H13D | 0.0740 | −0.0052 | 0.2019 | 0.067* | 0.220 (10) |
C14B | 0.270 (2) | −0.0967 (12) | 0.1881 (13) | 0.052 (4) | 0.220 (10) |
H14C | 0.3580 | −0.1059 | 0.1354 | 0.062* | 0.220 (10) |
H14D | 0.1959 | −0.1898 | 0.1967 | 0.062* | 0.220 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.04196 (9) | 0.02134 (7) | 0.03364 (8) | 0.01255 (6) | 0.00412 (6) | 0.00197 (5) |
O1 | 0.0542 (11) | 0.0569 (11) | 0.0438 (9) | 0.0363 (9) | −0.0027 (8) | −0.0076 (8) |
O1W | 0.0458 (9) | 0.0247 (7) | 0.0671 (12) | 0.0154 (7) | 0.0149 (8) | 0.0040 (7) |
O2 | 0.0444 (9) | 0.0463 (9) | 0.0415 (9) | 0.0158 (8) | −0.0034 (7) | −0.0076 (7) |
O2W | 0.162 (4) | 0.189 (4) | 0.075 (2) | 0.125 (3) | 0.040 (2) | 0.022 (2) |
O3 | 0.135 (2) | 0.0523 (12) | 0.0625 (14) | 0.0592 (14) | 0.0451 (15) | 0.0202 (11) |
O4 | 0.1147 (19) | 0.0276 (8) | 0.0537 (12) | 0.0330 (10) | 0.0270 (12) | 0.0143 (8) |
N1 | 0.0429 (10) | 0.0330 (9) | 0.0338 (9) | 0.0176 (8) | 0.0026 (7) | 0.0023 (7) |
N2 | 0.0440 (10) | 0.0227 (7) | 0.0409 (10) | 0.0147 (7) | 0.0038 (8) | 0.0067 (7) |
N3 | 0.0484 (11) | 0.0411 (10) | 0.0368 (10) | 0.0151 (9) | 0.0021 (8) | 0.0062 (8) |
N4 | 0.0578 (13) | 0.0339 (9) | 0.0417 (11) | 0.0138 (9) | 0.0093 (9) | 0.0124 (8) |
C1 | 0.0322 (10) | 0.0333 (10) | 0.0352 (10) | 0.0108 (8) | 0.0063 (8) | 0.0012 (8) |
C2 | 0.0308 (9) | 0.0300 (9) | 0.0341 (10) | 0.0113 (8) | 0.0082 (8) | 0.0059 (8) |
C3 | 0.0391 (11) | 0.0335 (10) | 0.0361 (10) | 0.0182 (9) | 0.0038 (8) | 0.0026 (8) |
C4 | 0.0532 (14) | 0.0342 (11) | 0.0413 (12) | 0.0234 (10) | 0.0066 (10) | 0.0060 (9) |
C5 | 0.0578 (15) | 0.0456 (13) | 0.0460 (13) | 0.0309 (12) | 0.0013 (11) | 0.0102 (11) |
C6 | 0.0422 (12) | 0.0442 (12) | 0.0375 (11) | 0.0198 (10) | 0.0008 (9) | 0.0068 (9) |
C7 | 0.0629 (15) | 0.0264 (9) | 0.0439 (12) | 0.0223 (10) | 0.0083 (11) | 0.0071 (9) |
C8 | 0.0362 (10) | 0.0228 (8) | 0.0394 (10) | 0.0122 (7) | 0.0018 (8) | 0.0064 (7) |
C9 | 0.0402 (11) | 0.0248 (9) | 0.0367 (10) | 0.0141 (8) | 0.0050 (8) | 0.0066 (8) |
C10 | 0.0504 (13) | 0.0262 (9) | 0.0410 (11) | 0.0191 (9) | 0.0041 (9) | 0.0028 (8) |
C11 | 0.0485 (13) | 0.0355 (11) | 0.0404 (11) | 0.0207 (10) | 0.0128 (9) | 0.0065 (9) |
C12 | 0.0399 (11) | 0.0279 (9) | 0.0406 (11) | 0.0112 (8) | 0.0087 (9) | 0.0102 (8) |
C13A | 0.069 (3) | 0.0353 (17) | 0.0425 (19) | 0.0009 (17) | −0.0001 (18) | 0.0024 (14) |
C14A | 0.062 (3) | 0.048 (2) | 0.052 (2) | −0.007 (2) | 0.006 (2) | 0.0158 (19) |
C13B | 0.043 (7) | 0.043 (7) | 0.063 (10) | 0.004 (5) | −0.002 (6) | −0.004 (6) |
C14B | 0.055 (8) | 0.024 (5) | 0.064 (9) | 0.001 (5) | 0.011 (6) | 0.003 (5) |
Cd1—N3 | 2.321 (2) | N4—H4D | 0.8980 |
Cd1—O1 | 2.325 (2) | C1—C2 | 1.509 (3) |
Cd1—N4 | 2.344 (2) | C2—C3 | 1.385 (3) |
Cd1—O1W | 2.348 (2) | C2—C6 | 1.394 (3) |
Cd1—N1i | 2.349 (2) | C3—H3 | 0.9300 |
Cd1—N2 | 2.406 (2) | C4—C5 | 1.378 (4) |
O1—C1 | 1.264 (3) | C4—H4 | 0.9300 |
O1W—H1W | 0.8187 | C5—C6 | 1.387 (3) |
O1W—H2W | 0.8450 | C5—H5 | 0.9300 |
O2—C1 | 1.247 (3) | C6—H6 | 0.9300 |
O2W—H3W | 0.8365 | C7—C8 | 1.519 (3) |
O2W—H4W | 0.8232 | C8—C12 | 1.385 (3) |
O3—C7 | 1.240 (3) | C8—C9 | 1.395 (3) |
O4—C7 | 1.243 (3) | C9—H9 | 0.9300 |
N1—C3 | 1.339 (3) | C10—C11 | 1.384 (3) |
N1—C4 | 1.344 (3) | C10—H10 | 0.9300 |
N1—Cd1i | 2.349 (2) | C11—C12 | 1.388 (3) |
N2—C10 | 1.334 (3) | C11—H11 | 0.9300 |
N2—C9 | 1.343 (3) | C12—H12 | 0.9300 |
N3—C13B | 1.477 (12) | C13A—C14A | 1.504 (6) |
N3—C13A | 1.484 (4) | C13A—H13A | 0.9700 |
N3—H3A | 0.8860 | C13A—H13B | 0.9700 |
N3—H3B | 0.8955 | C14A—H14A | 0.9700 |
N3—H3C | 0.8870 | C14A—H14B | 0.9700 |
N3—H3D | 0.8982 | C13B—C14B | 1.479 (15) |
N4—C14A | 1.474 (5) | C13B—H13C | 0.9700 |
N4—C14B | 1.507 (12) | C13B—H13D | 0.9700 |
N4—H4A | 0.9105 | C14B—H14C | 0.9700 |
N4—H4B | 0.9088 | C14B—H14D | 0.9700 |
N4—H4C | 0.9180 | ||
N3—Cd1—O1 | 90.64 (7) | O2—C1—C2 | 118.9 (2) |
N3—Cd1—N4 | 76.38 (8) | O1—C1—C2 | 115.1 (2) |
O1—Cd1—N4 | 100.83 (9) | C3—C2—C6 | 117.3 (2) |
N3—Cd1—O1W | 97.31 (8) | C3—C2—C1 | 120.63 (19) |
O1—Cd1—O1W | 169.36 (7) | C6—C2—C1 | 122.1 (2) |
N4—Cd1—O1W | 87.95 (7) | N1—C3—C2 | 124.0 (2) |
N3—Cd1—N1i | 168.76 (7) | N1—C3—H3 | 118.0 |
O1—Cd1—N1i | 84.28 (7) | C2—C3—H3 | 118.0 |
N4—Cd1—N1i | 94.70 (7) | N1—C4—C5 | 122.1 (2) |
O1W—Cd1—N1i | 89.07 (7) | N1—C4—H4 | 119.0 |
N3—Cd1—N2 | 91.32 (7) | C5—C4—H4 | 119.0 |
O1—Cd1—N2 | 88.34 (7) | C4—C5—C6 | 119.5 (2) |
N4—Cd1—N2 | 164.61 (7) | C4—C5—H5 | 120.2 |
O1W—Cd1—N2 | 84.44 (7) | C6—C5—H5 | 120.2 |
N1i—Cd1—N2 | 98.52 (7) | C5—C6—C2 | 119.1 (2) |
C1—O1—Cd1 | 130.80 (16) | C5—C6—H6 | 120.4 |
Cd1—O1W—H1W | 120.5 | C2—C6—H6 | 120.4 |
Cd1—O1W—H2W | 121.2 | O3—C7—O4 | 125.6 (2) |
H1W—O1W—H2W | 113.0 | O3—C7—C8 | 117.7 (2) |
H3W—O2W—H4W | 113.8 | O4—C7—C8 | 116.7 (2) |
C3—N1—C4 | 118.0 (2) | C12—C8—C9 | 118.18 (19) |
C3—N1—Cd1i | 119.65 (15) | C12—C8—C7 | 121.6 (2) |
C4—N1—Cd1i | 122.28 (16) | C9—C8—C7 | 120.2 (2) |
C10—N2—C9 | 117.98 (19) | N2—C9—C8 | 122.8 (2) |
C10—N2—Cd1 | 117.60 (14) | N2—C9—H9 | 118.6 |
C9—N2—Cd1 | 124.23 (16) | C8—C9—H9 | 118.6 |
C13B—N3—Cd1 | 107.2 (6) | N2—C10—C11 | 123.4 (2) |
C13A—N3—Cd1 | 107.0 (2) | N2—C10—H10 | 118.3 |
C13B—N3—H3A | 80.3 | C11—C10—H10 | 118.3 |
C13A—N3—H3A | 109.8 | C10—C11—C12 | 118.3 (2) |
Cd1—N3—H3A | 109.2 | C10—C11—H11 | 120.8 |
C13B—N3—H3B | 135.6 | C12—C11—H11 | 120.8 |
C13A—N3—H3B | 111.4 | C8—C12—C11 | 119.4 (2) |
Cd1—N3—H3B | 109.0 | C8—C12—H12 | 120.3 |
H3A—N3—H3B | 110.3 | C11—C12—H12 | 120.3 |
C13B—N3—H3C | 107.7 | N3—C13A—C14A | 109.3 (4) |
C13A—N3—H3C | 133.5 | N3—C13A—H13A | 109.8 |
Cd1—N3—H3C | 108.4 | C14A—C13A—H13A | 109.8 |
C13B—N3—H3D | 115.9 | N3—C13A—H13B | 109.8 |
C13A—N3—H3D | 86.8 | C14A—C13A—H13B | 109.8 |
Cd1—N3—H3D | 108.1 | H13A—C13A—H13B | 108.3 |
H3C—N3—H3D | 109.4 | N4—C14A—C13A | 110.5 (4) |
C14A—N4—Cd1 | 108.3 (2) | N4—C14A—H14A | 109.6 |
C14B—N4—Cd1 | 103.7 (6) | C13A—C14A—H14A | 109.6 |
C14A—N4—H4A | 110.7 | N4—C14A—H14B | 109.6 |
C14B—N4—H4A | 85.4 | C13A—C14A—H14B | 109.6 |
Cd1—N4—H4A | 109.4 | H14A—C14A—H14B | 108.1 |
C14A—N4—H4B | 112.2 | N3—C13B—C14B | 107.7 (12) |
C14B—N4—H4B | 137.7 | N3—C13B—H13C | 110.2 |
Cd1—N4—H4B | 109.4 | C14B—C13B—H13C | 110.2 |
H4A—N4—H4B | 106.8 | N3—C13B—H13D | 110.2 |
C14A—N4—H4C | 131.2 | C14B—C13B—H13D | 110.2 |
C14B—N4—H4C | 110.1 | H13C—C13B—H13D | 108.5 |
Cd1—N4—H4C | 109.3 | C13B—C14B—N4 | 107.3 (12) |
C14A—N4—H4D | 88.0 | C13B—C14B—H14C | 110.3 |
C14B—N4—H4D | 116.6 | N4—C14B—H14C | 110.3 |
Cd1—N4—H4D | 109.8 | C13B—C14B—H14D | 110.3 |
H4C—N4—H4D | 107.1 | N4—C14B—H14D | 110.3 |
O2—C1—O1 | 126.0 (2) | H14C—C14B—H14D | 108.5 |
N3—Cd1—O1—C1 | −33.5 (2) | O1—C1—C2—C3 | −4.8 (3) |
N4—Cd1—O1—C1 | −109.7 (2) | O2—C1—C2—C6 | −5.8 (3) |
O1W—Cd1—O1—C1 | 105.0 (4) | O1—C1—C2—C6 | 173.7 (2) |
N1i—Cd1—O1—C1 | 156.5 (2) | C4—N1—C3—C2 | 0.8 (4) |
N2—Cd1—O1—C1 | 57.8 (2) | Cd1i—N1—C3—C2 | −175.37 (17) |
N3—Cd1—N2—C10 | −65.68 (18) | C6—C2—C3—N1 | −0.4 (4) |
O1—Cd1—N2—C10 | −156.28 (18) | C1—C2—C3—N1 | 178.1 (2) |
N4—Cd1—N2—C10 | −29.2 (4) | C3—N1—C4—C5 | −0.2 (4) |
O1W—Cd1—N2—C10 | 31.54 (18) | Cd1i—N1—C4—C5 | 175.8 (2) |
N1i—Cd1—N2—C10 | 119.76 (17) | N1—C4—C5—C6 | −0.6 (4) |
N3—Cd1—N2—C9 | 109.32 (19) | C4—C5—C6—C2 | 0.9 (4) |
O1—Cd1—N2—C9 | 18.72 (18) | C3—C2—C6—C5 | −0.4 (4) |
N4—Cd1—N2—C9 | 145.8 (3) | C1—C2—C6—C5 | −179.0 (2) |
O1W—Cd1—N2—C9 | −153.46 (19) | O3—C7—C8—C12 | −176.1 (3) |
N1i—Cd1—N2—C9 | −65.24 (19) | O4—C7—C8—C12 | 4.7 (4) |
O1—Cd1—N3—C13B | −87.9 (8) | O3—C7—C8—C9 | 5.8 (4) |
N4—Cd1—N3—C13B | 13.1 (8) | O4—C7—C8—C9 | −173.4 (3) |
O1W—Cd1—N3—C13B | 99.2 (8) | C10—N2—C9—C8 | 0.3 (3) |
N1i—Cd1—N3—C13B | −25.0 (9) | Cd1—N2—C9—C8 | −174.71 (16) |
N2—Cd1—N3—C13B | −176.2 (8) | C12—C8—C9—N2 | −0.2 (3) |
O1—Cd1—N3—C13A | −121.2 (3) | C7—C8—C9—N2 | 178.0 (2) |
N4—Cd1—N3—C13A | −20.2 (3) | C9—N2—C10—C11 | −0.1 (4) |
O1W—Cd1—N3—C13A | 65.9 (3) | Cd1—N2—C10—C11 | 175.22 (19) |
N1i—Cd1—N3—C13A | −58.3 (5) | N2—C10—C11—C12 | −0.1 (4) |
N2—Cd1—N3—C13A | 150.4 (3) | C9—C8—C12—C11 | −0.1 (3) |
N3—Cd1—N4—C14A | −10.2 (3) | C7—C8—C12—C11 | −178.2 (2) |
O1—Cd1—N4—C14A | 77.8 (3) | C10—C11—C12—C8 | 0.2 (4) |
O1W—Cd1—N4—C14A | −108.2 (3) | C13B—N3—C13A—C14A | −46.9 (11) |
N1i—Cd1—N4—C14A | 162.9 (3) | Cd1—N3—C13A—C14A | 48.5 (6) |
N2—Cd1—N4—C14A | −47.9 (5) | C14B—N4—C14A—C13A | −46.1 (10) |
N3—Cd1—N4—C14B | 20.6 (7) | Cd1—N4—C14A—C13A | 39.8 (6) |
O1—Cd1—N4—C14B | 108.7 (7) | N3—C13A—C14A—N4 | −61.5 (8) |
O1W—Cd1—N4—C14B | −77.4 (7) | C13A—N3—C13B—C14B | 47.9 (10) |
N1i—Cd1—N4—C14B | −166.3 (7) | Cd1—N3—C13B—C14B | −46.7 (16) |
N2—Cd1—N4—C14B | −17.1 (8) | N3—C13B—C14B—N4 | 70 (2) |
Cd1—O1—C1—O2 | 30.5 (4) | C14A—N4—C14B—C13B | 49.7 (10) |
Cd1—O1—C1—C2 | −148.90 (17) | Cd1—N4—C14B—C13B | −53.2 (15) |
O2—C1—C2—C3 | 175.7 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O4ii | 0.82 | 1.84 | 2.659 (2) | 174 |
O1W—H2W···O2iii | 0.84 | 1.93 | 2.762 (3) | 169 |
O2W—H3W···O2Wiv | 0.84 | 2.25 | 3.041 (10) | 158 |
O2W—H4W···O3i | 0.82 | 1.97 | 2.742 (5) | 157 |
N3—H3A···O2 | 0.89 | 2.37 | 3.099 (3) | 139 |
N3—H3B···O4v | 0.90 | 2.11 | 2.966 (3) | 160 |
N3—H3C···O2 | 0.89 | 2.36 | 3.099 (3) | 141 |
N3—H3D···O4v | 0.90 | 2.24 | 2.966 (3) | 138 |
N4—H4A···O3ii | 0.91 | 2.16 | 3.054 (3) | 169 |
N4—H4B···O2W | 0.91 | 2.22 | 2.975 (4) | 140 |
N4—H4C···O3ii | 0.92 | 2.26 | 3.054 (3) | 145 |
N4—H4D···O2W | 0.90 | 2.13 | 2.975 (4) | 157 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x+1, y, z; (iv) −x, −y, −z+1; (v) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2O |
Mr | 905.18 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 7.678 (1), 10.364 (1), 11.984 (2) |
α, β, γ (°) | 101.08 (1), 93.60 (1), 109.63 (1) |
V (Å3) | 873.1 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.35 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | ψ scan (XEMP; Siemens, 1994) |
Tmin, Tmax | 0.652, 0.776 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6118, 5071, 4491 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.076, 1.06 |
No. of reflections | 5071 |
No. of parameters | 245 |
No. of restraints | 21 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.57, −0.62 |
Computer programs: XSCANS (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O4i | 0.82 | 1.84 | 2.659 (2) | 173.6 |
O1W—H2W···O2ii | 0.84 | 1.93 | 2.762 (3) | 169.0 |
O2W—H3W···O2Wiii | 0.84 | 2.25 | 3.041 (10) | 157.9 |
O2W—H4W···O3iv | 0.82 | 1.97 | 2.742 (5) | 156.7 |
N3—H3A···O2 | 0.89 | 2.37 | 3.099 (3) | 139.0 |
N3—H3B···O4v | 0.90 | 2.11 | 2.966 (3) | 159.8 |
N3—H3C···O2 | 0.89 | 2.36 | 3.099 (3) | 141.2 |
N3—H3D···O4v | 0.90 | 2.24 | 2.966 (3) | 138.3 |
N4—H4A···O3i | 0.91 | 2.16 | 3.054 (3) | 168.8 |
N4—H4B···O2W | 0.91 | 2.22 | 2.975 (4) | 139.7 |
N4—H4C···O3i | 0.92 | 2.26 | 3.054 (3) | 145.1 |
N4—H4D···O2W | 0.90 | 2.13 | 2.975 (4) | 157.1 |
Symmetry codes: (i) x, y−1, z; (ii) x+1, y, z; (iii) −x, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z. |
Compound | Bonding mode | M···M | Chromophore |
Ia | µ2-nic-κ2N:O | 7.355 (1) | CdN4O2 |
IIb | µ2-nic-κ2N:O | 6.904 (2) | CuN4O |
IIIc | µ2-nic-κ2N:O | 6.972 (2) | CuN4O |
IVd | µ3-nic-κ3N:O:O' | 7.208 (1) | MnN2O4 |
Ve | µ3-nic-κ3N:O:O' | 7.304 (3) | CdN2O4 |
VIf | µ3-nic-κ3N:O:O' | 6.736 (1) | CuN3O2 |
VIIg | µ3-nic-κ3N:O:O' | 6.680 (1) | CuN3O2 |
VIIIh | µ3-nic-κ3N:O:O' | 6.646 (2) | NiN2O4 |
IXi | µ3-nic-κ3N:O:O' | 6.90 (1) | NiN2O4 |
Xj | µ3-nic-κ3N:O:O' | 6.622 (2) | NiN2O4 |
XIk | µ3-nic-κ3N:O:O' | 7.324 (1) | MnN2O4 |
XIIl | µ3-nic-κ3N:O:O' | 6.890 (2) | NiN2O4 |
µ2-nic-κ2N:O | 7.027 (2) | NiN3O3 |
(a) [Cd(µ2-nic)(nic)(en)(H2O)]2.2H2O (this work); (b) [Cu(µ2-nic)(dien)]2(nic)2 (dien is diethylenetriamine) (Chen et al., 2008); (c) [Cu(µ2-nic)(dien)]2(BF4)2.2MeOH [dien is diethylenetriamine] (Chen et al., 2008); (d) [Mn3(µ3-nic)4(µ2-N3)2(H2O)2]n (Chen et al., 2001); (e) [Cd3(µ3-nic)4(µ2-N3)2(H2O)2]n (Abu-Youssef, 2005); (f) [Cu2(µ3-nic)2(Me2bipy)2]n.2nClO4 [Me2bipy is 4,4'-dimethyl-2,2'-bipyridine] (Madalan et al., 2005); (g) [Cu2(µ3-nic)2(bipy)2]n.2nClO4.2H2O [bipy is 2,2'-bipyridine] (Madalan et al., 2005); (h) [Ni4(µ3-nic)4(µ2-nic)4(µ2-H2O)2]n.2nEtOH.2nH2O (Ayyappan et al., 2001); (i) [Ni4(µ3-nic)4(µ2-nic)4(µ2-H2O)2]n (Wu et al., 2003); (j) [Ni4(µ3-nic)4(µ2-nic)4(µ2-H2O)2]n.2nH2O (Wasson & LaDuca, 2007); (k) [Mn(µ3-nic)2]n (Lin et al., 2000; Wang et al., 2002); (l) [Ni3(µ3-nic)2(µ2-nic)2(µ2-N3)2(µ2-Hnic)2]n (Liu et al., 2005). |
Acknowledgements
We thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (grant Nos. 1/4454/07 and 1/0353/08) for financial support.
References
Abu-Youssef, M. A. M. (2005). Polyhedron, 24, 1829–1836. Web of Science CSD CrossRef CAS Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ayyappan, P., Evans, O. R. & Lin, W.-L. (2001). Inorg. Chem. 40, 4627–4632. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Chen, C., Chan, Z.-K., Yeh, C.-W. & Chen, J.-D. (2008). Struct. Chem. In the press. doi: 10.1007/s11224-007-9256-9. Google Scholar
Chen, H.-J. (2003). Acta Cryst. C59, m371–m372. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chen, H.-J., Mao, Z.-W., Gao, S. & Chen, X.-M. (2001). Chem. Commun. pp. 2320–2321. Web of Science CSD CrossRef Google Scholar
Clegg, W., Cressey, J. T., McCamley, A. & Straughan, B. P. (1995). Acta Cryst. C51, 234–235. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Evans, O. R. & Lin, W. (2001). Chem. Mater. 13, 3009–3017. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Kang, Y., Zhang, J., Qin, Y.-Y., Li, Z.-J. & Yao, Y.-G. (2007). J. Mol. Struct. 827, 126–129. Web of Science CSD CrossRef CAS Google Scholar
Liang, Y. & Li, W. (2005). Acta Cryst. E61, m1135–m1137. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lin, W.-B., Chapman, M. E., Wang, Z. & Lee, G. T. (2000). Inorg. Chem. 39, 4169–4173. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem. 44, 7298–7300. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lu, J. Y., Achten, M. A. & Zhang, A. (2007). Inorg. Chem. Commun. 10, 114–116. Web of Science CSD CrossRef CAS Google Scholar
Lu, J. Y. & Kohler, E. E. (2002). Inorg. Chem. Commun. 5, 196–198. Web of Science CSD CrossRef CAS Google Scholar
Luo, J., Jiang, F., Wang, R., Han, L., Lin, Z., Cao, R. & Hong, M. (2004). J. Mol. Struct. 707, 211–216. Web of Science CSD CrossRef CAS Google Scholar
Madalan, A. M., Paraschiv, C., Sutter, J.-P., Schmidtmann, M., Müller, A. & Andruh, M. (2005). Cryst. Growth Des. 5, 707–711. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XSCANS and XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Song, Y.-S., Yan, B. & Chen, Z.-X. (2006). J. Solid State Chem. 179, 4037–4046. Web of Science CSD CrossRef CAS Google Scholar
Wang, W.-G., Ma, C.-B., Zhang, X.-F., Chen, C.-N., Liu, Q.-T., Chen, F., Liao, D.-Z. & Li, L.-C. (2002). Bull. Chem. Soc. Jpn, 75, 2609–2614. Web of Science CSD CrossRef CAS Google Scholar
Wasson, A. E. & LaDuca, R. L. (2007). Polyhedron, 26, 1001–1011. Web of Science CSD CrossRef CAS Google Scholar
Wu, C.-D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2003). Z. Anorg. Allg. Chem. 629, 693–696. Web of Science CSD CrossRef CAS Google Scholar
Xian, Y., Niu, S. Y., Jin, J., Sun, L. P., Yang, G. D. & Ye, L. (2007). Z. Anorg. Allg. Chem. 633, 1274–1278. Web of Science CSD CrossRef Google Scholar
Zhang, C., Xu, D., Xu, Y. & Huang, X. (1996). Acta Cryst. C52, 591–593. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Zhang, J., Li, Z.-J., Wen, Y.-H., Kang, Y., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. C60, m389–m391. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Several CdII coordination polymers that contain bridging 3-pyridylcarboxylate (nicotinate) ligands have been reported recently (Abu-Youssef, 2005; Evans & Lin, 2001; Chen, (2003); Clegg et al., 1995; Kang et al., 2007; Liang & Li, 2005; Lu & Kohler, 2002; Lu et al., 2007; Song et al., 2006; Xian et al. 2007; Zhang et al., 1996; Zhang et al., 2004). However, if the nicotinate anions are coordinated only as terminal ligands, the possibility of participating in a hydrogen-bonding network originates. As part of our efforts to investigate metal(II) complexes based on pyridine carboxylic acids, we report herein the crystal structure of the title compound, (I).
Figure 1 shows a representative ORTEP diagram for (I). The Cd centers are µ2-bridged by two nicotinate ligands to form a twelve-membered (CdNC3O)2 ring with the Cd···Cdi [symmetry code: (i) -x + 1, -y + 1, -z + 1] distance being 7.355 (1) Å. The two nicotinate ligands bridge two Cd centers through the pyridyl N atom and one of the carboxylate O atoms. The Cd2+ ion has a distorted octahedral coordination formed by the two pyridine N atoms of bridging [Cd–N1i = 2.349 (2) Å] and terminal [Cd–N2 = 2.406 (2) Å] nicotinate anions; the two N atoms of chelating 1,2-ethylenediamine ligands [Cd–N3 = 2.321 (2) Å and Cd–N4 = 2.345 (2) Å], and two O atoms in trans positions, one from the carboxylate group of a µ2-bridging nicotinate ligand [Cd–O1 = 2.325 (2) Å] and one from the coordinated water molecule [Cd–O1W = 2.348 (2) Å].
The structure of (I) can be compared with two dimeric copper(II) complexes with a µ2-bridging nicotinate ligand [Cu(µ2-nic)(dien)]2(nic)2 (II) and [Cu(µ2-nic)(dien)]2(BF4)2.2MeOH (III) [dien is diethylenetriamine] (Chen et al., 2008). Both compounds (II-III) are dimeric complexes, where the nicotinate ligands are bridging two Cu centers to form similar twelve-membered (CuNC3O)2 rings (Table 2). On the other hand, the same (MNC3O)2 [M = Cu, Cd, Ni or Mn] rings are observed in some metal(II) nicotinate based coordination polymers, but the nicotinate ligands are µ3-bridging ones. M···M distances and chromophores for dinuclear and polymeric complexes with twelve-membered (MNC3O)2 rings are compared in Table 2.
The hydrogen-bonding parameters of (I) are listed in Table 1. In the crystal structure, intermolecular O–H···O and N–H···O hydrogen-bonds (Table 1) link the molecules to form a three-dimensional network (Figures 2 and 3). One of the amine H atoms of the 1,2-ethylenediamine ligand forms an intramolecular hydrogen-bond [N3–H3A···O2 or N3–H3C···O2] and partipicates in creation of aan intramolecular metallocyclus with an S(6) pattern (Bernstein et al., 1995) (Figure 2). One O atom and one H atom of each of the uncoordinated water molecules, two amine groups of the 1,2-ethylenediamine ligands and one carboxylate O atom of each of the terminal nicotinate ligands are connected through hydrogen-bonds to rings with a graph set motif of R66(12) (Bernstein et al., 1995) [N4–H4B···O2W or N4–H4D···O2W; N4–H4A···O3iii or N4–H4C···O3iii; and O2W–H4W···O3i, symmetry codes: (i) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z] (Figure 2). The H atoms from the amine groups of the 1,2-ethylenediamine ligand and the H atoms from the coordinated water molecule are connected through hydrogen-bonds to the carboxylate O atoms of the terminal nicotinate ligands [N4–H4A···O3iii or N4–H4C···O3iii; O1W–H1W···O4iii] and these groups create six-membered R22(8) rings (Bernstein et al., 1995) (Figure 2). The remaining hydrogen-bonds from the amine groups of the ethylendiamine ligands are connected to carboxylate O atoms of terminal nicotinate ligands of neighbouring complex molecules [N3–H3B···O4ii or N3–H3D···O4ii, symmetry codes: (ii) -x + 1, -y + 1, -z] (Figure 2). Further intermolecular hydrogen-bonds between uncoordinated water molecules [O2W–H3W···O2Wv, symmetry codes: (v) -x, -y, -z + 1], and between coordinated water molecules and carboxylate O atoms of bridging nicotinate ligands [O1W–H2W···O2iv, symmetry codes: (iv) x + 1, y, z] are shown in Figure 3.
Additional interactions between the pyridine rigs of nicotinate ligands are π-π stacking interactions (Janiak, 2000) between the two adjacent pyridine rings of terminal nicotinate ligands [N2/C8—C12] (πa-πaii) (Figure 2), and between the two adjacent pyridine rings of bridging nicotinate ligands [N1/C2—C6] (πb-πbvi) (Figure 3) [symmetry codes: (ii) -x + 1, -y + 1, -z; (vi) -x, -y + 1, -z - 1]. The centroid (Cg) distances Cg···Cg are 3.69 and 3.59 Å, respectively. The distances between parallel planes of the stacked pyridine rings are 3.43 and 3.53 Å, respectively.