organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Benzoyl-3-hydr­­oxy-2-naphthohydrazide

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China, bState Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China, and cSchool of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
*Correspondence e-mail: liangqifeng07@yahoo.com.cn

(Received 22 March 2008; accepted 1 May 2008; online 7 May 2008)

In the title compound, C18H14N2O3, the dihedral angle between the planes of the naphthalene and phenyl ring systems is 2.64 (2)°. Mol­ecules are engaged in ππ stacking (mean interplanar distance = 3.339 between naphthalene rings and 3.357 Å between benzene rings )and hydrogen-bonding inter­actions.

Related literature

For related literature, see: Alexiou et al. (2002[Alexiou, M., Dendrinou-Samara, C., Raptopoulou, C. P., Terzis, A. & Kessissoglou, D. P. (2002). Inorg. Chem. 41, 4732-4735.]); Gaynor et al. (2002[Gaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506-507.]); Lah & Pecoraro (1989[Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.]); Lehaire et al. (2002[Lehaire, M. L., Scopelliti, R., Piotrowski, H. & Severin, K. (2002). Angew. Chem. Int. Ed. 41, 1419-1422.]); Liu et al. (2001[Liu, S. X., Lin, S., Lin, B. Z., Lin, C. C. & Huang, J. Q. (2001). Angew. Chem. Int. Ed. 40, 1084-1085.]); Saalfrank et al. (2001[Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765-2768.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O3

  • Mr = 306.31

  • Monoclinic, P 21

  • a = 4.8049 (10) Å

  • b = 5.0231 (10) Å

  • c = 29.398 (6) Å

  • β = 91.59 (3)°

  • V = 709.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.35 × 0.24 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.927, Tmax = 0.984

  • 6959 measured reflections

  • 1798 independent reflections

  • 1397 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.112

  • S = 1.05

  • 1798 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯O2i 0.82 2.00 2.818 (3) 174
N1—H1B⋯O1 0.86 1.96 2.652 (4) 137
N2—H2B⋯O3ii 0.86 2.09 2.826 (3) 143
Symmetry codes: (i) x-1, y-1, z; (ii) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Metallacrowns are a new class of metallamacrocycles, which have gained increasing attention over the past decade because of their potentially unique properties (Alexiou et al., 2002; Gaynor et al., 2002; Lah & Pecoraro, 1989; Lehaire et al., 2002; Liu et al., 2001; Saalfrank et al., 2001). These metallacrowns exhibit selective recognition of cations and anions (Saalfrank et al., 2001; Lehaire et al., 2002), can display intramolecular magnetic exchangeinteractions (Liu et al., 2001), and can be used as building blocks for two-dimensional or three-dimensional network structures (Gaynor et al., 2002; Lah & Pecoraro, 1989; Lehaire et al., 2002). The ability to control the generation of metallacrowns with different nuclear numbers, desired structures, and properties is still a substantial challenge. We now report structure of a designed pentadentate ligand, 3-hydroxy-N-phenyl-2-naphthalenecarbohydrazide (I).

The molecular structure of (I), C18H14N2O3, is illustrated in Fig.1. The bond length and bond angles in (I)are within normal ranges. The dihedral angle between the planes of naphthalene and benzene rings is 2.640 (2)°. Atom O2 is only approximately co-planar with the naphthalene plane and deviates from the benzene plane by 0.788 (2)Å. The maximum atomic deviation (O3) from the naphthalene plane is 1.403 (2)Å.

The mean interplanar distance of 3.339Å between naphthalene rings and 3.357Å between benzene rings suggests that the ligands are engaged in π-π stacking interactions (Fig. 2). The crystal structure of (I) is stabilized by O—H···O and N—H···O hydrogen bonding (Table 1).

Related literature top

For related literature, see: Alexiou et al. (2002); Gaynor et al. (2002); Lah & Pecoraro (1989); Lehaire et al. (2002); Liu et al. (2001); Saalfrank et al. (2001).

