metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m825-m826

Di­chlorido{2-[2-(piperidin-1-yl)ethyl­imino­meth­yl]phenolato}zinc(II) monohydrate

aSchool of Pharmaceutical Sciences, China Medical University, Shenyang 110001, People's Republic of China, and bNortheast Pharmaceutical Group Co. Ltd, Shenyang 110026, People's Republic of China
*Correspondence e-mail: lnsyzdf@sohu.com

(Received 11 May 2008; accepted 13 May 2008; online 17 May 2008)

In the title mononuclear zinc(II) complex, [ZnCl2(C14H20N2O)]·H2O, the ZnII atom is four-coordinated by the phenolate O and imine N atoms of the Schiff base ligand and by two Cl atoms in a tetra­hedral geometry. In the crystal structure, O—H⋯Cl, O—H⋯O and N—H⋯O hydrogen bonds involving the water mol­ecules bridge adjacent complexes into a ladder-like structure running along the c axis.

Related literature

For general background on Schiff base complexes, see: Kawamoto et al. (2008[Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095-3104.]); Tomat et al. (2007[Tomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224-6226.]). For biological properties of Schiff base compounds, see: Abd-Elzaher (2004[Abd-Elzaher, M. M. (2004). Appl. Organomet. Chem. 18, 149-155.]); Iqbal et al. (2005[Iqbal, M. S., Bukhari, I. H. & Arif, M. (2005). Appl. Organomet. Chem. 19, 864-869.]); Osowole et al. (2005[Osowole, A. A., Kolawole, G. A. & Fagade, O. E. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 829-836.]); Raman & Thangaraja (2005[Raman, N. & Thangaraja, C. (2005). Pol. J. Chem. 79, 1123-1134.]). For related structures, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Li (2007[Li, W.-H. (2007). Acta Cryst. E63, m1446-m1447.]); Tatar et al. (2002[Tatar, L., Atakol, O. & Ülkü, D. (2002). Acta Cryst. E58, m83-m85.]); Wang (2007[Wang, S.-X. (2007). Acta Cryst. E63, m706-m707.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C14H20N2O)]·H2O

  • Mr = 386.61

  • Monoclinic, P 21 /c

  • a = 9.1860 (18) Å

  • b = 19.875 (4) Å

  • c = 9.966 (2) Å

  • β = 110.20 (3)°

  • V = 1707.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 298 (2) K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.720, Tmax = 0.754

  • 14151 measured reflections

  • 3882 independent reflections

  • 2685 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.104

  • S = 0.97

  • 3882 reflections

  • 199 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.929 (2)
Zn1—N1 2.024 (2)
Zn1—Cl2 2.2066 (10)
Zn1—Cl1 2.2523 (10)
O1—Zn1—N1 95.83 (10)
O1—Zn1—Cl2 113.80 (8)
N1—Zn1—Cl2 111.04 (8)
O1—Zn1—Cl1 109.48 (8)
N1—Zn1—Cl1 109.22 (8)
Cl2—Zn1—Cl1 115.66 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O2 0.90 (4) 1.81 (4) 2.712 (3) 177 (4)
O2—H2B⋯O1i 0.84 (3) 1.91 (3) 2.741 (3) 168 (4)
O2—H2A⋯Cl1ii 0.85 (3) 2.44 (3) 3.272 (3) 168 (4)
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Zinc(II) complexes with Schiff base ligands have received much attention in recent years (Tomat et al., 2007; Kawamoto et al., 2008). Some of the complexes have been found to have biological properties (Osowole et al., 2005; Iqbal et al., 2005; Raman & Thangaraja, 2005; Abd-Elzaher, 2004). In this paper, the crystal structure of the title new zinc(II) complex with the Schiff base ligand 2-[(2-piperidin-1-ylethylimino)methyl]phenol is reported.

The title compound consists of a mononuclear Schiff base zinc(II) complex molecule and a water of hydration (Fig. 1). The ZnII atom in the complex is four-coordinate in a tetrahedral geometry with one phenolate O and one imine N atoms of the Schiff base ligand, and with two Cl atoms. Bond lengths and angles (Table 1) about the ZnII centre are comparable with the values observed in other Schiff base zinc(II) complexes (Wang, 2007; Ali et al., 2008; Li, 2007; Tatar et al., 2002). The crystal structure is stabilized by intermolecular O–H···Cl, O–H···O and N—H···O hydrogen bonds (Table 2 and Fig. 2).

Related literature top

For general background on Schiff base complexes, see: Kawamoto et al. (2008); Tomat et al. (2007). For biological properties of Schiff base compounds, see: Abd-Elzaher (2004); Iqbal et al. (2005); Osowole et al. (2005); Raman & Thangaraja (2005). For related structures, see: Ali et al. (2008); Li (2007); Tatar et al. (2002); Wang (2007).

Experimental top

A mixture of salicylaldehyde (0.1 mmol, 12.2 mg), 2-piperidin-1-ylethylamine (0.1 mmol, 12.8 mg) and ZnCl2 (0.1 mmol, 13.6 mg) in methanol was stirred for 30 min at room temperature to give a yellow solution. After keeping the solution in air for 12 d, yellow block-shaped crystals were formed.

Refinement top

Atoms H2A, H2B and H2C were located from a difference Fourier map and refined isotropically, with O-H, N-H, and H···H distances restrained to 0.85 (1), 0.90 (1), and 1.37 (2) Å, respectively. The remaining H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C-H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the interactions have been omitted for clarity.
Dichlorido{2-[2-(piperidin-1-yl)ethyliminomethyl]phenolato}zinc(II) monohydrate top
Crystal data top
[ZnCl2(C14H20N2O)]·H2OF(000) = 800
Mr = 386.61Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2461 reflections
a = 9.1860 (18) Åθ = 2.4–25.0°
b = 19.875 (4) ŵ = 1.76 mm1
c = 9.966 (2) ÅT = 298 K
β = 110.20 (3)°Block, yellow
V = 1707.6 (7) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3882 independent reflections
Radiation source: fine-focus sealed tube2685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.720, Tmax = 0.755k = 2525
14151 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
3882 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.49 e Å3
4 restraintsΔρmin = 0.59 e Å3
Crystal data top
[ZnCl2(C14H20N2O)]·H2OV = 1707.6 (7) Å3
Mr = 386.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1860 (18) ŵ = 1.76 mm1
b = 19.875 (4) ÅT = 298 K
c = 9.966 (2) Å0.20 × 0.18 × 0.17 mm
β = 110.20 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3882 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2685 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.755Rint = 0.056
14151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.49 e Å3
3882 reflectionsΔρmin = 0.59 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.30417 (4)0.444609 (17)0.67776 (4)0.03531 (13)
Cl10.53819 (11)0.40618 (5)0.68728 (10)0.0547 (3)
Cl20.13426 (12)0.36691 (5)0.68208 (10)0.0566 (3)
O10.3309 (3)0.51454 (10)0.8185 (2)0.0466 (6)
O20.2673 (3)0.48851 (13)0.0627 (3)0.0540 (7)
N10.2172 (3)0.50529 (13)0.5054 (2)0.0330 (6)
N20.1661 (3)0.38887 (13)0.1946 (3)0.0322 (6)
C60.2940 (3)0.60705 (15)0.6525 (3)0.0349 (7)
C10.3412 (4)0.57904 (16)0.7920 (3)0.0360 (7)
C20.3972 (4)0.62356 (17)0.9080 (3)0.0423 (8)
H20.43110.60631.00040.051*
C30.4035 (4)0.69155 (18)0.8893 (4)0.0494 (9)
H30.44040.71970.96840.059*
C40.3549 (4)0.71867 (18)0.7520 (4)0.0553 (10)
H40.35860.76490.73920.066*
C50.3019 (4)0.67719 (17)0.6368 (4)0.0481 (9)
H50.27020.69560.54540.058*
C70.2314 (4)0.56952 (15)0.5204 (3)0.0351 (7)
H70.19760.59480.43670.042*
C80.1417 (4)0.48009 (16)0.3607 (3)0.0420 (8)
H8A0.15190.51260.29190.050*
H8B0.03210.47300.34280.050*
C90.2177 (4)0.41441 (16)0.3450 (3)0.0379 (8)
H9A0.32930.42060.37890.045*
H9B0.19450.38070.40510.045*
C100.2450 (4)0.32330 (17)0.1916 (3)0.0414 (8)
H10A0.21360.29040.24820.050*
H10B0.35640.32920.23390.050*
C110.2048 (4)0.29752 (17)0.0403 (3)0.0454 (9)
H11A0.25380.25420.04190.054*
H11B0.24460.32840.01410.054*
C120.0304 (4)0.29045 (18)0.0318 (4)0.0507 (9)
H12A0.00640.27730.13080.061*
H12B0.00820.25580.01580.061*
C130.0471 (4)0.35675 (18)0.0247 (3)0.0476 (9)
H13A0.15870.35140.06670.057*
H13B0.01560.39000.08050.057*
C140.0063 (4)0.38173 (17)0.1267 (3)0.0422 (8)
H14A0.05550.42490.12670.051*
H14B0.04420.35030.18140.051*
H2C0.198 (5)0.4214 (14)0.148 (4)0.080*
H2B0.295 (4)0.492 (2)0.009 (2)0.080*
H2A0.330 (4)0.5124 (18)0.128 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0448 (3)0.0329 (2)0.0281 (2)0.00015 (17)0.01246 (17)0.00067 (15)
Cl10.0473 (6)0.0665 (6)0.0490 (5)0.0112 (5)0.0150 (4)0.0005 (5)
Cl20.0635 (6)0.0507 (5)0.0599 (6)0.0155 (5)0.0266 (5)0.0007 (4)
O10.0800 (18)0.0341 (13)0.0296 (12)0.0072 (12)0.0238 (12)0.0028 (10)
O20.0692 (19)0.0562 (16)0.0411 (14)0.0195 (13)0.0248 (14)0.0026 (12)
N10.0398 (16)0.0353 (14)0.0255 (13)0.0008 (12)0.0132 (12)0.0010 (11)
N20.0331 (15)0.0381 (14)0.0252 (13)0.0002 (12)0.0099 (11)0.0004 (11)
C60.0319 (18)0.0368 (17)0.0374 (18)0.0024 (14)0.0138 (15)0.0022 (14)
C10.0355 (19)0.0385 (17)0.0386 (19)0.0004 (14)0.0187 (15)0.0065 (14)
C20.046 (2)0.047 (2)0.0370 (19)0.0021 (16)0.0183 (16)0.0113 (15)
C30.037 (2)0.045 (2)0.068 (3)0.0056 (16)0.0200 (19)0.0248 (19)
C40.050 (2)0.0339 (19)0.080 (3)0.0040 (17)0.020 (2)0.0045 (19)
C50.049 (2)0.0342 (18)0.060 (2)0.0049 (16)0.0171 (19)0.0042 (17)
C70.0336 (18)0.0404 (19)0.0336 (18)0.0073 (14)0.0145 (15)0.0088 (14)
C80.047 (2)0.048 (2)0.0294 (17)0.0098 (17)0.0113 (16)0.0019 (15)
C90.043 (2)0.0495 (19)0.0190 (16)0.0072 (16)0.0082 (14)0.0001 (13)
C100.039 (2)0.0447 (19)0.0378 (19)0.0078 (16)0.0102 (16)0.0010 (15)
C110.045 (2)0.045 (2)0.045 (2)0.0031 (16)0.0135 (17)0.0076 (16)
C120.049 (2)0.053 (2)0.047 (2)0.0069 (18)0.0124 (18)0.0116 (17)
C130.036 (2)0.063 (2)0.0363 (19)0.0028 (17)0.0029 (16)0.0081 (17)
C140.0313 (19)0.050 (2)0.041 (2)0.0048 (16)0.0077 (15)0.0008 (16)
Geometric parameters (Å, º) top
Zn1—O11.929 (2)C4—H40.93
Zn1—N12.024 (2)C5—H50.93
Zn1—Cl22.2066 (10)C7—H70.93
Zn1—Cl12.2523 (10)C8—C91.514 (4)
O1—C11.319 (4)C8—H8A0.97
O2—H2B0.84 (3)C8—H8B0.97
O2—H2A0.85 (3)C9—H9A0.97
N1—C71.287 (4)C9—H9B0.97
N1—C81.457 (4)C10—C111.512 (4)
N2—C91.496 (4)C10—H10A0.97
N2—C101.496 (4)C10—H10B0.97
N2—C141.499 (4)C11—C121.520 (5)
N2—H2C0.90 (4)C11—H11A0.97
C6—C51.407 (4)C11—H11B0.97
C6—C11.420 (4)C12—C131.511 (5)
C6—C71.448 (4)C12—H12A0.97
C1—C21.404 (4)C12—H12B0.97
C2—C31.368 (5)C13—C141.507 (4)
C2—H20.93C13—H13A0.97
C3—C41.393 (5)C13—H13B0.97
C3—H30.93C14—H14A0.97
C4—C51.360 (5)C14—H14B0.97
O1—Zn1—N195.83 (10)C9—C8—H8A110.0
O1—Zn1—Cl2113.80 (8)N1—C8—H8B110.0
N1—Zn1—Cl2111.04 (8)C9—C8—H8B110.0
O1—Zn1—Cl1109.48 (8)H8A—C8—H8B108.3
N1—Zn1—Cl1109.22 (8)N2—C9—C8113.5 (2)
Cl2—Zn1—Cl1115.66 (4)N2—C9—H9A108.9
C1—O1—Zn1123.71 (18)C8—C9—H9A108.9
H2B—O2—H2A106 (2)N2—C9—H9B108.9
C7—N1—C8116.8 (3)C8—C9—H9B108.9
C7—N1—Zn1119.9 (2)H9A—C9—H9B107.7
C8—N1—Zn1123.31 (19)N2—C10—C11111.2 (2)
C9—N2—C10109.1 (2)N2—C10—H10A109.4
C9—N2—C14113.8 (2)C11—C10—H10A109.4
C10—N2—C14110.6 (2)N2—C10—H10B109.4
C9—N2—H2C103 (3)C11—C10—H10B109.4
C10—N2—H2C112 (3)H10A—C10—H10B108.0
C14—N2—H2C108 (3)C10—C11—C12110.9 (3)
C5—C6—C1119.1 (3)C10—C11—H11A109.4
C5—C6—C7115.4 (3)C12—C11—H11A109.4
C1—C6—C7125.4 (3)C10—C11—H11B109.4
O1—C1—C2118.6 (3)C12—C11—H11B109.4
O1—C1—C6123.9 (3)H11A—C11—H11B108.0
C2—C1—C6117.4 (3)C13—C12—C11109.5 (3)
C3—C2—C1122.1 (3)C13—C12—H12A109.8
C3—C2—H2119.0C11—C12—H12A109.8
C1—C2—H2119.0C13—C12—H12B109.8
C2—C3—C4120.1 (3)C11—C12—H12B109.8
C2—C3—H3120.0H12A—C12—H12B108.2
C4—C3—H3120.0C12—C13—C14112.1 (3)
C5—C4—C3119.7 (3)C12—C13—H13A109.2
C5—C4—H4120.2C14—C13—H13A109.2
C3—C4—H4120.2C12—C13—H13B109.2
C4—C5—C6121.6 (3)C14—C13—H13B109.2
C4—C5—H5119.2H13A—C13—H13B107.9
C6—C5—H5119.2N2—C14—C13110.0 (3)
N1—C7—C6127.5 (3)N2—C14—H14A109.7
N1—C7—H7116.2C13—C14—H14A109.7
C6—C7—H7116.2N2—C14—H14B109.7
N1—C8—C9108.6 (2)C13—C14—H14B109.7
N1—C8—H8A110.0H14A—C14—H14B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O20.90 (4)1.81 (4)2.712 (3)177 (4)
O2—H2B···O1i0.84 (3)1.91 (3)2.741 (3)168 (4)
O2—H2A···Cl1ii0.85 (3)2.44 (3)3.272 (3)168 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[ZnCl2(C14H20N2O)]·H2O
Mr386.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.1860 (18), 19.875 (4), 9.966 (2)
β (°) 110.20 (3)
V3)1707.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.720, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
14151, 3882, 2685
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 0.97
No. of reflections3882
No. of parameters199
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.59

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O11.929 (2)Zn1—Cl22.2066 (10)
Zn1—N12.024 (2)Zn1—Cl12.2523 (10)
O1—Zn1—N195.83 (10)O1—Zn1—Cl1109.48 (8)
O1—Zn1—Cl2113.80 (8)N1—Zn1—Cl1109.22 (8)
N1—Zn1—Cl2111.04 (8)Cl2—Zn1—Cl1115.66 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O20.90 (4)1.81 (4)2.712 (3)177 (4)
O2—H2B···O1i0.84 (3)1.91 (3)2.741 (3)168 (4)
O2—H2A···Cl1ii0.85 (3)2.44 (3)3.272 (3)168 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge China Medical University for support of this research.

References

First citationAbd-Elzaher, M. M. (2004). Appl. Organomet. Chem. 18, 149–155.  Web of Science CrossRef CAS Google Scholar
First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIqbal, M. S., Bukhari, I. H. & Arif, M. (2005). Appl. Organomet. Chem. 19, 864–869.  Web of Science CrossRef CAS Google Scholar
First citationKawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095–3104.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, W.-H. (2007). Acta Cryst. E63, m1446–m1447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOsowole, A. A., Kolawole, G. A. & Fagade, O. E. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 829–836.  Web of Science CrossRef CAS Google Scholar
First citationRaman, N. & Thangaraja, C. (2005). Pol. J. Chem. 79, 1123–1134.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTatar, L., Atakol, O. & Ülkü, D. (2002). Acta Cryst. E58, m83–m85.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224–6226.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, S.-X. (2007). Acta Cryst. E63, m706–m707.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m825-m826
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds