metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­chlorido(4-methyl­benzoato-κO)(1,10-phenanthroline-κ2N,N′)copper(II)

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 9 April 2008; accepted 19 April 2008; online 26 April 2008)

In the title mononuclear complex, [Cu(C8H7O2)Cl(C12H8N2)(H2O)], the CuII atom is coordinated by one carboxylate O atom from a monodentate 4-methyl­benzoate ligand, two N atoms from the 1,10-phenanthroline ligand, one chloride ion and one water mol­ecule in a square-pyramidal geometry. The crystal structure exhibits inter- and intra­molecular C—H⋯Cl, C—H⋯O, O—H⋯Cl and O—H⋯O hydrogen bonds, as well as C—H⋯π inter­actions of phenanthroline and methyl H atoms towards the π-systems of neighboring 4-methyl­benzoate units and the pyridine rings of the phenanthroline system [centroid–centroid distances are 2.706 (2) and 2.992 (1) Å, respectively].

Related literature

For related literature, see: Song et al. (2007[Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023-m1024.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O2)Cl(C12H8N2)(H2O)]

  • Mr = 432.35

  • Monoclinic, P 21 /n

  • a = 10.9095 (4) Å

  • b = 11.0546 (4) Å

  • c = 15.2059 (6) Å

  • β = 103.578 (2)°

  • V = 1782.58 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 296 (2) K

  • 0.30 × 0.29 × 0.25 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.679, Tmax = 0.721

  • 17233 measured reflections

  • 4096 independent reflections

  • 3470 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.087

  • S = 1.05

  • 4096 reflections

  • 251 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cl1i 0.93 2.76 3.654 (2) 162
C1—H1⋯O1 0.93 2.52 2.988 (3) 112
O1W—H2W⋯Cl1i 0.816 (10) 2.259 (10) 3.0709 (17) 174 (3)
O1W—H1W⋯O2 0.812 (10) 1.788 (14) 2.526 (2) 150 (3)
C3—H3⋯Cg1ii 0.93 2.71 3.413 (2) 133
C20—H20BCg2iii 0.93 2.99 3.627 (2) 125
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z. Cg1 and Cg2 are the centroids of the C14–C19 and C1–C4,C12,N1 rings, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of 4-methylbenzoate complexes, it has been found that the 4-methylbenzoic acid functions as a multidentate ligand [Song et al. (2007)], with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Cu complex obtained by the reaction of 4-methylbenzoic acid, 1,10-phenanthroline and copper chloride in an alkaline aqueous solution.

As illustrated in Figure 1, the CuII atom exists in a square pyramidal environment, defined by one carboxyl O atom from a monodentate 4-methylbenzate ligand, two N atoms from the 1,10-phenanthroline ligand, one chlorine ion and a water molecule. The crystal structure exhibits inter and intramolecular C—H···Cl, C—H···O, O—H···Cl and O—H···O hydrogen bonding and C—H···π interactions of phenanthroline and methyl H atoms towards the π-systems of neighboring 4-methylbenzate units and of pyridine rings of the phenanthroline system. Centroid to centroid distances are 2.706 (2)Å and 2.992 (1) Å, respectively. (Table 1, Fig. 2, Cg1 = Ring (C14-C19) ; Cg2 = Ring (C1-C4 ,C12, N1)).

Related literature top

For related literature, see: Song et al. (2007). Cg1 and Cg2 are the centroids of the C14–C19 and C1–C4,C12,N1 rings, respectively.

Experimental top

A mixture of copper chloride (1 mmol), 4-methylbenzoic acid (1 mmol), phen (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 - 0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008\bbr00).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of the title compound. The intermolecluar hydrogen bonds and C—H···π interactions are shown as dashed lines.
Aquachlorido(4-methylbenzoato-κO)(1,10-phenanthroline- κ2N,N')copper(II) top
Crystal data top
[Cu(C8H7O2)Cl(C12H8N2)(H2O)]F(000) = 884
Mr = 432.35Dx = 1.611 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2895 reflections
a = 10.9095 (4) Åθ = 2.4–27.9°
b = 11.0546 (4) ŵ = 1.40 mm1
c = 15.2059 (6) ÅT = 296 K
β = 103.578 (2)°Block, blue
V = 1782.58 (12) Å30.30 × 0.29 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
4096 independent reflections
Radiation source: fine-focus sealed tube3470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.679, Tmax = 0.721k = 1414
17233 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.6484P]
where P = (Fo2 + 2Fc2)/3
4096 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(C8H7O2)Cl(C12H8N2)(H2O)]V = 1782.58 (12) Å3
Mr = 432.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9095 (4) ŵ = 1.40 mm1
b = 11.0546 (4) ÅT = 296 K
c = 15.2059 (6) Å0.30 × 0.29 × 0.25 mm
β = 103.578 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
4096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3470 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.721Rint = 0.039
17233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0313 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
4096 reflectionsΔρmin = 0.41 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64907 (19)0.5567 (2)0.17000 (14)0.0353 (4)
H10.72990.58800.19050.042*
C20.6213 (2)0.4448 (2)0.20277 (15)0.0417 (5)
H20.68260.40300.24450.050*
C30.5034 (2)0.3969 (2)0.17311 (14)0.0401 (5)
H30.48430.32140.19340.048*
C40.41115 (19)0.46272 (19)0.11182 (13)0.0323 (4)
C50.2842 (2)0.4229 (2)0.07897 (14)0.0387 (5)
H50.25920.34890.09800.046*
C60.1996 (2)0.4917 (2)0.02029 (15)0.0396 (5)
H60.11740.46380.00030.047*
C70.23384 (19)0.6059 (2)0.01065 (14)0.0349 (4)
C80.1518 (2)0.6819 (2)0.07119 (17)0.0470 (6)
H80.06870.65870.09490.056*
C90.1943 (2)0.7895 (2)0.09500 (19)0.0541 (7)
H90.13990.84060.13450.065*
C100.3190 (2)0.8236 (2)0.06052 (16)0.0440 (5)
H100.34630.89790.07750.053*
C110.35799 (17)0.64676 (18)0.02085 (12)0.0287 (4)
C120.44711 (17)0.57430 (17)0.08258 (12)0.0276 (4)
C130.85765 (19)0.81625 (19)0.06922 (14)0.0343 (4)
C140.98797 (18)0.77868 (18)0.11736 (13)0.0305 (4)
C151.09054 (19)0.8525 (2)0.11423 (15)0.0375 (5)
H151.07860.92220.07900.045*
C161.20987 (19)0.8220 (2)0.16345 (15)0.0397 (5)
H161.27730.87270.16140.048*
C171.23162 (19)0.7185 (2)0.21550 (14)0.0354 (5)
C181.12943 (19)0.6429 (2)0.21623 (14)0.0364 (5)
H181.14220.57130.24920.044*
C191.00983 (19)0.67339 (19)0.16855 (14)0.0336 (4)
H190.94260.62260.17070.040*
C201.3607 (2)0.6881 (3)0.27276 (16)0.0476 (6)
H20A1.42290.73690.25410.071*
H20B1.37840.60420.26540.071*
H20C1.36290.70400.33520.071*
Cl10.55415 (5)0.92640 (5)0.16915 (4)0.03802 (13)
Cu10.58608 (2)0.78128 (2)0.052071 (16)0.02995 (9)
N10.56500 (14)0.62052 (15)0.11079 (10)0.0290 (3)
N20.40076 (16)0.75369 (16)0.00414 (12)0.0327 (4)
O10.76822 (13)0.76408 (14)0.09531 (10)0.0352 (3)
O20.84387 (16)0.8934 (2)0.00865 (14)0.0697 (6)
O1W0.60789 (15)0.87990 (17)0.05137 (12)0.0500 (4)
H1W0.6788 (12)0.908 (2)0.041 (2)0.075*
H2W0.563 (2)0.9330 (19)0.0792 (19)0.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (10)0.0428 (12)0.0317 (10)0.0006 (9)0.0034 (8)0.0039 (9)
C20.0400 (12)0.0482 (13)0.0348 (11)0.0060 (10)0.0044 (9)0.0126 (10)
C30.0479 (13)0.0383 (12)0.0354 (11)0.0028 (10)0.0124 (9)0.0073 (9)
C40.0370 (11)0.0319 (10)0.0296 (10)0.0045 (8)0.0112 (8)0.0021 (8)
C50.0404 (12)0.0388 (12)0.0390 (11)0.0134 (9)0.0132 (9)0.0029 (9)
C60.0306 (10)0.0473 (13)0.0404 (11)0.0141 (9)0.0075 (9)0.0068 (10)
C70.0279 (10)0.0428 (12)0.0326 (10)0.0064 (8)0.0042 (8)0.0054 (9)
C80.0257 (10)0.0598 (15)0.0492 (13)0.0063 (10)0.0041 (9)0.0032 (12)
C90.0348 (12)0.0607 (17)0.0574 (16)0.0031 (11)0.0078 (11)0.0166 (13)
C100.0333 (11)0.0433 (12)0.0499 (13)0.0008 (10)0.0013 (10)0.0133 (11)
C110.0263 (9)0.0322 (10)0.0271 (9)0.0029 (8)0.0052 (7)0.0023 (8)
C120.0267 (9)0.0329 (10)0.0233 (8)0.0032 (8)0.0059 (7)0.0025 (7)
C130.0283 (10)0.0372 (11)0.0355 (10)0.0047 (8)0.0037 (8)0.0011 (9)
C140.0263 (9)0.0354 (11)0.0295 (10)0.0033 (8)0.0057 (8)0.0034 (8)
C150.0316 (10)0.0395 (12)0.0414 (11)0.0053 (9)0.0083 (9)0.0032 (9)
C160.0256 (10)0.0486 (13)0.0448 (12)0.0086 (9)0.0080 (9)0.0058 (10)
C170.0260 (10)0.0477 (13)0.0317 (10)0.0025 (9)0.0054 (8)0.0089 (9)
C180.0342 (11)0.0379 (11)0.0362 (11)0.0036 (9)0.0067 (9)0.0001 (9)
C190.0288 (10)0.0360 (11)0.0361 (10)0.0049 (8)0.0081 (8)0.0038 (9)
C200.0290 (11)0.0691 (16)0.0419 (12)0.0051 (11)0.0026 (9)0.0065 (12)
Cl10.0337 (3)0.0380 (3)0.0397 (3)0.0030 (2)0.0033 (2)0.0001 (2)
Cu10.02281 (13)0.03156 (15)0.03284 (15)0.00285 (9)0.00123 (10)0.00481 (10)
N10.0242 (8)0.0334 (9)0.0281 (8)0.0019 (7)0.0035 (6)0.0015 (7)
N20.0263 (8)0.0349 (9)0.0335 (9)0.0027 (7)0.0002 (7)0.0022 (7)
O10.0234 (7)0.0412 (8)0.0395 (8)0.0019 (6)0.0048 (6)0.0063 (6)
O20.0325 (9)0.0915 (15)0.0800 (13)0.0065 (9)0.0027 (9)0.0516 (12)
O1W0.0322 (8)0.0648 (11)0.0498 (10)0.0020 (8)0.0033 (7)0.0280 (9)
Geometric parameters (Å, º) top
C1—N11.327 (2)C13—O21.238 (3)
C1—C21.394 (3)C13—O11.274 (2)
C1—H10.9300C13—C141.497 (3)
C2—C31.366 (3)C14—C191.389 (3)
C2—H20.9300C14—C151.395 (3)
C3—C41.403 (3)C15—C161.382 (3)
C3—H30.9300C15—H150.9300
C4—C121.398 (3)C16—C171.381 (3)
C4—C51.427 (3)C16—H160.9300
C5—C61.356 (3)C17—C181.395 (3)
C5—H50.9300C17—C201.509 (3)
C6—C71.428 (3)C18—C191.377 (3)
C6—H60.9300C18—H180.9300
C7—C111.401 (3)C19—H190.9300
C7—C81.403 (3)C20—H20A0.9600
C8—C91.356 (3)C20—H20B0.9600
C8—H80.9300C20—H20C0.9600
C9—C101.390 (3)Cl1—Cu12.4810 (6)
C9—H90.9300Cu1—O11.9503 (14)
C10—N21.330 (3)Cu1—O1W1.9736 (16)
C10—H100.9300Cu1—N22.0248 (17)
C11—N21.357 (3)Cu1—N12.0261 (17)
C11—C121.428 (3)O1W—H1W0.812 (10)
C12—N11.357 (2)O1W—H2W0.816 (10)
N1—C1—C2122.73 (19)C16—C15—C14120.0 (2)
N1—C1—H1118.6C16—C15—H15120.0
C2—C1—H1118.6C14—C15—H15120.0
C3—C2—C1119.5 (2)C17—C16—C15121.7 (2)
C3—C2—H2120.2C17—C16—H16119.1
C1—C2—H2120.2C15—C16—H16119.1
C2—C3—C4119.4 (2)C16—C17—C18118.09 (19)
C2—C3—H3120.3C16—C17—C20121.8 (2)
C4—C3—H3120.3C18—C17—C20120.1 (2)
C12—C4—C3117.22 (18)C19—C18—C17120.6 (2)
C12—C4—C5118.85 (19)C19—C18—H18119.7
C3—C4—C5123.92 (19)C17—C18—H18119.7
C6—C5—C4120.8 (2)C18—C19—C14121.09 (19)
C6—C5—H5119.6C18—C19—H19119.5
C4—C5—H5119.6C14—C19—H19119.5
C5—C6—C7121.51 (19)C17—C20—H20A109.5
C5—C6—H6119.2C17—C20—H20B109.5
C7—C6—H6119.2H20A—C20—H20B109.5
C11—C7—C8116.6 (2)C17—C20—H20C109.5
C11—C7—C6118.62 (19)H20A—C20—H20C109.5
C8—C7—C6124.78 (19)H20B—C20—H20C109.5
C9—C8—C7119.7 (2)O1—Cu1—O1W91.07 (6)
C9—C8—H8120.2O1—Cu1—N2164.79 (7)
C7—C8—H8120.2O1W—Cu1—N292.41 (7)
C8—C9—C10120.2 (2)O1—Cu1—N188.73 (6)
C8—C9—H9119.9O1W—Cu1—N1152.03 (8)
C10—C9—H9119.9N2—Cu1—N181.29 (7)
N2—C10—C9122.3 (2)O1—Cu1—Cl197.16 (5)
N2—C10—H10118.9O1W—Cu1—Cl1106.16 (6)
C9—C10—H10118.9N2—Cu1—Cl196.07 (5)
N2—C11—C7123.57 (18)N1—Cu1—Cl1101.62 (5)
N2—C11—C12116.53 (16)C1—N1—C12117.86 (17)
C7—C11—C12119.89 (18)C1—N1—Cu1129.28 (14)
N1—C12—C4123.21 (18)C12—N1—Cu1112.85 (12)
N1—C12—C11116.44 (17)C10—N2—C11117.66 (18)
C4—C12—C11120.35 (17)C10—N2—Cu1129.52 (15)
O2—C13—O1125.12 (19)C11—N2—Cu1112.82 (13)
O2—C13—C14119.36 (18)C13—O1—Cu1130.15 (14)
O1—C13—C14115.52 (18)Cu1—O1W—H1W110 (2)
C19—C14—C15118.41 (19)Cu1—O1W—H2W130 (2)
C19—C14—C13121.65 (18)H1W—O1W—H2W105.0 (15)
C15—C14—C13119.90 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl1i0.932.763.654 (2)162
C1—H1···O10.932.522.988 (3)112
O1W—H2W···Cl1i0.82 (1)2.26 (1)3.0709 (17)174 (3)
O1W—H1W···O20.81 (1)1.79 (1)2.526 (2)150 (3)
C3—H3···Cg1ii0.932.713.413 (2)133
C20—H20B···Cg2iii0.932.993.627 (2)125
Symmetry codes: (i) x+1, y+2, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H7O2)Cl(C12H8N2)(H2O)]
Mr432.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.9095 (4), 11.0546 (4), 15.2059 (6)
β (°) 103.578 (2)
V3)1782.58 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.30 × 0.29 × 0.25
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.679, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
17233, 4096, 3470
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.087, 1.05
No. of reflections4096
No. of parameters251
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.41

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), SHELXTL (Sheldrick, 2008\bbr00).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl1i0.932.763.654 (2)162.0
C1—H1···O10.932.522.988 (3)111.6
O1W—H2W···Cl1i0.816 (10)2.259 (10)3.0709 (17)174 (3)
O1W—H1W···O20.812 (10)1.788 (14)2.526 (2)150 (3)
C3—H3···Cg1ii0.932.713.413 (2)133
C20—H20B···Cg2iii0.932.993.627 (2)125
Symmetry codes: (i) x+1, y+2, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds