organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Iodo-2,7-di­methyl-3-phenyl­sulfonyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 18 April 2008; accepted 20 April 2008; online 30 April 2008)

The title compound, C16H13IO3S, was prepared by the oxidation of 5-iodo-2,7-dimethyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 76.31 (8)° with the plane of the benzofuran fragment. The crystal structure is stabilized by aromatic ππ inter­actions between the furan and benzene rings of neighbouring mol­ecules, and between the benzene rings of neighbouring mol­ecules; the centroid–centroid distances within the stack are 3.700 (4) and 3.788 (4) Å. In addition, the crystal structure exhibits inter- and intra­molecular C—H⋯O inter­actions, and an I⋯O halogen bond with an I⋯O distance of 3.282 (2) Å and a nearly linear C—I⋯O angle of 165.69 (8)°.

Related literature

For the crystal structures of similar 3-phenyl­sulfonyl-1-benzofuran compounds, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o794.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13IO3S

  • Mr = 412.22

  • Monoclinic, P 21 /n

  • a = 8.1165 (5) Å

  • b = 14.0295 (9) Å

  • c = 13.2470 (8) Å

  • β = 90.320 (1)°

  • V = 1508.42 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 173 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.579, Tmax = 0.641

  • 9110 measured reflections

  • 3285 independent reflections

  • 3069 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.074

  • S = 0.99

  • 3285 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.95 2.59 3.382 (4) 141
C13—H13⋯O3ii 0.95 2.44 3.342 (4) 159
C14—H14⋯O2 0.95 2.58 2.931 (4) 103
C16—H16B⋯O3 0.98 2.48 3.191 (4) 129
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing studies on the synthesis and structure of 3-phenyl-sulfonyl-1-benzofuran analogues, the crystal structure of 5-bromo-2-methyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008a) and 2,5,7-trimethyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008b) have been recently described in the literature. Herein we report the molecular and crystal structure of the title ompound, 5-iodo-2,7-dimethyl-3-phenylsulfonyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.009 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) makes a dihedral angle of 76.31 (8)° with the plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by two different ππ interactions within each stack of molecules; one between the furan ring (Cg1) and an adjacent benzene ring (Cg2v) of a benzofuran unit {distance 3.700 (4) Å}, and a second between the benzene ring (Cg2) and an adjacent benzene ring (Cg2iii) of the benzofuran unit {distance 3.788 (4) Å}(Cg1 and Cg2 are the centroids of the O1/C8/C1/C2/C7 furan ring and the C2—C7 benzene ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by inter- and intramolecular C—H···O interactions (Table 1), and by a halogen bond (Politzer et al., 2007) between the iodine atom and the oxygen atom of the SO unit (Fig. 2; symmetry code as in Fig, 2).

Related literature top

For the crystal structures of similar 3-phenylsulfonyl-1-benzofuran compounds, see: Choi et al. (2008a,b). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

3-Chloroperoxybenzoic acid (471 mg, 2.1 mmol) was added in small portions to a stirred solution of 5-iodo-2,7-dimethyl 3-phenylsulfanyl-1-benzofuran (380 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2: 1 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 431–432 K; Rf = 0.61 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.41 (s, 3H), 2.80 (s, 3H), 7.42 (s, 1H), 7.50–7.32 (m, 3H), 7.98 (d, J = 7.32 Hz, 2H), 8.06 (s, 1H); EI—MS 412 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms. The highest peak in the difference map is 0.75 Å from I and the largest hole is 0.69 Å from I.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ interactions, C—H···O hydrogen bonds, and I···O halogen bond (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (i) x - 1/2, -y + 3/2, z + 1/2; (ii) x - 1, y, z; (iii) -x, -y + 1, -z + 1; (iv) x - 1/2, -y + 1/2, z - 1/2; (v) -x + 1, -y + 1, -z + 1; (vi) x + 1/2, -y + 3/2, z - 1/2; (vii) x + 1/2, -y + 1/2, z + 1/2; (viii) x + 1, y, z.]
5-Iodo-2,7-dimethyl-3-phenylsulfonyl-1-benzofuran top
Crystal data top
C16H13IO3SF(000) = 808
Mr = 412.22Dx = 1.815 Mg m3
Monoclinic, P21/nMelting point = 431–432 K
Hall symbol: -P_2ynMo Kα radiation, λ = 0.71073 Å
a = 8.1165 (5) ÅCell parameters from 6912 reflections
b = 14.0295 (9) Åθ = 2.9–28.3°
c = 13.2470 (8) ŵ = 2.27 mm1
β = 90.320 (1)°T = 173 K
V = 1508.42 (16) Å3Block, colorless
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3285 independent reflections
Radiation source: fine-focus sealed tube3069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.9°
ϕ and ω scansh = 107
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 1716
Tmin = 0.579, Tmax = 0.641l = 1616
9110 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0428P)2 + 1.8205P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3285 reflectionsΔρmax = 1.13 e Å3
193 parametersΔρmin = 1.02 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0204 (8)
Crystal data top
C16H13IO3SV = 1508.42 (16) Å3
Mr = 412.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1165 (5) ŵ = 2.27 mm1
b = 14.0295 (9) ÅT = 173 K
c = 13.2470 (8) Å0.40 × 0.20 × 0.20 mm
β = 90.320 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3285 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3069 reflections with I > 2σ(I)
Tmin = 0.579, Tmax = 0.641Rint = 0.032
9110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 0.99Δρmax = 1.13 e Å3
3285 reflectionsΔρmin = 1.02 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.01644 (2)0.271298 (12)0.412327 (13)0.03036 (10)
S0.31859 (7)0.47908 (4)0.80435 (4)0.02106 (14)
O10.3994 (2)0.62669 (12)0.55765 (13)0.0216 (3)
O20.2767 (3)0.38039 (13)0.79316 (14)0.0304 (4)
O30.4628 (2)0.50442 (16)0.86163 (15)0.0343 (4)
C10.3367 (3)0.52624 (17)0.68298 (18)0.0196 (5)
C20.2699 (3)0.48622 (17)0.59100 (18)0.0192 (5)
C30.1833 (3)0.40340 (17)0.56413 (18)0.0216 (5)
H30.15300.35700.61280.026*
C40.1444 (3)0.39292 (18)0.46308 (19)0.0236 (5)
C50.1860 (3)0.46045 (18)0.39014 (19)0.0240 (5)
H50.15490.44970.32180.029*
C60.2718 (3)0.54330 (18)0.41501 (18)0.0224 (5)
C70.3120 (3)0.55133 (17)0.51657 (18)0.0204 (5)
C80.4119 (3)0.60993 (18)0.65900 (18)0.0216 (5)
C90.1490 (3)0.53904 (18)0.85741 (18)0.0240 (5)
C100.1754 (4)0.6275 (2)0.9019 (2)0.0381 (7)
H100.28250.65480.90330.046*
C110.0447 (5)0.6749 (3)0.9437 (3)0.0508 (9)
H110.06100.73550.97410.061*
C120.1097 (5)0.6348 (3)0.9418 (2)0.0497 (10)
H120.19960.66820.97070.060*
C130.1359 (4)0.5464 (3)0.8984 (2)0.0456 (9)
H130.24320.51930.89780.055*
C140.0047 (3)0.4970 (2)0.85537 (19)0.0311 (6)
H140.02070.43610.82550.037*
C150.3140 (4)0.6191 (2)0.3392 (2)0.0308 (6)
H15A0.23940.67350.34740.046*
H15B0.30210.59330.27080.046*
H15C0.42790.64010.35000.046*
C160.4982 (3)0.6852 (2)0.7172 (2)0.0284 (5)
H16A0.60320.70010.68460.043*
H16B0.51890.66260.78610.043*
H16C0.42950.74260.71930.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.02777 (13)0.02830 (13)0.03502 (14)0.00635 (6)0.00123 (8)0.00964 (7)
S0.0220 (3)0.0220 (3)0.0192 (3)0.0029 (2)0.0004 (2)0.0016 (2)
O10.0229 (8)0.0197 (8)0.0224 (8)0.0016 (7)0.0032 (7)0.0006 (7)
O20.0432 (12)0.0204 (9)0.0275 (9)0.0044 (8)0.0045 (8)0.0035 (7)
O30.0264 (10)0.0488 (12)0.0277 (9)0.0001 (9)0.0064 (8)0.0021 (9)
C10.0192 (11)0.0205 (11)0.0190 (11)0.0006 (9)0.0015 (9)0.0001 (9)
C20.0169 (10)0.0208 (11)0.0200 (11)0.0020 (9)0.0024 (8)0.0003 (9)
C30.0208 (11)0.0198 (11)0.0243 (11)0.0006 (9)0.0030 (9)0.0005 (9)
C40.0196 (11)0.0228 (12)0.0285 (12)0.0002 (9)0.0019 (9)0.0051 (10)
C50.0243 (12)0.0274 (12)0.0203 (11)0.0035 (10)0.0015 (9)0.0028 (10)
C60.0222 (12)0.0232 (12)0.0219 (11)0.0054 (9)0.0025 (9)0.0018 (10)
C70.0178 (11)0.0185 (11)0.0250 (11)0.0004 (8)0.0027 (9)0.0012 (9)
C80.0212 (11)0.0213 (11)0.0222 (11)0.0010 (9)0.0028 (9)0.0005 (9)
C90.0296 (13)0.0250 (12)0.0174 (10)0.0053 (10)0.0046 (10)0.0042 (9)
C100.0479 (18)0.0284 (14)0.0383 (15)0.0016 (13)0.0175 (14)0.0031 (12)
C110.073 (3)0.0323 (16)0.0474 (19)0.0140 (16)0.0297 (18)0.0001 (14)
C120.058 (2)0.059 (2)0.0323 (16)0.0347 (18)0.0188 (15)0.0125 (15)
C130.0245 (14)0.085 (3)0.0269 (14)0.0115 (15)0.0020 (11)0.0152 (16)
C140.0261 (13)0.0458 (16)0.0214 (12)0.0018 (12)0.0038 (10)0.0030 (11)
C150.0378 (15)0.0302 (14)0.0245 (12)0.0014 (11)0.0019 (11)0.0068 (11)
C160.0288 (13)0.0264 (13)0.0299 (13)0.0052 (11)0.0018 (10)0.0049 (11)
Geometric parameters (Å, º) top
I—O2i3.282 (2)C8—C161.481 (3)
I—C42.106 (3)C9—C141.380 (4)
S—O21.433 (2)C9—C101.390 (4)
S—O31.436 (2)C10—C111.371 (4)
S—C11.746 (2)C10—H100.9500
S—C91.762 (3)C11—C121.374 (6)
O1—C81.366 (3)C11—H110.9500
O1—C71.383 (3)C12—C131.383 (6)
C1—C81.362 (3)C12—H120.9500
C1—C21.444 (3)C13—C141.395 (4)
C2—C71.388 (3)C13—H130.9500
C2—C31.403 (3)C14—H140.9500
C3—C41.381 (3)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.396 (4)C15—H15C0.9800
C5—C61.394 (4)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.387 (3)C16—H16C0.9800
C6—C151.504 (3)
C4—I—O2i165.69 (8)O1—C8—C16114.9 (2)
O2—S—O3119.1 (1)C14—C9—C10121.8 (3)
O2—S—C1107.0 (1)C14—C9—S119.7 (2)
O3—S—C1108.7 (1)C10—C9—S118.5 (2)
O2—S—C9108.5 (1)C11—C10—C9119.1 (3)
O3—S—C9107.9 (1)C11—C10—H10120.4
C1—S—C9104.9 (1)C9—C10—H10120.4
C8—O1—C7106.9 (2)C10—C11—C12120.1 (3)
C8—C1—C2107.7 (2)C10—C11—H11120.0
C8—C1—S125.6 (2)C12—C11—H11120.0
C2—C1—S126.6 (2)C11—C12—C13120.9 (3)
C7—C2—C3119.3 (2)C11—C12—H12119.6
C7—C2—C1104.5 (2)C13—C12—H12119.6
C3—C2—C1136.1 (2)C12—C13—C14119.9 (3)
C4—C3—C2116.5 (2)C12—C13—H13120.0
C4—C3—H3121.8C14—C13—H13120.0
C2—C3—H3121.8C9—C14—C13118.2 (3)
C3—C4—C5122.9 (2)C9—C14—H14120.9
C3—C4—I120.4 (2)C13—C14—H14120.9
C5—C4—I116.7 (2)C6—C15—H15A109.5
C6—C5—C4121.7 (2)C6—C15—H15B109.5
C6—C5—H5119.2H15A—C15—H15B109.5
C4—C5—H5119.2C6—C15—H15C109.5
C7—C6—C5114.3 (2)H15A—C15—H15C109.5
C7—C6—C15122.5 (2)H15B—C15—H15C109.5
C5—C6—C15123.2 (2)C8—C16—H16A109.5
O1—C7—C2110.6 (2)C8—C16—H16B109.5
O1—C7—C6124.1 (2)H16A—C16—H16B109.5
C2—C7—C6125.3 (2)C8—C16—H16C109.5
C1—C8—O1110.3 (2)H16A—C16—H16C109.5
C1—C8—C16134.8 (2)H16B—C16—H16C109.5
O2—S—C1—C8163.4 (2)C5—C6—C7—O1178.8 (2)
O3—S—C1—C833.6 (3)C15—C6—C7—O12.7 (4)
C9—S—C1—C881.5 (2)C5—C6—C7—C21.7 (4)
O2—S—C1—C219.2 (2)C15—C6—C7—C2176.8 (2)
O3—S—C1—C2149.0 (2)C2—C1—C8—O10.4 (3)
C9—S—C1—C295.8 (2)S—C1—C8—O1178.2 (2)
C8—C1—C2—C70.1 (3)C2—C1—C8—C16178.1 (3)
S—C1—C2—C7177.8 (2)S—C1—C8—C160.3 (4)
C8—C1—C2—C3178.8 (3)C7—O1—C8—C10.5 (3)
S—C1—C2—C33.4 (4)C7—O1—C8—C16178.3 (2)
C7—C2—C3—C40.4 (3)O2—S—C9—C1417.4 (2)
C1—C2—C3—C4179.1 (3)O3—S—C9—C14147.6 (2)
C2—C3—C4—C50.7 (4)C1—S—C9—C1496.7 (2)
C2—C3—C4—I179.5 (2)O2—S—C9—C10161.6 (2)
C3—C4—C5—C60.7 (4)O3—S—C9—C1031.4 (2)
I—C4—C5—C6179.5 (2)C1—S—C9—C1084.4 (2)
C4—C5—C6—C70.5 (4)C14—C9—C10—C110.9 (5)
C4—C5—C6—C15178.0 (2)S—C9—C10—C11179.8 (3)
C8—O1—C7—C20.5 (3)C9—C10—C11—C120.3 (5)
C8—O1—C7—C6179.0 (2)C10—C11—C12—C130.3 (5)
C3—C2—C7—O1178.7 (2)C11—C12—C13—C140.3 (5)
C1—C2—C7—O10.3 (3)C10—C9—C14—C130.8 (4)
C3—C2—C7—C61.7 (4)S—C9—C14—C13179.8 (2)
C1—C2—C7—C6179.3 (2)C12—C13—C14—C90.3 (4)
Symmetry code: (i) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1ii0.952.593.382 (4)141
C13—H13···O3iii0.952.443.342 (4)159
C14—H14···O20.952.582.931 (4)103
C16—H16B···O30.982.483.191 (4)129
Symmetry codes: (ii) x1/2, y+3/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H13IO3S
Mr412.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.1165 (5), 14.0295 (9), 13.2470 (8)
β (°) 90.320 (1)
V3)1508.42 (16)
Z4
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.579, 0.641
No. of measured, independent and
observed [I > 2σ(I)] reflections
9110, 3285, 3069
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 0.99
No. of reflections3285
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 1.02

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.952.593.382 (4)141.3
C13—H13···O3ii0.952.443.342 (4)158.6
C14—H14···O20.952.582.931 (4)102.5
C16—H16B···O30.982.483.191 (4)129.4
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds