organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(6-Chloro-3-pyridylmeth­yl)-N-ethyl-N′-methyl-2-nitro­ethyl­ene-1,1-di­amine

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: qknhs@yahoo.com.cn

(Received 23 April 2008; accepted 6 May 2008; online 14 May 2008)

In the title compound, C11H15ClN4O2, the amino group is involved in intra- and inter­molecular N—H⋯O hydrogen bonds. The former contributes to the mol­ecular conformation, while the latter link the mol­ecules into centrosymmetric dimers. The crystal structure also exhibits weak inter­molecular C—H⋯O inter­actions.

Related literature

For the properties of neonicotinoid insecticides, see: Wang et al. (2001[Wang, J. J., Han, Z. J. & Wang, Y. C. (2001). Zhiwu Baohu Xuebao, 28, 178-182.]); Isao et al. (1993[Isao, M., Koichi, I. & Takanori, T. (1993). J. Pesticide Sci. 18, 41-48.]). For related crystal structures, see: Jiang et al. (2007[Jiang, H., Yu, C.-X., Tu, S.-J., Wang, X.-S. & Yao, C.-S. (2007). Acta Cryst. E63, o298-o299.]); Xia et al. (2007[Xia, Y., Ding, X.-L., Ge, Y.-Q., Liu, L.-D. & Zhao, B.-X. (2007). Acta Cryst. E63, o394-o395.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15ClN4O2

  • Mr = 270.72

  • Monoclinic, P 21 /n

  • a = 7.7252 (15) Å

  • b = 7.9281 (16) Å

  • c = 20.787 (4) Å

  • β = 92.34 (3)°

  • V = 1272.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 113 (2) K

  • 0.14 × 0.12 × 0.04 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.959, Tmax = 0.988

  • 7120 measured reflections

  • 2238 independent reflections

  • 1970 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.05

  • 2238 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.86 2.12 2.6376 (16) 118
N3—H3A⋯O1i 0.86 2.38 3.0778 (17) 138
C6—H6A⋯O1ii 0.97 2.58 3.508 (2) 160
C3—H3⋯O2iii 0.93 2.50 3.1101 (19) 123
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+2, -z; (iii) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitenpyram is a new chloro-nicotine type insecticide (Wang et al., 2001) possessing a wide spectum of useful properties (Isao et al., 1993). We report here the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are in agreement with those reported for the related structures (Jiang et al., 2007; Xia et al., 2007). The pyridine ring and plane N2/N3/C9/C11 form a dihedral angle of 48.8 (2)°. The amino group is involved in intra- and intermolecular N-H···O hydrogen bonds (Table 1). The intermolecular N-H···O hydrogen bonds link the molecules into centrosymmetric dimers. The crystal packing exhibits also weak intermolecular C—H···O interactions (Table 1).

Related literature top

For the properties of neonicotinoid insecticides, see: Wang et al. (2001); Isao et al. (1993). For related crystal structures, see: Jiang et al. (2007); Xia et al. (2007).

Experimental top

A solution comprising N-((6-chloropyridin-3-yl)methyl)ethanamine(0.1 mol) in trichloromethane(30 ml) was slowly added from a dropping-funnel to a mixture of 1,1,1-trichloro-2-nitro-ethane(0.15 mol), trichloromethane(30 ml) and an aqueous solution of sodium carbonate(40%, 53 g) in a flask equipped with stirrer and reflux condenser. After the mixture was stirred for 1 h while maintaining the temperature at 273–280k, an aqueous solution of methylamine(30%, 30 g) was then added dropwise, followed by a two hours stirring at room temperature. The reaction mixture were extracted with trichloromethane, the title compound (16.2 g, yield 60%) could be afforded after ethyl oxide was added to the concentration remnants on cooling. The single-crystal suitable for X-ray measurements was obtained by recrystallization from trichloromethane-ethyl acetate(1:1) at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93–0.97 Å, respectively, and with Uiso(H) = 1.2Ueq(C, N) for the aryl, methylene and N H atoms and 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.
(E)-N-(6-Chloro-3-pyridylmethyl)-N-ethyl-N'-methyl-2-nitroethylene-1,1-diamine top
Crystal data top
C11H15ClN4O2F(000) = 568
Mr = 270.72Dx = 1.414 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3653 reflections
a = 7.7252 (15) Åθ = 2.0–27.9°
b = 7.9281 (16) ŵ = 0.30 mm1
c = 20.787 (4) ÅT = 113 K
β = 92.34 (3)°Block, yellow
V = 1272.0 (4) Å30.14 × 0.12 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2238 independent reflections
Radiation source: rotating anode1970 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.031
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 95
Tmin = 0.959, Tmax = 0.988k = 89
7120 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.053P)2 + 0.2942P]
where P = (Fo2 + 2Fc2)/3
2238 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C11H15ClN4O2V = 1272.0 (4) Å3
Mr = 270.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7252 (15) ŵ = 0.30 mm1
b = 7.9281 (16) ÅT = 113 K
c = 20.787 (4) Å0.14 × 0.12 × 0.04 mm
β = 92.34 (3)°
Data collection top
Rigaku Saturn
diffractometer
2238 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1970 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.988Rint = 0.031
7120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
2238 reflectionsΔρmin = 0.34 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46834 (6)0.13093 (5)0.15973 (2)0.03277 (16)
O10.31814 (14)1.08651 (13)0.00180 (6)0.0256 (3)
O20.11880 (15)1.26510 (13)0.02461 (6)0.0297 (3)
N10.37165 (16)0.43140 (16)0.19759 (6)0.0218 (3)
N20.10858 (15)0.74385 (14)0.12607 (6)0.0154 (3)
N30.34655 (15)0.80473 (14)0.06527 (6)0.0164 (3)
H3A0.41710.88370.05550.020*
N40.19059 (16)1.12460 (14)0.03211 (6)0.0187 (3)
C10.34845 (19)0.31625 (19)0.15333 (7)0.0194 (3)
C20.23838 (19)0.33022 (19)0.10271 (8)0.0193 (3)
H20.22610.24290.07340.023*
C30.14779 (18)0.47891 (18)0.09762 (7)0.0183 (3)
H30.07270.49410.06420.022*
C40.16921 (18)0.60648 (17)0.14276 (7)0.0157 (3)
C50.28034 (19)0.57502 (19)0.19164 (7)0.0193 (3)
H50.29310.65840.22250.023*
C60.07572 (18)0.77266 (17)0.13772 (7)0.0170 (3)
H6A0.12800.83840.10270.020*
H6B0.08630.83600.17730.020*
C70.20362 (19)0.64947 (18)0.17777 (7)0.0177 (3)
H7A0.28890.57720.15860.021*
H7B0.12280.57770.19960.021*
C80.2939 (2)0.7633 (2)0.22653 (9)0.0301 (4)
H8A0.38290.82590.20620.045*
H8B0.34490.69650.26080.045*
H8C0.21150.84020.24360.045*
C90.19636 (18)0.85310 (17)0.08850 (7)0.0142 (3)
C100.4040 (2)0.63299 (18)0.05466 (8)0.0206 (3)
H10A0.47310.59550.09130.031*
H10B0.47180.62920.01700.031*
H10C0.30500.56070.04860.031*
C110.12900 (18)1.01529 (17)0.07620 (7)0.0169 (3)
H110.03591.05030.09990.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0374 (3)0.0288 (2)0.0319 (3)0.01993 (18)0.00009 (19)0.00218 (17)
O10.0213 (6)0.0257 (6)0.0307 (7)0.0037 (5)0.0121 (5)0.0098 (5)
O20.0367 (7)0.0148 (5)0.0384 (8)0.0088 (5)0.0118 (6)0.0096 (5)
N10.0195 (6)0.0264 (7)0.0195 (7)0.0078 (6)0.0008 (5)0.0030 (6)
N20.0126 (6)0.0143 (6)0.0191 (7)0.0006 (5)0.0006 (5)0.0041 (5)
N30.0137 (6)0.0119 (6)0.0241 (7)0.0011 (5)0.0041 (5)0.0007 (5)
N40.0191 (7)0.0145 (6)0.0226 (7)0.0014 (5)0.0033 (5)0.0023 (5)
C10.0171 (7)0.0202 (7)0.0203 (8)0.0049 (6)0.0052 (6)0.0054 (6)
C20.0197 (7)0.0172 (7)0.0208 (8)0.0025 (6)0.0012 (6)0.0005 (6)
C30.0149 (7)0.0202 (8)0.0199 (8)0.0017 (6)0.0028 (6)0.0032 (6)
C40.0115 (7)0.0170 (7)0.0183 (8)0.0018 (6)0.0023 (6)0.0040 (6)
C50.0179 (7)0.0218 (7)0.0181 (8)0.0025 (6)0.0003 (6)0.0006 (6)
C60.0147 (7)0.0154 (7)0.0211 (8)0.0012 (6)0.0033 (6)0.0022 (6)
C70.0171 (7)0.0176 (7)0.0183 (8)0.0002 (6)0.0006 (6)0.0053 (6)
C80.0348 (9)0.0279 (9)0.0267 (10)0.0077 (7)0.0094 (7)0.0053 (7)
C90.0141 (7)0.0134 (7)0.0148 (8)0.0016 (6)0.0018 (6)0.0010 (5)
C100.0200 (8)0.0165 (7)0.0252 (9)0.0052 (6)0.0026 (7)0.0012 (6)
C110.0163 (7)0.0150 (7)0.0197 (8)0.0005 (6)0.0056 (6)0.0008 (6)
Geometric parameters (Å, º) top
Cl1—C11.7447 (15)C4—C51.379 (2)
O1—N41.2711 (16)C4—C61.508 (2)
O2—N41.2512 (16)C5—H50.9300
N1—C11.314 (2)C6—H6A0.9700
N1—C51.3478 (19)C6—H6B0.9700
N2—C91.3650 (18)C7—C81.507 (2)
N2—C61.4717 (17)C7—H7A0.9700
N2—C71.4796 (19)C7—H7B0.9700
N3—C91.3313 (18)C8—H8A0.9600
N3—C101.4517 (18)C8—H8B0.9600
N3—H3A0.8600C8—H8C0.9600
N4—C111.3613 (18)C9—C111.4066 (19)
C1—C21.384 (2)C10—H10A0.9600
C2—C31.377 (2)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C41.394 (2)C11—H110.9300
C3—H30.9300
C1—N1—C5115.85 (13)N2—C6—H6B109.6
C9—N2—C6120.14 (12)C4—C6—H6B109.6
C9—N2—C7119.54 (12)H6A—C6—H6B108.1
C6—N2—C7114.44 (11)N2—C7—C8112.82 (12)
C9—N3—C10126.98 (12)N2—C7—H7A109.0
C9—N3—H3A116.5C8—C7—H7A109.0
C10—N3—H3A116.5N2—C7—H7B109.0
O2—N4—O1119.49 (12)C8—C7—H7B109.0
O2—N4—C11119.03 (12)H7A—C7—H7B107.8
O1—N4—C11121.48 (12)C7—C8—H8A109.5
N1—C1—C2125.63 (13)C7—C8—H8B109.5
N1—C1—Cl1116.35 (11)H8A—C8—H8B109.5
C2—C1—Cl1118.03 (12)C7—C8—H8C109.5
C3—C2—C1117.18 (14)H8A—C8—H8C109.5
C3—C2—H2121.4H8B—C8—H8C109.5
C1—C2—H2121.4N3—C9—N2119.04 (12)
C2—C3—C4119.65 (14)N3—C9—C11121.26 (13)
C2—C3—H3120.2N2—C9—C11119.69 (12)
C4—C3—H3120.2N3—C10—H10A109.5
C5—C4—C3117.33 (13)N3—C10—H10B109.5
C5—C4—C6121.56 (13)H10A—C10—H10B109.5
C3—C4—C6121.10 (13)N3—C10—H10C109.5
N1—C5—C4124.34 (14)H10A—C10—H10C109.5
N1—C5—H5117.8H10B—C10—H10C109.5
C4—C5—H5117.8N4—C11—C9124.57 (13)
N2—C6—C4110.19 (11)N4—C11—H11117.7
N2—C6—H6A109.6C9—C11—H11117.7
C4—C6—H6A109.6
C5—N1—C1—C20.8 (2)C3—C4—C6—N247.41 (19)
C5—N1—C1—Cl1179.06 (11)C9—N2—C7—C858.95 (17)
N1—C1—C2—C31.3 (2)C6—N2—C7—C894.11 (15)
Cl1—C1—C2—C3178.57 (11)C10—N3—C9—N223.9 (2)
C1—C2—C3—C40.3 (2)C10—N3—C9—C11157.47 (15)
C2—C3—C4—C51.0 (2)C6—N2—C9—N3163.24 (13)
C2—C3—C4—C6178.39 (13)C7—N2—C9—N345.24 (19)
C1—N1—C5—C40.7 (2)C6—N2—C9—C1118.2 (2)
C3—C4—C5—N11.6 (2)C7—N2—C9—C11133.36 (14)
C6—C4—C5—N1177.82 (13)O2—N4—C11—C9179.01 (14)
C9—N2—C6—C4145.80 (13)O1—N4—C11—C90.4 (2)
C7—N2—C6—C461.31 (16)N3—C9—C11—N411.8 (2)
C5—C4—C6—N2133.23 (14)N2—C9—C11—N4169.61 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.862.122.6376 (16)118
N3—H3A···O1i0.862.383.0778 (17)138
C6—H6A···O1ii0.972.583.508 (2)160
C3—H3···O2iii0.932.503.1101 (19)123
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H15ClN4O2
Mr270.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)7.7252 (15), 7.9281 (16), 20.787 (4)
β (°) 92.34 (3)
V3)1272.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.14 × 0.12 × 0.04
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.959, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7120, 2238, 1970
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.05
No. of reflections2238
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.34

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.862.122.6376 (16)117.8
N3—H3A···O1i0.862.383.0778 (17)138.4
C6—H6A···O1ii0.972.583.508 (2)160.0
C3—H3···O2iii0.932.503.1101 (19)123.1
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z; (iii) x, y1, z.
 

References

First citationIsao, M., Koichi, I. & Takanori, T. (1993). J. Pesticide Sci. 18, 41–48.  Google Scholar
First citationJiang, H., Yu, C.-X., Tu, S.-J., Wang, X.-S. & Yao, C.-S. (2007). Acta Cryst. E63, o298–o299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. J., Han, Z. J. & Wang, Y. C. (2001). Zhiwu Baohu Xuebao, 28, 178–182.  CAS Google Scholar
First citationXia, Y., Ding, X.-L., Ge, Y.-Q., Liu, L.-D. & Zhao, B.-X. (2007). Acta Cryst. E63, o394–o395.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds