organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-phenyl­acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 29 April 2008; accepted 30 April 2008; online 3 May 2008)

In the title compound, C8H8ClNO, the conformations of the N—H and C=O bonds are anti to each other, but the C—Cl and C=O bonds in the side chain are syn. The mol­ecules are linked by N—H⋯O hydrogen bonds into infinite chains running in the [101] direction.

Related literature

For the synthesis, see: Gowda et al. (2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). For related structures, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o4611.], 2008[Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008). Acta Cryst. E64, o208.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8ClNO

  • Mr = 169.6

  • Monoclinic, C c

  • a = 5.0623 (15) Å

  • b = 18.361 (6) Å

  • c = 9.115 (2) Å

  • β = 102.13 (3)°

  • V = 828.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 297 (2) K

  • 0.41 × 0.24 × 0.17 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.905, Tmax = 0.938

  • 2388 measured reflections

  • 1067 independent reflections

  • 385 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.086

  • S = 0.96

  • 1067 reflections

  • 106 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.1 e Å−3

  • Δρmin = −0.11 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 254 Friedel pairs

  • Flack parameter: 0.04 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.05 2.848 (5) 155
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, the structure of the title compoud, (I), 2-chloro-N-(phenyl)-acetamide (NPCA) has been determined, as part of a study of the effect of ring and side chain substitutions on the solid state geometry of aromatic amides (Gowda et al., 2007; 2008). The conformations of the N—H and C=O bonds are anti to each other, but the C—Cl and C=O bonds in the side chain are syn to each other (Fig. 1), similar to that observed in 2-chloro-N-(2-chlorophenyl)-acetamide (Gowda et al., 2007)and 2-chloro-N-(3-methylphenyl)-acetamide (Gowda et al., 2008) with similar bond parameters. Further, the amide group –NHCO– in (I) makes a dihedral angle of 16.0 (8)° with the phenyl ring.

Part of the packing for (I) viewed down the b axis is shown in Fig. 2. Infinite chains running along the base vector [101] are formed by N-H···O hydrogen bonds (Table 1).

Related literature top

For the synthesis, see: Gowda et al. (2003). For related structures, see: Gowda et al. (2007, 2008).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003) and colourless prisms of (I) were recrystallised from an ethanol solution.

Refinement top

The H atoms were placed in calculated positions (C-H = 0.93Å, N-H = 0.86Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the packing for (I) viewed down the b axis showing the chains arising from N-H···O hydrogen bonds Symmetry code (i): x - 1/2,-y + 1/2,z - 1/2.
2-Chloro-N-phenylacetamide top
Crystal data top
C8H8ClNOF(000) = 352
Mr = 169.6Dx = 1.36 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 159 reflections
a = 5.0623 (15) Åθ = 4.9–25.1°
b = 18.361 (6) ŵ = 0.40 mm1
c = 9.115 (2) ÅT = 297 K
β = 102.13 (3)°Prism, colorless
V = 828.3 (4) Å30.41 × 0.24 × 0.17 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
1067 independent reflections
Radiation source: Enhance (Mo) X-ray Source385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.4340 pixels mm-1θmax = 26°, θmin = 4.3°
ω scansh = 66
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2006), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
k = 2222
Tmin = 0.905, Tmax = 0.938l = 911
2388 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.086 [exp(3.70(sinθ/λ)2)]/[σ2(Fo2) + (0.035P)2]
where P = 0.33333Fo2 + 0.66667Fc2
S = 0.96(Δ/σ)max < 0.001
1067 reflectionsΔρmax = 0.1 e Å3
106 parametersΔρmin = 0.11 e Å3
2 restraintsAbsolute structure: Flack (1983), 254 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (11)
Crystal data top
C8H8ClNOV = 828.3 (4) Å3
Mr = 169.6Z = 4
Monoclinic, CcMo Kα radiation
a = 5.0623 (15) ŵ = 0.40 mm1
b = 18.361 (6) ÅT = 297 K
c = 9.115 (2) Å0.41 × 0.24 × 0.17 mm
β = 102.13 (3)°
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
1067 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2006), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
385 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.938Rint = 0.046
2388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.1 e Å3
S = 0.96Δρmin = 0.11 e Å3
1067 reflectionsAbsolute structure: Flack (1983), 254 Friedel pairs
106 parametersAbsolute structure parameter: 0.04 (11)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.3492 (4)0.15000 (9)0.9151 (2)0.1082 (7)
C11.0871 (11)0.1998 (3)0.8076 (6)0.0824 (18)
H1A1.14880.22150.72370.099*
H1B0.9390.16710.76720.099*
C20.9849 (11)0.2595 (3)0.8961 (6)0.0629 (17)
N10.7939 (8)0.3008 (2)0.8086 (4)0.0642 (13)
H1N0.75650.28970.71490.077*
O11.0653 (7)0.26846 (19)1.0314 (3)0.0833 (13)
C30.6481 (10)0.3597 (3)0.8507 (6)0.0517 (13)
C40.7302 (11)0.3975 (3)0.9862 (6)0.0670 (17)
H40.8880.38451.05360.08*
C50.5727 (15)0.4542 (3)1.0177 (7)0.082 (2)
H50.62220.4781.10940.099*
C60.3490 (16)0.4762 (3)0.9197 (10)0.0824 (18)
H60.25130.5160.94280.099*
C70.2640 (13)0.4399 (4)0.7850 (7)0.082 (2)
H70.10680.45380.71830.099*
C80.4153 (10)0.3835 (4)0.7525 (6)0.0676 (16)
H80.36140.35980.66090.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1120 (13)0.1207 (13)0.0829 (10)0.0402 (13)0.0004 (9)0.0083 (13)
C10.079 (4)0.091 (4)0.067 (4)0.022 (4)0.006 (3)0.006 (4)
C20.070 (4)0.071 (4)0.045 (3)0.003 (3)0.005 (3)0.004 (4)
N10.066 (3)0.084 (3)0.035 (3)0.012 (3)0.006 (2)0.003 (3)
O10.102 (3)0.097 (3)0.039 (2)0.010 (2)0.013 (2)0.005 (2)
C30.051 (4)0.062 (4)0.041 (3)0.001 (3)0.008 (3)0.002 (3)
C40.055 (4)0.084 (4)0.059 (4)0.005 (4)0.007 (3)0.004 (3)
C50.083 (5)0.097 (5)0.073 (5)0.005 (5)0.029 (4)0.014 (4)
C60.078 (5)0.071 (4)0.101 (5)0.002 (5)0.027 (4)0.005 (5)
C70.066 (5)0.094 (5)0.081 (5)0.019 (5)0.005 (4)0.020 (5)
C80.053 (4)0.090 (5)0.058 (4)0.003 (3)0.006 (3)0.014 (3)
Geometric parameters (Å, º) top
Cl1—C11.735 (5)C4—C51.378 (7)
C1—C21.515 (6)C4—H40.93
C1—H1A0.97C5—C61.349 (8)
C1—H1B0.97C5—H50.93
C2—O11.226 (6)C6—C71.384 (9)
C2—N11.350 (6)C6—H60.93
N1—C31.407 (6)C7—C81.357 (7)
N1—H1N0.86C7—H70.93
C3—C81.392 (6)C8—H80.93
C3—C41.401 (7)
C2—C1—Cl1112.8 (4)C5—C4—C3118.7 (6)
C2—C1—H1A109C5—C4—H4120.7
Cl1—C1—H1A109C3—C4—H4120.7
C2—C1—H1B109C6—C5—C4122.0 (6)
Cl1—C1—H1B109C6—C5—H5119
H1A—C1—H1B107.8C4—C5—H5119
O1—C2—N1124.3 (6)C5—C6—C7120.3 (6)
O1—C2—C1123.7 (6)C5—C6—H6119.8
N1—C2—C1112.0 (5)C7—C6—H6119.8
C2—N1—C3128.5 (5)C8—C7—C6118.5 (6)
C2—N1—H1N115.7C8—C7—H7120.8
C3—N1—H1N115.7C6—C7—H7120.8
C8—C3—C4117.8 (5)C7—C8—C3122.6 (6)
C8—C3—N1119.2 (5)C7—C8—H8118.7
C4—C3—N1123.0 (5)C3—C8—H8118.7
Cl1—C1—C2—O14.8 (7)N1—C3—C4—C5179.6 (5)
Cl1—C1—C2—N1175.8 (4)C3—C4—C5—C62.8 (9)
O1—C2—N1—C31.1 (9)C4—C5—C6—C72.7 (9)
C1—C2—N1—C3178.3 (5)C5—C6—C7—C82.0 (9)
C2—N1—C3—C8164.2 (5)C6—C7—C8—C31.7 (8)
C2—N1—C3—C417.8 (8)C4—C3—C8—C71.8 (8)
C8—C3—C4—C52.3 (8)N1—C3—C8—C7180.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.052.848 (5)155
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H8ClNO
Mr169.6
Crystal system, space groupMonoclinic, Cc
Temperature (K)297
a, b, c (Å)5.0623 (15), 18.361 (6), 9.115 (2)
β (°) 102.13 (3)
V3)828.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.41 × 0.24 × 0.17
Data collection
DiffractometerOxford Diffraction Xcalibur System
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2006), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.905, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
2388, 1067, 385
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 0.96
No. of reflections1067
No. of parameters106
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.1, 0.11
Absolute structureFlack (1983), 254 Friedel pairs
Absolute structure parameter0.04 (11)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.052.848 (5)155
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for the resumption of his research fellowship. JK and MT thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support for the purchase of the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o4611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008). Acta Cryst. E64, o208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds