inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A monoclinic polymorph of KY(PO3)4

aUnité de Recherches de Matériaux de Terres Rares, Centre National de Recherches en Sciences des Matériaux, BP 95 Hammam-Lif 2050, Tunisia
*Correspondence e-mail: mokhtar.ferid@inrst.rnrt.tn

(Received 30 April 2008; accepted 9 May 2008; online 17 May 2008)

The title compound, potassium yttrium polyphosphate, KY(PO3)4, was synthesized using the flux method. The atomic arrangement consists of an infinite long-chain polyphosphate organization. Chains, with a period of four PO4 tetra­hedra, run along the a-axis direction. Two other polymorphs of this phosphate are known, in space groups P21/n and C2/c.

Related literature

For related structures, see: Durif (1995[Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.]); Hamady et al. (1995[Hamady, A., Jouini, T. & Driss, A. (1995). Acta Cryst. C51, 1970-1972.]); Hong et al. (1975[Hong, H. Y.-P. (1975). Mater. Res. Bull. 10, 1105-1110.]); Malinowski (1990[Malinowski, M. (1990). J. Phys. Chem. Solids, 51, 59-64.]); Malinowski et al. (1988[Malinowski, M., Jackier, B., Boulon, G. & Wolinski, W. (1988). J. Lumin. 39, 301-311.]); Palkina et al. (1977[Palkina, K. K., Saiffuddinov, V. Z., Kuznetsov, V. G. & Chudinova, N. N. (1977). Dokl. Akad. Nauk SSSR, 237, 837-839.]). For earlier work on KY(PO3)4, see: Jouini et al. (2003[Jouini, A., Férid, M. & Trabelsi-Ayadi, M. (2003). Thermochim. Acta, 400, 199-204.]). For related literature, see: Sun et al. (2004[Sun, T., Shen, G., Wang, X., Wang, R., Wei, J. & Shen, D. (2004). Acta Cryst. E60, i28-i30.]).

Experimental

Crystal data
  • KY(PO3)4

  • Mr = 443.89

  • Monoclinic, P 21

  • a = 7.2244 (3) Å

  • b = 8.2825 (3) Å

  • c = 7.854 (4) Å

  • β = 91.735 (3)°

  • V = 469.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.40 mm−1

  • T = 298 (2) K

  • 0.16 × 0.14 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.321, Tmax = 0.376

  • 3651 measured reflections

  • 2011 independent reflections

  • 1904 reflections with I > 2σ(I)

  • Rint = 0.081

  • 2 standard reflections every 150 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.13

  • 2011 reflections

  • 165 parameters

  • 1 restraint

  • Δρmax = 1.19 e Å−3

  • Δρmin = −2.67 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 867 Friedel pairs

  • Flack parameter: 0.002 (9)

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Yttrium condensed phosphates have been considered as a crystal hosts for optical materials when doped with lanthanides, due to there high-temperature chemical stability, high yield intrinsic fluorescence and minimal trapping of excitation, rendering them attractive materials for investigations of the energy transfer phenomena and fluorescence quenching(Malinowski, 1990; Malinowski et al., 1988). The literature dealing with these compounds was rather confusing for some time, between cyclic or chain condensed phosphates, but it is currently well established that the MIY(PO3)4 compounds are polyphosphates with infinite chain and MIYP4O12 are cyclotetraphosphates (with MI= monovalent cation) (Durif, 1995). In our laboratory we have synthesized the potassium and yttrium polyphosphates to establish the solid–liquid equilibrium diagram of the KPO3–Y(PO3)3 system (Jouini et al., 2003). Three allotropic phases with the space groups P21, P21/n and C2/c were isolated and characterized. The three monoclinic allotropes are: i) KY(PO3)4 polyphosphate with the P21 space group, isostructural with KNd(PO3)4 (Hong, 1975). ii) KY(PO3)4 polyphosphate belongs to P21/n space group, and is isostructural with TlNd(PO3)4 (Palkina et al., 1977). In these two forms the phosphate anion has a chain structure. iii) The third allotropic form is KYP4O12 which crystallizes in the C2/c space group, only this structure was investigated (Hamady, 1995). This paper is devoted to the crystal structure of the first polymorph KY(PO3)4 (P21). The atomic arrangement of this srtucture is characterized by a three-dimensional framework built of (PO3)n chains that are formed by corner-sharing of PO4 tetrahedra (Figs 1,2). The chains run along the a axis , with four PO4 tetrahedra in a repeating unit. KY(PO3)4 is isostructural with KNd(PO3)4 , but not with CsLa(PO3)4 (Sun et al., 2004) although they belong to the same space group, P21. In the latter, the infinite screw (PO3)n chains are repeated after every eighth PO4 group along the b axis. The chains (two per unit cell) are joined to each other by YO8 polyhedra (Fig 3.), no O atom is shared with the adjacent YO8 polyhedra. The K atoms are in an eightfold coordination.

Related literature top

For related structures, see: Durif (1995); Hamady et al. (1995); Hong et al. (1975); Malinowski (1990); Malinowski et al. (1988); Palkina et al. (1977). For earlier work on KY(PO3)4, see: Jouini et al. (2003). For related literature, Sun et al. (2004).

Experimental top

Single crystal of KY(PO3)4 was prepared by flux method. Homogeneous solution of potassium carbonate K2CO3 (6 g) and yttrium oxide Y2O3 (0.5 g) containing a large excess of orthophosphoric acid H3PO4 (16 ml, 85% concentration) was heated in a vitreous carbon crucible at 473 K for 1 day. Then the temperature of the furnace was slowly raised to the predermined temperature in the range of 573–623 K for 7 days. Crystals were separated from the excess phosphoric acid by washing the product in boiling water.

Refinement top

The highest peak and the deepest hole are located 0.09Å and 0.85 Å from Y.

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Projection of KY(PO3)4 with anisotropic displacement parameters drawn at the 50% probability level.
[Figure 2] Fig. 2. : The structural arrangement of KY(PO3)4 along the b axis.
[Figure 3] Fig. 3. : Projection of KY(PO3)4 along the a axis, showing isolated YO8 polyhedra joined to (PO3)n chains.
Potassium yttrium polyphosphate top
Crystal data top
KY(PO3)4F(000) = 428
Mr = 443.89Dx = 3.138 Mg m3
Monoclinic, P21Melting point: 760 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 7.2244 (3) ÅCell parameters from 25 reflections
b = 8.2825 (3) Åθ = 2.6–27.5°
c = 7.854 (4) ŵ = 7.40 mm1
β = 91.735 (3)°T = 298 K
V = 469.7 (2) Å3Prism, colourless
Z = 20.16 × 0.14 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1904 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
ω/2θ scansh = 79
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 810
Tmin = 0.321, Tmax = 0.376l = 810
3651 measured reflections2 standard reflections every 150 reflections
2011 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0908P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.048(Δ/σ)max < 0.001
wR(F2) = 0.138Δρmax = 1.19 e Å3
S = 1.13Δρmin = 2.67 e Å3
2011 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
165 parametersExtinction coefficient: 0.065 (7)
1 restraintAbsolute structure: Flack (1983), with 867 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (9)
Crystal data top
KY(PO3)4V = 469.7 (2) Å3
Mr = 443.89Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.2244 (3) ŵ = 7.40 mm1
b = 8.2825 (3) ÅT = 298 K
c = 7.854 (4) Å0.16 × 0.14 × 0.13 mm
β = 91.735 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1904 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.081
Tmin = 0.321, Tmax = 0.3762 standard reflections every 150 reflections
3651 measured reflections intensity decay: 2%
2011 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.138Δρmax = 1.19 e Å3
S = 1.13Δρmin = 2.67 e Å3
2011 reflectionsAbsolute structure: Flack (1983), with 867 Friedel pairs
165 parametersAbsolute structure parameter: 0.002 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y0.23704 (8)0.75897 (9)0.24245 (8)0.0086 (3)
K0.2703 (3)0.4566 (3)0.2812 (3)0.0303 (6)
P10.4367 (3)0.3830 (2)0.0947 (3)0.0091 (4)
P20.0994 (3)0.1755 (2)0.0978 (2)0.0086 (4)
P30.0018 (3)0.4085 (2)0.3809 (2)0.0088 (4)
P40.6161 (3)0.5114 (2)0.3992 (2)0.0084 (4)
O10.3212 (8)0.5292 (7)0.0721 (7)0.0140 (12)
O20.5736 (8)0.3558 (8)0.0387 (8)0.0184 (13)
O30.3126 (7)0.2261 (7)0.1093 (8)0.0169 (13)
O40.5360 (8)0.3706 (7)0.2789 (7)0.0139 (12)
O50.0239 (8)0.2062 (7)0.0776 (7)0.0150 (12)
O60.0880 (8)0.0105 (7)0.1732 (7)0.0163 (12)
O70.0076 (8)0.2991 (7)0.2159 (8)0.0189 (13)
O80.1660 (7)0.5100 (7)0.3846 (7)0.0124 (11)
O90.0337 (8)0.3109 (7)0.5348 (8)0.0167 (12)
O100.1755 (8)0.5225 (7)0.3407 (7)0.0121 (11)
O110.5258 (8)0.6648 (7)0.3514 (7)0.0138 (11)
O120.6118 (7)0.4535 (7)0.5773 (7)0.0121 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y0.0092 (4)0.0103 (4)0.0067 (4)0.0004 (3)0.0048 (2)0.0001 (2)
K0.0180 (10)0.0601 (16)0.0129 (8)0.0108 (9)0.0031 (7)0.0019 (10)
P10.0100 (9)0.0098 (10)0.0080 (9)0.0003 (7)0.0044 (7)0.0004 (6)
P20.0084 (9)0.0095 (9)0.0082 (9)0.0008 (6)0.0034 (7)0.0004 (7)
P30.0090 (9)0.0107 (10)0.0070 (9)0.0009 (7)0.0055 (7)0.0003 (7)
P40.0086 (9)0.0088 (9)0.0081 (8)0.0003 (6)0.0032 (7)0.0001 (6)
O10.018 (3)0.012 (3)0.012 (3)0.001 (2)0.003 (2)0.001 (2)
O20.021 (3)0.021 (3)0.014 (3)0.007 (2)0.011 (2)0.001 (2)
O30.010 (3)0.018 (3)0.023 (3)0.003 (2)0.000 (2)0.004 (2)
O40.016 (3)0.015 (3)0.011 (3)0.001 (2)0.002 (2)0.000 (2)
O50.014 (3)0.020 (3)0.011 (3)0.004 (2)0.002 (2)0.003 (2)
O60.019 (3)0.011 (3)0.019 (3)0.003 (2)0.002 (2)0.004 (2)
O70.018 (3)0.020 (3)0.019 (3)0.003 (2)0.008 (2)0.010 (2)
O80.008 (3)0.016 (3)0.013 (3)0.004 (2)0.004 (2)0.004 (2)
O90.017 (3)0.019 (3)0.015 (3)0.003 (2)0.010 (2)0.007 (2)
O100.011 (3)0.015 (3)0.011 (3)0.002 (2)0.005 (2)0.003 (2)
O110.012 (3)0.015 (3)0.014 (3)0.003 (2)0.000 (2)0.002 (2)
O120.010 (2)0.019 (3)0.008 (2)0.005 (2)0.002 (2)0.000 (2)
Geometric parameters (Å, º) top
Y—O2i2.282 (6)P1—O11.479 (6)
Y—O5ii2.296 (6)P1—O21.480 (6)
Y—O9iii2.358 (6)P1—O31.585 (6)
Y—O112.363 (5)P1—O41.599 (5)
Y—O12iv2.387 (5)P2—O51.488 (6)
Y—O6v2.400 (6)P2—O61.492 (6)
Y—O82.408 (6)P2—O31.597 (6)
Y—O12.415 (6)P2—O71.597 (6)
Y—Ki3.921 (2)P3—O81.474 (6)
K—O12vi2.736 (6)P3—O91.478 (6)
K—O8vi2.744 (6)P3—O71.581 (6)
K—O6ii2.785 (6)P3—O101.594 (6)
K—O12.852 (6)P4—O111.472 (6)
K—O9vi2.859 (7)P4—O121.480 (6)
K—O11vii2.892 (7)P4—O10viii1.590 (6)
K—O22.979 (6)P4—O41.598 (6)
K—O53.194 (6)
O2i—Y—O5ii99.8 (2)O9vi—K—O11vii86.49 (17)
O2i—Y—O9iii148.9 (2)O12vi—K—O266.57 (16)
O5ii—Y—O9iii86.2 (2)O8vi—K—O2146.32 (18)
O2i—Y—O1180.1 (2)O6ii—K—O2121.50 (18)
O5ii—Y—O11147.3 (2)O1—K—O250.68 (17)
O9iii—Y—O11110.8 (2)O9vi—K—O2138.0 (2)
O2i—Y—O12iv84.6 (2)O11vii—K—O261.22 (17)
O5ii—Y—O12iv144.7 (2)O12vi—K—O5136.07 (19)
O9iii—Y—O12iv73.79 (19)O8vi—K—O5116.25 (17)
O11—Y—O12iv67.98 (19)O6ii—K—O554.12 (17)
O2i—Y—O6v79.1 (2)O1—K—O572.96 (18)
O5ii—Y—O6v71.5 (2)O9vi—K—O563.10 (17)
O9iii—Y—O6v74.0 (2)O11vii—K—O581.22 (17)
O11—Y—O6v138.9 (2)O2—K—O584.71 (17)
O12iv—Y—O6v75.09 (19)O1—P1—O2115.3 (4)
O2i—Y—O8140.1 (2)O1—P1—O3111.2 (3)
O5ii—Y—O885.16 (19)O2—P1—O3108.5 (4)
O9iii—Y—O870.5 (2)O1—P1—O4113.4 (3)
O11—Y—O875.39 (19)O2—P1—O4109.9 (3)
O12iv—Y—O8113.77 (19)O3—P1—O497.0 (3)
O6v—Y—O8138.4 (2)O5—P2—O6120.0 (3)
O2i—Y—O173.9 (2)O5—P2—O3109.5 (3)
O5ii—Y—O175.7 (2)O6—P2—O3106.4 (3)
O9iii—Y—O1136.7 (2)O5—P2—O7104.9 (3)
O11—Y—O172.9 (2)O6—P2—O7108.9 (4)
O12iv—Y—O1137.92 (19)O3—P2—O7106.4 (3)
O6v—Y—O1132.6 (2)O8—P3—O9116.4 (4)
O8—Y—O169.1 (2)O8—P3—O7110.1 (3)
O12vi—K—O8vi80.69 (17)O9—P3—O7110.9 (4)
O12vi—K—O6ii169.5 (2)O8—P3—O10107.9 (3)
O8vi—K—O6ii91.99 (17)O9—P3—O10110.2 (3)
O12vi—K—O1107.81 (17)O7—P3—O10100.1 (3)
O8vi—K—O1156.9 (2)O11—P4—O12120.0 (3)
O6ii—K—O176.31 (17)O11—P4—O10viii107.0 (3)
O12vi—K—O9vi118.63 (18)O12—P4—O10viii109.8 (3)
O8vi—K—O9vi53.15 (16)O11—P4—O4109.3 (3)
O6ii—K—O9vi60.95 (18)O12—P4—O4107.7 (3)
O1—K—O9vi130.90 (19)O10viii—P4—O4101.5 (3)
O12vi—K—O11vii56.23 (17)P1—O3—P2139.3 (4)
O8vi—K—O11vii94.54 (19)P4—O4—P1129.2 (4)
O6ii—K—O11vii132.5 (2)P3—O7—P2147.4 (4)
O1—K—O11vii108.06 (18)P4ix—O10—P3130.9 (4)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1/2, z; (iii) x, y+1/2, z+1; (iv) x+1, y+1/2, z+1; (v) x, y+1, z; (vi) x, y, z1; (vii) x+1, y1/2, z; (viii) x+1, y, z; (ix) x1, y, z.

Experimental details

Crystal data
Chemical formulaKY(PO3)4
Mr443.89
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.2244 (3), 8.2825 (3), 7.854 (4)
β (°) 91.735 (3)
V3)469.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)7.40
Crystal size (mm)0.16 × 0.14 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.321, 0.376
No. of measured, independent and
observed [I > 2σ(I)] reflections
3651, 2011, 1904
Rint0.081
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.138, 1.13
No. of reflections2011
No. of parameters165
No. of restraints1
Δρmax, Δρmin (e Å3)1.19, 2.67
Absolute structureFlack (1983), with 867 Friedel pairs
Absolute structure parameter0.002 (9)

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

 

Acknowledgements

This work was supported by the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, University of Bonn, Germany.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDurif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamady, A., Jouini, T. & Driss, A. (1995). Acta Cryst. C51, 1970–1972.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHong, H. Y.-P. (1975). Mater. Res. Bull. 10, 1105–1110.  CrossRef CAS Web of Science Google Scholar
First citationJouini, A., Férid, M. & Trabelsi-Ayadi, M. (2003). Thermochim. Acta, 400, 199–204.  Web of Science CrossRef CAS Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMalinowski, M. (1990). J. Phys. Chem. Solids, 51, 59–64.  CrossRef CAS Web of Science Google Scholar
First citationMalinowski, M., Jackier, B., Boulon, G. & Wolinski, W. (1988). J. Lumin. 39, 301–311.  CrossRef CAS Web of Science Google Scholar
First citationPalkina, K. K., Saiffuddinov, V. Z., Kuznetsov, V. G. & Chudinova, N. N. (1977). Dokl. Akad. Nauk SSSR, 237, 837–839.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, T., Shen, G., Wang, X., Wang, R., Wei, J. & Shen, D. (2004). Acta Cryst. E60, i28–i30.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds