organic compounds
N′-Benzoyl-3-hydroxy-2-naphthohydrazide
aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China, bState Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China, and cSchool of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
*Correspondence e-mail: liangqifeng07@yahoo.com.cn
In the title compound, C18H14N2O3, the dihedral angle between the planes of the naphthalene and phenyl ring systems is 2.64 (2)°. Molecules are engaged in π–π stacking (mean interplanar distance = 3.339 between naphthalene rings and 3.357 Å between benzene rings )and hydrogen-bonding interactions.
Related literature
For related literature, see: Alexiou et al. (2002); Gaynor et al. (2002); Lah & Pecoraro (1989); Lehaire et al. (2002); Liu et al. (2001); Saalfrank et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.
Supporting information
10.1107/S1600536808012919/hg2387sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808012919/hg2387Isup2.hkl
Acetic anhydride (6.8 g, 66.8 mmol) and 3-hydroxy-2-naphthalenecarbohydrazide (11.3 g, 56.0 mmol) were added to 120 ml of chloroform with an external ice-water bath. The reaction mixture was slowly warmed to room temperature and stirred for 8 h. After leaving overnight in a refrigerator, the resulting white precipitate was filtered and rinsed with chloroform and diethyl ether. Yield: 95.3%. Melting point: 492 - 496 K. Calcd. for C18H14N2O3: C, 70.58; H, 4.61; N, 9.15%; Found: C, 70.24; H, 4.75; N, 9.02%.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A; N—H = 0.86Å; O—H = 0.82 Å) and Uiso(H) values weren taken to be equal to 1.2 Ueq(C, N) and 1.5Ueq(O). The hydroxy proton was located from from difference Fourier maps. In the absence of significant
effects, Friedel pairs wer merged.Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2002); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2002).Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. | |
Fig. 2. A view of π-π stacking of (I). H atoms have been omitted. |
C18H14N2O3 | F(000) = 320 |
Mr = 306.31 | Dx = 1.434 Mg m−3 |
Monoclinic, P21 | Melting point = 219–223 K |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8049 (10) Å | Cell parameters from 4889 reflections |
b = 5.0231 (10) Å | θ = 3.5–27.5° |
c = 29.398 (6) Å | µ = 0.10 mm−1 |
β = 91.59 (3)° | T = 273 K |
V = 709.3 (2) Å3 | Platelet, colorless |
Z = 2 | 0.35 × 0.24 × 0.14 mm |
Rigaku R-AXIS RAPID diffractometer | 1798 independent reflections |
Radiation source: fine-focus sealed tube | 1397 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω scans | θmax = 27.5°, θmin = 3.5° |
Absorption correction: multi-scan (ABSCOR; Higashi,1995) | h = −6→6 |
Tmin = 0.927, Tmax = 0.984 | k = −6→5 |
6959 measured reflections | l = −38→38 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0467P)2 + 0.1714P] where P = (Fo2 + 2Fc2)/3 |
1798 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.18 e Å−3 |
1 restraint | Δρmin = −0.18 e Å−3 |
C18H14N2O3 | V = 709.3 (2) Å3 |
Mr = 306.31 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 4.8049 (10) Å | µ = 0.10 mm−1 |
b = 5.0231 (10) Å | T = 273 K |
c = 29.398 (6) Å | 0.35 × 0.24 × 0.14 mm |
β = 91.59 (3)° |
Rigaku R-AXIS RAPID diffractometer | 1798 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi,1995) | 1397 reflections with I > 2σ(I) |
Tmin = 0.927, Tmax = 0.984 | Rint = 0.044 |
6959 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 1 restraint |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.18 e Å−3 |
1798 reflections | Δρmin = −0.18 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8504 (7) | −0.1340 (8) | 0.04316 (11) | 0.0580 (10) | |
H1A | 0.9337 | −0.1095 | 0.0153 | 0.070* | |
C2 | 0.9282 (8) | 0.0197 (9) | 0.07930 (11) | 0.0644 (11) | |
H2A | 1.0645 | 0.1491 | 0.0759 | 0.077* | |
C3 | 0.5261 (8) | −0.3656 (8) | 0.08826 (12) | 0.0646 (11) | |
H3A | 0.3923 | −0.4981 | 0.0909 | 0.078* | |
C4 | 0.6474 (8) | −0.3272 (9) | 0.04768 (12) | 0.0607 (10) | |
H4A | 0.5941 | −0.4312 | 0.0228 | 0.073* | |
C5 | 0.5989 (6) | −0.2081 (7) | 0.12670 (10) | 0.0426 (7) | |
C6 | 0.8049 (6) | −0.0137 (7) | 0.12216 (10) | 0.0438 (7) | |
C7 | 0.8769 (7) | 0.1425 (7) | 0.16055 (10) | 0.0491 (8) | |
H7A | 1.0142 | 0.2715 | 0.1578 | 0.059* | |
C8 | 0.4731 (7) | −0.2387 (8) | 0.16918 (11) | 0.0512 (8) | |
H8A | 0.3369 | −0.3684 | 0.1724 | 0.061* | |
C9 | 0.5449 (5) | −0.0842 (6) | 0.20558 (9) | 0.0362 (6) | |
C10 | 0.7539 (6) | 0.1128 (6) | 0.20171 (10) | 0.0368 (7) | |
C11 | 0.8542 (5) | 0.2972 (6) | 0.23870 (9) | 0.0371 (6) | |
C12 | 0.6027 (5) | 0.5289 (6) | 0.34255 (9) | 0.0366 (7) | |
C13 | 0.6956 (6) | 0.7103 (6) | 0.38002 (9) | 0.0355 (7) | |
C14 | 0.5666 (7) | 0.6932 (7) | 0.42123 (10) | 0.0474 (8) | |
H14A | 0.4253 | 0.5694 | 0.4251 | 0.057* | |
C15 | 0.9033 (6) | 0.8972 (7) | 0.37430 (10) | 0.0432 (7) | |
H15A | 0.9915 | 0.9099 | 0.3466 | 0.052* | |
C16 | 0.9798 (7) | 1.0656 (7) | 0.40988 (12) | 0.0536 (9) | |
H16A | 1.1171 | 1.1933 | 0.4058 | 0.064* | |
C17 | 0.8531 (7) | 1.0442 (7) | 0.45115 (11) | 0.0530 (9) | |
H17A | 0.9074 | 1.1549 | 0.4752 | 0.064* | |
C18 | 0.6461 (7) | 0.8593 (8) | 0.45684 (11) | 0.0526 (9) | |
H18A | 0.5595 | 0.8457 | 0.4846 | 0.063* | |
N1 | 0.7200 (5) | 0.2895 (6) | 0.27768 (8) | 0.0417 (6) | |
H1B | 0.5876 | 0.1768 | 0.2812 | 0.050* | |
N2 | 0.7938 (4) | 0.4635 (6) | 0.31267 (7) | 0.0410 (6) | |
H2B | 0.9596 | 0.5276 | 0.3150 | 0.049* | |
O1 | 0.4183 (4) | −0.1167 (5) | 0.24650 (6) | 0.0469 (6) | |
H1C | 0.3089 | −0.2417 | 0.2447 | 0.070* | |
O2 | 1.0522 (4) | 0.4497 (5) | 0.23390 (7) | 0.0525 (6) | |
O3 | 0.3630 (4) | 0.4405 (6) | 0.33929 (7) | 0.0533 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.071 (2) | 0.064 (2) | 0.0394 (16) | −0.001 (2) | 0.0079 (16) | −0.0050 (18) |
C2 | 0.084 (3) | 0.065 (2) | 0.0450 (18) | −0.024 (2) | 0.0158 (17) | −0.0074 (19) |
C3 | 0.071 (2) | 0.065 (2) | 0.058 (2) | −0.027 (2) | 0.0076 (18) | −0.018 (2) |
C4 | 0.067 (2) | 0.069 (3) | 0.0462 (19) | −0.005 (2) | −0.0014 (17) | −0.0179 (19) |
C5 | 0.0429 (15) | 0.0430 (18) | 0.0419 (15) | −0.0036 (15) | −0.0031 (12) | −0.0026 (16) |
C6 | 0.0459 (15) | 0.0458 (19) | 0.0399 (15) | −0.0031 (16) | 0.0028 (13) | −0.0007 (16) |
C7 | 0.0528 (18) | 0.049 (2) | 0.0455 (17) | −0.0197 (17) | 0.0061 (14) | −0.0033 (17) |
C8 | 0.0546 (19) | 0.0474 (19) | 0.0517 (19) | −0.0214 (17) | 0.0055 (15) | −0.0060 (17) |
C9 | 0.0339 (13) | 0.0352 (16) | 0.0394 (14) | −0.0045 (13) | 0.0016 (11) | 0.0005 (14) |
C10 | 0.0342 (14) | 0.0363 (15) | 0.0400 (15) | −0.0056 (13) | −0.0002 (12) | −0.0017 (14) |
C11 | 0.0318 (13) | 0.0403 (16) | 0.0394 (14) | −0.0060 (13) | 0.0015 (11) | −0.0003 (14) |
C12 | 0.0287 (13) | 0.0412 (16) | 0.0400 (15) | −0.0019 (12) | 0.0010 (11) | −0.0013 (14) |
C13 | 0.0306 (13) | 0.0372 (17) | 0.0386 (15) | 0.0016 (12) | −0.0010 (11) | −0.0003 (14) |
C14 | 0.0453 (18) | 0.051 (2) | 0.0463 (18) | −0.0070 (16) | 0.0065 (14) | −0.0036 (17) |
C15 | 0.0416 (15) | 0.0419 (18) | 0.0465 (16) | −0.0018 (15) | 0.0074 (12) | 0.0006 (16) |
C16 | 0.0467 (18) | 0.045 (2) | 0.069 (2) | −0.0092 (16) | 0.0009 (16) | −0.0090 (19) |
C17 | 0.059 (2) | 0.0464 (19) | 0.0534 (19) | 0.0016 (17) | −0.0068 (16) | −0.0136 (18) |
C18 | 0.0584 (19) | 0.057 (2) | 0.0426 (16) | −0.0035 (18) | 0.0054 (15) | −0.0079 (17) |
N1 | 0.0357 (12) | 0.0460 (15) | 0.0437 (14) | −0.0133 (12) | 0.0058 (10) | −0.0105 (14) |
N2 | 0.0301 (10) | 0.0526 (16) | 0.0405 (12) | −0.0084 (12) | 0.0027 (9) | −0.0116 (13) |
O1 | 0.0505 (12) | 0.0464 (13) | 0.0443 (11) | −0.0205 (11) | 0.0082 (9) | −0.0030 (11) |
O2 | 0.0529 (12) | 0.0588 (15) | 0.0463 (11) | −0.0268 (12) | 0.0101 (9) | −0.0080 (12) |
O3 | 0.0277 (9) | 0.0729 (16) | 0.0592 (12) | −0.0083 (11) | 0.0034 (9) | −0.0176 (14) |
C1—C2 | 1.357 (5) | C11—N1 | 1.331 (4) |
C1—C4 | 1.385 (5) | C12—O3 | 1.235 (3) |
C1—H1A | 0.9300 | C12—N2 | 1.330 (3) |
C2—C6 | 1.417 (4) | C12—C13 | 1.489 (4) |
C2—H2A | 0.9300 | C13—C14 | 1.379 (4) |
C3—C4 | 1.356 (5) | C13—C15 | 1.384 (4) |
C3—C5 | 1.415 (5) | C14—C18 | 1.384 (4) |
C3—H3A | 0.9300 | C14—H14A | 0.9300 |
C4—H4A | 0.9300 | C15—C16 | 1.387 (4) |
C5—C6 | 1.399 (5) | C15—H15A | 0.9300 |
C5—C8 | 1.411 (4) | C16—C17 | 1.377 (5) |
C6—C7 | 1.410 (4) | C16—H16A | 0.9300 |
C7—C10 | 1.369 (4) | C17—C18 | 1.374 (5) |
C7—H7A | 0.9300 | C17—H17A | 0.9300 |
C8—C9 | 1.359 (4) | C18—H18A | 0.9300 |
C8—H8A | 0.9300 | N1—N2 | 1.388 (3) |
C9—O1 | 1.373 (3) | N1—H1B | 0.8600 |
C9—C10 | 1.417 (4) | N2—H2B | 0.8600 |
C10—C11 | 1.497 (4) | O1—H1C | 0.8200 |
C11—O2 | 1.233 (3) | ||
C2—C1—C4 | 120.2 (3) | O2—C11—C10 | 122.4 (3) |
C2—C1—H1A | 119.9 | N1—C11—C10 | 117.0 (2) |
C4—C1—H1A | 119.9 | O3—C12—N2 | 121.3 (3) |
C1—C2—C6 | 121.1 (3) | O3—C12—C13 | 122.5 (3) |
C1—C2—H2A | 119.5 | N2—C12—C13 | 116.2 (2) |
C6—C2—H2A | 119.5 | C14—C13—C15 | 119.5 (3) |
C4—C3—C5 | 121.3 (4) | C14—C13—C12 | 118.6 (3) |
C4—C3—H3A | 119.3 | C15—C13—C12 | 121.9 (3) |
C5—C3—H3A | 119.3 | C13—C14—C18 | 120.4 (3) |
C3—C4—C1 | 120.3 (3) | C13—C14—H14A | 119.8 |
C3—C4—H4A | 119.8 | C18—C14—H14A | 119.8 |
C1—C4—H4A | 119.8 | C13—C15—C16 | 119.9 (3) |
C6—C5—C8 | 118.8 (3) | C13—C15—H15A | 120.0 |
C6—C5—C3 | 118.3 (3) | C16—C15—H15A | 120.0 |
C8—C5—C3 | 122.9 (3) | C17—C16—C15 | 120.2 (3) |
C5—C6—C7 | 118.1 (3) | C17—C16—H16A | 119.9 |
C5—C6—C2 | 118.8 (3) | C15—C16—H16A | 119.9 |
C7—C6—C2 | 123.1 (3) | C18—C17—C16 | 119.9 (3) |
C10—C7—C6 | 123.0 (3) | C18—C17—H17A | 120.0 |
C10—C7—H7A | 118.5 | C16—C17—H17A | 120.0 |
C6—C7—H7A | 118.5 | C17—C18—C14 | 120.1 (3) |
C9—C8—C5 | 122.0 (3) | C17—C18—H18A | 120.0 |
C9—C8—H8A | 119.0 | C14—C18—H18A | 120.0 |
C5—C8—H8A | 119.0 | C11—N1—N2 | 120.0 (2) |
C8—C9—O1 | 120.9 (3) | C11—N1—H1B | 120.0 |
C8—C9—C10 | 120.0 (3) | N2—N1—H1B | 120.0 |
O1—C9—C10 | 119.1 (2) | C12—N2—N1 | 118.5 (2) |
C7—C10—C9 | 118.1 (3) | C12—N2—H2B | 120.7 |
C7—C10—C11 | 115.9 (3) | N1—N2—H2B | 120.7 |
C9—C10—C11 | 126.0 (2) | C9—O1—H1C | 109.5 |
O2—C11—N1 | 120.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1C···O2i | 0.82 | 2.00 | 2.818 (3) | 174 |
N1—H1B···O1 | 0.86 | 1.96 | 2.652 (4) | 137 |
N2—H2B···O3ii | 0.86 | 2.09 | 2.826 (3) | 143 |
Symmetry codes: (i) x−1, y−1, z; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C18H14N2O3 |
Mr | 306.31 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 273 |
a, b, c (Å) | 4.8049 (10), 5.0231 (10), 29.398 (6) |
β (°) | 91.59 (3) |
V (Å3) | 709.3 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.35 × 0.24 × 0.14 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi,1995) |
Tmin, Tmax | 0.927, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6959, 1798, 1397 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.112, 1.05 |
No. of reflections | 1798 |
No. of parameters | 208 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.18 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1C···O2i | 0.8196 | 2.0008 | 2.818 (3) | 174.36 |
N1—H1B···O1 | 0.8600 | 1.9570 | 2.652 (4) | 137.00 |
N2—H2B···O3ii | 0.8602 | 2.0932 | 2.826 (3) | 142.72 |
Symmetry codes: (i) x−1, y−1, z; (ii) x+1, y, z. |
Acknowledgements
This project was supported by the Talent Fund of Ningbo University (grant No. 2006668).
References
Alexiou, M., Dendrinou-Samara, C., Raptopoulou, C. P., Terzis, A. & Kessissoglou, D. P. (2002). Inorg. Chem. 41, 4732–4735. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506–507. Web of Science CSD CrossRef Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259. CSD CrossRef CAS Web of Science Google Scholar
Lehaire, M. L., Scopelliti, R., Piotrowski, H. & Severin, K. (2002). Angew. Chem. Int. Ed. 41, 1419–1422. CrossRef CAS Google Scholar
Liu, S. X., Lin, S., Lin, B. Z., Lin, C. C. & Huang, J. Q. (2001). Angew. Chem. Int. Ed. 40, 1084–1085. CrossRef CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765–2768. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metallacrowns are a new class of metallamacrocycles, which have gained increasing attention over the past decade because of their potentially unique properties (Alexiou et al., 2002; Gaynor et al., 2002; Lah & Pecoraro, 1989; Lehaire et al., 2002; Liu et al., 2001; Saalfrank et al., 2001). These metallacrowns exhibit selective recognition of cations and anions (Saalfrank et al., 2001; Lehaire et al., 2002), can display intramolecular magnetic exchangeinteractions (Liu et al., 2001), and can be used as building blocks for two-dimensional or three-dimensional network structures (Gaynor et al., 2002; Lah & Pecoraro, 1989; Lehaire et al., 2002). The ability to control the generation of metallacrowns with different nuclear numbers, desired structures, and properties is still a substantial challenge. We now report structure of a designed pentadentate ligand, 3-hydroxy-N-phenyl-2-naphthalenecarbohydrazide (I).
The molecular structure of (I), C18H14N2O3, is illustrated in Fig.1. The bond length and bond angles in (I)are within normal ranges. The dihedral angle between the planes of naphthalene and benzene rings is 2.640 (2)°. Atom O2 is only approximately co-planar with the naphthalene plane and deviates from the benzene plane by 0.788 (2)Å. The maximum atomic deviation (O3) from the naphthalene plane is 1.403 (2)Å.
The mean interplanar distance of 3.339Å between naphthalene rings and 3.357Å between benzene rings suggests that the ligands are engaged in π-π stacking interactions (Fig. 2). The crystal structure of (I) is stabilized by O—H···O and N—H···O hydrogen bonding (Table 1).