Experimental top

Acetic anhydride (6.8 g, 66.8 mmol) and 3-hydroxy-2-naphthalenecarbohydrazide (11.3 g, 56.0 mmol) were added to 120 ml of chloroform with an external ice-water bath. The reaction mixture was slowly warmed to room temperature and stirred for 8 h. After leaving overnight in a refrigerator, the resulting white precipitate was filtered and rinsed with chloroform and diethyl ether. Yield: 95.3%. Melting point: 492 - 496 K. Calcd. for C18H14N2O3: C, 70.58; H, 4.61; N, 9.15%; Found: C, 70.24; H, 4.75; N, 9.02%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A; N—H = 0.86Å; O—H = 0.82 Å) and Uiso(H) values weren taken to be equal to 1.2 Ueq(C, N) and 1.5Ueq(O). The hydroxy proton was located from from difference Fourier maps. In the absence of significant anomalous scattering effects, Friedel pairs wer merged.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2002); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2002).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of π-π stacking of (I). H atoms have been omitted.
N'-Benzoyl-3-hydroxy-2-naphthohydrazide top
Crystal data top
C18H14N2O3F(000) = 320
Mr = 306.31Dx = 1.434 Mg m3
Monoclinic, P21Melting point = 219–223 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 4.8049 (10) ÅCell parameters from 4889 reflections
b = 5.0231 (10) Åθ = 3.5–27.5°
c = 29.398 (6) ŵ = 0.10 mm1
β = 91.59 (3)°T = 273 K
V = 709.3 (2) Å3Platelet, colorless
Z = 20.35 × 0.24 × 0.14 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1798 independent reflections
Radiation source: fine-focus sealed tube1397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(ABSCOR; Higashi,1995)
h = 66
Tmin = 0.927, Tmax = 0.984k = 65
6959 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.1714P]
where P = (Fo2 + 2Fc2)/3
1798 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C18H14N2O3V = 709.3 (2) Å3
Mr = 306.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.8049 (10) ŵ = 0.10 mm1
b = 5.0231 (10) ÅT = 273 K
c = 29.398 (6) Å0.35 × 0.24 × 0.14 mm
β = 91.59 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1798 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi,1995)
1397 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.984Rint = 0.044
6959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
1798 reflectionsΔρmin = 0.18 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8504 (7)0.1340 (8)0.04316 (11)0.0580 (10)
H1A0.93370.10950.01530.070*
C20.9282 (8)0.0197 (9)0.07930 (11)0.0644 (11)
H2A1.06450.14910.07590.077*
C30.5261 (8)0.3656 (8)0.08826 (12)0.0646 (11)
H3A0.39230.49810.09090.078*
C40.6474 (8)0.3272 (9)0.04768 (12)0.0607 (10)
H4A0.59410.43120.02280.073*
C50.5989 (6)0.2081 (7)0.12670 (10)0.0426 (7)
C60.8049 (6)0.0137 (7)0.12216 (10)0.0438 (7)
C70.8769 (7)0.1425 (7)0.16055 (10)0.0491 (8)
H7A1.01420.27150.15780.059*
C80.4731 (7)0.2387 (8)0.16918 (11)0.0512 (8)
H8A0.33690.36840.17240.061*
C90.5449 (5)0.0842 (6)0.20558 (9)0.0362 (6)
C100.7539 (6)0.1128 (6)0.20171 (10)0.0368 (7)
C110.8542 (5)0.2972 (6)0.23870 (9)0.0371 (6)
C120.6027 (5)0.5289 (6)0.34255 (9)0.0366 (7)
C130.6956 (6)0.7103 (6)0.38002 (9)0.0355 (7)
C140.5666 (7)0.6932 (7)0.42123 (10)0.0474 (8)
H14A0.42530.56940.42510.057*
C150.9033 (6)0.8972 (7)0.37430 (10)0.0432 (7)
H15A0.99150.90990.34660.052*
C160.9798 (7)1.0656 (7)0.40988 (12)0.0536 (9)
H16A1.11711.19330.40580.064*
C170.8531 (7)1.0442 (7)0.45115 (11)0.0530 (9)
H17A0.90741.15490.47520.064*
C180.6461 (7)0.8593 (8)0.45684 (11)0.0526 (9)
H18A0.55950.84570.48460.063*
N10.7200 (5)0.2895 (6)0.27768 (8)0.0417 (6)
H1B0.58760.17680.28120.050*
N20.7938 (4)0.4635 (6)0.31267 (7)0.0410 (6)
H2B0.95960.52760.31500.049*
O10.4183 (4)0.1167 (5)0.24650 (6)0.0469 (6)
H1C0.30890.24170.24470.070*
O21.0522 (4)0.4497 (5)0.23390 (7)0.0525 (6)
O30.3630 (4)0.4405 (6)0.33929 (7)0.0533 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.071 (2)0.064 (2)0.0394 (16)0.001 (2)0.0079 (16)0.0050 (18)
C20.084 (3)0.065 (2)0.0450 (18)0.024 (2)0.0158 (17)0.0074 (19)
C30.071 (2)0.065 (2)0.058 (2)0.027 (2)0.0076 (18)0.018 (2)
C40.067 (2)0.069 (3)0.0462 (19)0.005 (2)0.0014 (17)0.0179 (19)
C50.0429 (15)0.0430 (18)0.0419 (15)0.0036 (15)0.0031 (12)0.0026 (16)
C60.0459 (15)0.0458 (19)0.0399 (15)0.0031 (16)0.0028 (13)0.0007 (16)
C70.0528 (18)0.049 (2)0.0455 (17)0.0197 (17)0.0061 (14)0.0033 (17)
C80.0546 (19)0.0474 (19)0.0517 (19)0.0214 (17)0.0055 (15)0.0060 (17)
C90.0339 (13)0.0352 (16)0.0394 (14)0.0045 (13)0.0016 (11)0.0005 (14)
C100.0342 (14)0.0363 (15)0.0400 (15)0.0056 (13)0.0002 (12)0.0017 (14)
C110.0318 (13)0.0403 (16)0.0394 (14)0.0060 (13)0.0015 (11)0.0003 (14)
C120.0287 (13)0.0412 (16)0.0400 (15)0.0019 (12)0.0010 (11)0.0013 (14)
C130.0306 (13)0.0372 (17)0.0386 (15)0.0016 (12)0.0010 (11)0.0003 (14)
C140.0453 (18)0.051 (2)0.0463 (18)0.0070 (16)0.0065 (14)0.0036 (17)
C150.0416 (15)0.0419 (18)0.0465 (16)0.0018 (15)0.0074 (12)0.0006 (16)
C160.0467 (18)0.045 (2)0.069 (2)0.0092 (16)0.0009 (16)0.0090 (19)
C170.059 (2)0.0464 (19)0.0534 (19)0.0016 (17)0.0068 (16)0.0136 (18)
C180.0584 (19)0.057 (2)0.0426 (16)0.0035 (18)0.0054 (15)0.0079 (17)
N10.0357 (12)0.0460 (15)0.0437 (14)0.0133 (12)0.0058 (10)0.0105 (14)
N20.0301 (10)0.0526 (16)0.0405 (12)0.0084 (12)0.0027 (9)0.0116 (13)
O10.0505 (12)0.0464 (13)0.0443 (11)0.0205 (11)0.0082 (9)0.0030 (11)
O20.0529 (12)0.0588 (15)0.0463 (11)0.0268 (12)0.0101 (9)0.0080 (12)
O30.0277 (9)0.0729 (16)0.0592 (12)0.0083 (11)0.0034 (9)0.0176 (14)
Geometric parameters (Å, º) top
C1—C21.357 (5)C11—N11.331 (4)
C1—C41.385 (5)C12—O31.235 (3)
C1—H1A0.9300C12—N21.330 (3)
C2—C61.417 (4)C12—C131.489 (4)
C2—H2A0.9300C13—C141.379 (4)
C3—C41.356 (5)C13—C151.384 (4)
C3—C51.415 (5)C14—C181.384 (4)
C3—H3A0.9300C14—H14A0.9300
C4—H4A0.9300C15—C161.387 (4)
C5—C61.399 (5)C15—H15A0.9300
C5—C81.411 (4)C16—C171.377 (5)
C6—C71.410 (4)C16—H16A0.9300
C7—C101.369 (4)C17—C181.374 (5)
C7—H7A0.9300C17—H17A0.9300
C8—C91.359 (4)C18—H18A0.9300
C8—H8A0.9300N1—N21.388 (3)
C9—O11.373 (3)N1—H1B0.8600
C9—C101.417 (4)N2—H2B0.8600
C10—C111.497 (4)O1—H1C0.8200
C11—O21.233 (3)
C2—C1—C4120.2 (3)O2—C11—C10122.4 (3)
C2—C1—H1A119.9N1—C11—C10117.0 (2)
C4—C1—H1A119.9O3—C12—N2121.3 (3)
C1—C2—C6121.1 (3)O3—C12—C13122.5 (3)
C1—C2—H2A119.5N2—C12—C13116.2 (2)
C6—C2—H2A119.5C14—C13—C15119.5 (3)
C4—C3—C5121.3 (4)C14—C13—C12118.6 (3)
C4—C3—H3A119.3C15—C13—C12121.9 (3)
C5—C3—H3A119.3C13—C14—C18120.4 (3)
C3—C4—C1120.3 (3)C13—C14—H14A119.8
C3—C4—H4A119.8C18—C14—H14A119.8
C1—C4—H4A119.8C13—C15—C16119.9 (3)
C6—C5—C8118.8 (3)C13—C15—H15A120.0
C6—C5—C3118.3 (3)C16—C15—H15A120.0
C8—C5—C3122.9 (3)C17—C16—C15120.2 (3)
C5—C6—C7118.1 (3)C17—C16—H16A119.9
C5—C6—C2118.8 (3)C15—C16—H16A119.9
C7—C6—C2123.1 (3)C18—C17—C16119.9 (3)
C10—C7—C6123.0 (3)C18—C17—H17A120.0
C10—C7—H7A118.5C16—C17—H17A120.0
C6—C7—H7A118.5C17—C18—C14120.1 (3)
C9—C8—C5122.0 (3)C17—C18—H18A120.0
C9—C8—H8A119.0C14—C18—H18A120.0
C5—C8—H8A119.0C11—N1—N2120.0 (2)
C8—C9—O1120.9 (3)C11—N1—H1B120.0
C8—C9—C10120.0 (3)N2—N1—H1B120.0
O1—C9—C10119.1 (2)C12—N2—N1118.5 (2)
C7—C10—C9118.1 (3)C12—N2—H2B120.7
C7—C10—C11115.9 (3)N1—N2—H2B120.7
C9—C10—C11126.0 (2)C9—O1—H1C109.5
O2—C11—N1120.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O2i0.822.002.818 (3)174
N1—H1B···O10.861.962.652 (4)137
N2—H2B···O3ii0.862.092.826 (3)143
Symmetry codes: (i) x1, y1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H14N2O3
Mr306.31
Crystal system, space groupMonoclinic, P21
Temperature (K)273
a, b, c (Å)4.8049 (10), 5.0231 (10), 29.398 (6)
β (°) 91.59 (3)
V3)709.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.24 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi,1995)
Tmin, Tmax0.927, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
6959, 1798, 1397
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.112, 1.05
No. of reflections1798
No. of parameters208
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O2i0.81962.00082.818 (3)174.36
N1—H1B···O10.86001.95702.652 (4)137.00
N2—H2B···O3ii0.86022.09322.826 (3)142.72
Symmetry codes: (i) x1, y1, z; (ii) x+1, y, z.
 

Acknowledgements

This project was supported by the Talent Fund of Ningbo University (grant No. 2006668).

References

First citationAlexiou, M., Dendrinou-Samara, C., Raptopoulou, C. P., Terzis, A. & Kessissoglou, D. P. (2002). Inorg. Chem. 41, 4732–4735.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506–507.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.  CSD CrossRef CAS Web of Science Google Scholar
First citationLehaire, M. L., Scopelliti, R., Piotrowski, H. & Severin, K. (2002). Angew. Chem. Int. Ed. 41, 1419–1422.  CrossRef CAS Google Scholar
First citationLiu, S. X., Lin, S., Lin, B. Z., Lin, C. C. & Huang, J. Q. (2001). Angew. Chem. Int. Ed. 40, 1084–1085.  CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSaalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765–2768.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds