organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{[1-(4-Eth­oxy­phen­yl)-5-methyl-1H-1,2,3-triazol-4-yl]di­phenyl­meth­yl}morpholine

aState Key Laboratory of Applied Organic Chemistry, Institute of Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: donghengshan@lzu.edu.cn

(Received 15 April 2008; accepted 30 April 2008; online 14 May 2008)

The title compound, C28H30N4O2, synthesized from 4-[1-(4-ethoxy­phen­yl)-5-methyl-1H-1,2,3-triazol-4-yl]diphenyl­meth­an­ol and morpholine, consists of a subsituted triazolyl group and a morpholinyl group that crowd the aliphatic C atom of a diphenyl­methyl unit [Ctriaz—C—Nmorph = 110.1 (1)° and Cphen­yl—C—Cphen­yl = 103.9 (1)°]. The morpholine ring adopts a chair conformation.

Related literature

For background literature on the synthesis of the precursor (1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)diaryl­methanols, see: Dong et al. (2008[Dong, H.-S., Huo, G.-Y. & Ma, Z.-T. (2008). Indian J. Chem. Sect. B, 47, 171-174.]).

[Scheme 1]

Experimental

Crystal data
  • C28H30N4O2

  • Mr = 454.56

  • Triclinic, [P \overline 1]

  • a = 9.406 (1) Å

  • b = 10.125 (1) Å

  • c = 13.670 (2) Å

  • α = 81.408 (1)°

  • β = 73.621 (1)°

  • γ = 81.547 (1)°

  • V = 1227.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 (2) K

  • 0.28 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: none

  • 6395 measured reflections

  • 4437 independent reflections

  • 2830 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 0.99

  • 4437 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

We have recently reported the synthesis of some (1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)diarylmethanols and characterized one of them, 1-(4-tolyl)-5-methyl-1H-1,2,3-triazol-4-yl]bis(3-chlorophenyl)methanol, by X-ray crystallography (Dong et al., 2008). In the present study, the methanolic –OH group of [1-(4-ethoxyphenyl)-5-methyl-1H-1,2,3-triazol-4-yl]diphenylmethanol is replaced by a morpholinyl ring in the expectation that the resulting compound (Scheme I) will possess enhanced biological activity. The compound, C28H30N4O2 (Fig. 1), consists of a subsituted triazolyl part and a morpholinyl part that crowd the aliphatic carbon atom of the diphenylmethyl entity, the crowding depressing the CphenylC–Cphenyl angle [103.9 (1)°] from the idealized angle. The morpholinyl ring adopts a chair conformation.

Related literature top

For background literature on the synthesis of precursor (1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)diarylmethanols, see: Dong et al. (2008).

Experimental top

[1-(4-Ethoxyphenyl)-5-methyl-1H-1,2,3-triazol-4-yl]diphenylmethanol, which was synthesized by a modification of a published procedure (Dong et al., 2008) (1.2 g, 3.2 mmol), was dissolved in benzene (30 ml); dry hydrogen chloride gas was passed into the refluxing solution until the theoretical quantity of water was formed. Morpholine (0.4 ml) and triethylamine (0.7 ml) were added and the mixture kept at 318 K for two hours. Removal of the solvent gave a solid; this was washed with water, dried and recrystallized from ethyl acetate to give the pure compound, m.p. 456–458 K in 90% yield. The formulation was established by 1H-NMR and mass spectrosopic analyses. 1H-NMR(300 MHz, CDCl3): 1.422–1.469 (t, 3H, J = 6.9 Hz, ArOCH2–CH3), 2.049 (s, 3H, triazolyl–CH3), 2.456 (br, 4H, –N(CH2)2–), 3.829–3.859 (t, 4H, J = 4.5 Hz, –CH2OCH2–), 4.044–4.114 (q, 2H, J = 6.9 Hz, ArO–CH2–), 6.975–7.006 (d, 2H, J = 9.3 Hz, C2H5OAr–3,5H), 7.143–7.192 (t, 2H, J = 7.5 Hz, Ar–4H), 7.258–7.352 (m, 6H, C2H5OAr–2,6H, Ar–3,5H), 7.557–7.583 (d, 4H, J = 7.8 Hz, Ar–2,6H) p.p.m.. MS (%): 454 (M+., 0.88%), 369 (68), 340 (59), 312 (17), 310 (13), 264 (7.3), 252 (7.1), 224 (4.8), 219 (3.1), 205 (9.9), 191 (6.7), 178 (18), 165 (15), 162 (100), 151 (16), 149 (40), 134 (19), 121 (12), 93 (11), 91 (16), 77 (17).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C). The methyl groups were rotated to fit the electron density.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. 50% Probability thermal ellipsoid plot (Barbour, 2001) of C28H30N4O2. Hydrogen atoms are drawn as spheres of arbitrary radii.
4-{[1-(4-Ethoxyphenyl)-5-methyl-1H-1,2,3-triazol-4- yl]diphenylmethyl}morpholine top
Crystal data top
C28H30N4O2Z = 2
Mr = 454.56F(000) = 484
Triclinic, P1Dx = 1.230 Mg m3
Hall symbol: -P 1Melting point: 457 K
a = 9.406 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.125 (1) ÅCell parameters from 1386 reflections
c = 13.670 (2) Åθ = 2.3–22.5°
α = 81.408 (1)°µ = 0.08 mm1
β = 73.621 (1)°T = 294 K
γ = 81.547 (1)°Rhombohedron, colorless
V = 1227.4 (2) Å30.28 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII
diffractometer
2830 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ϕ and ω scansh = 711
6395 measured reflectionsk = 912
4437 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0614P)2]
where P = (Fo2 + 2Fc2)/3
4437 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C28H30N4O2γ = 81.547 (1)°
Mr = 454.56V = 1227.4 (2) Å3
Triclinic, P1Z = 2
a = 9.406 (1) ÅMo Kα radiation
b = 10.125 (1) ŵ = 0.08 mm1
c = 13.670 (2) ÅT = 294 K
α = 81.408 (1)°0.28 × 0.25 × 0.20 mm
β = 73.621 (1)°
Data collection top
Bruker APEXII
diffractometer
2830 reflections with I > 2σ(I)
6395 measured reflectionsRint = 0.019
4437 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.99Δρmax = 0.14 e Å3
4437 reflectionsΔρmin = 0.23 e Å3
309 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01051 (14)0.78624 (14)0.99479 (11)0.0597 (4)
O21.10986 (17)0.31482 (19)0.68284 (13)0.0761 (5)
N10.43338 (16)0.39052 (15)0.83355 (11)0.0395 (4)
N20.49124 (17)0.30714 (16)0.90338 (12)0.0462 (4)
N30.59072 (17)0.21953 (16)0.85227 (11)0.0447 (4)
N40.86454 (15)0.19704 (15)0.66019 (11)0.0392 (4)
C10.31717 (19)0.49423 (18)0.86992 (14)0.0391 (5)
C20.1836 (2)0.5083 (2)0.84476 (14)0.0468 (5)
H20.16860.45210.80150.056*
C30.0710 (2)0.6066 (2)0.88424 (15)0.0479 (5)
H30.01880.61730.86650.057*
C40.0926 (2)0.68869 (19)0.94988 (14)0.0428 (5)
C50.2269 (2)0.6723 (2)0.97548 (15)0.0495 (5)
H50.24150.72661.02020.059*
C60.3386 (2)0.57633 (19)0.93530 (15)0.0458 (5)
H60.42900.56660.95220.055*
C70.1432 (2)0.8214 (2)0.96182 (15)0.0538 (6)
H7A0.20160.74580.97830.065*
H7B0.11890.84640.88820.065*
C80.2296 (3)0.9376 (2)1.01669 (19)0.0735 (7)
H8A0.31610.96860.99200.110*
H8B0.16791.00921.00420.110*
H8C0.26020.90951.08910.110*
C90.4629 (2)0.4427 (2)0.64574 (15)0.0570 (6)
H9A0.44250.53500.65920.086*
H9B0.37710.41500.63290.086*
H9C0.54660.43340.58670.086*
C100.49787 (19)0.35671 (18)0.73669 (14)0.0389 (5)
C110.59709 (19)0.24503 (18)0.75005 (14)0.0372 (4)
C120.71084 (18)0.15980 (18)0.67455 (13)0.0365 (4)
C130.8762 (2)0.3413 (2)0.63607 (17)0.0545 (6)
H13A0.82340.38690.69570.065*
H13B0.83080.37710.58070.065*
C141.0384 (2)0.3658 (2)0.60466 (18)0.0663 (7)
H14A1.08930.32340.54320.080*
H14B1.04540.46170.58850.080*
C151.0936 (2)0.1761 (3)0.71158 (19)0.0702 (7)
H15A1.13950.14340.76720.084*
H15B1.14560.12670.65380.084*
C160.9328 (2)0.1497 (2)0.74525 (16)0.0557 (6)
H16A0.92610.05420.76470.067*
H16B0.88050.19640.80440.067*
C170.70954 (19)0.00784 (18)0.71035 (13)0.0381 (4)
C180.5995 (2)0.0457 (2)0.78943 (16)0.0498 (5)
H180.52370.01180.82640.060*
C190.5992 (2)0.1829 (2)0.81513 (17)0.0607 (6)
H190.52330.21630.86890.073*
C200.7093 (3)0.2706 (2)0.76228 (17)0.0586 (6)
H200.70920.36290.78000.070*
C210.8192 (3)0.2191 (2)0.68285 (17)0.0607 (6)
H210.89440.27710.64600.073*
C220.8196 (2)0.0820 (2)0.65696 (16)0.0531 (5)
H220.89520.04910.60270.064*
C230.6762 (2)0.17581 (18)0.56946 (14)0.0398 (5)
C240.5331 (2)0.1628 (2)0.56461 (17)0.0549 (6)
H240.45770.15050.62500.066*
C250.5019 (3)0.1679 (2)0.4711 (2)0.0690 (7)
H250.40540.16050.46910.083*
C260.6119 (3)0.1836 (2)0.3817 (2)0.0746 (8)
H260.59050.18730.31890.089*
C270.7536 (3)0.1939 (2)0.38524 (17)0.0708 (7)
H270.82900.20350.32450.085*
C280.7858 (2)0.1903 (2)0.47848 (15)0.0534 (6)
H280.88260.19770.47970.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0467 (9)0.0636 (10)0.0720 (10)0.0161 (7)0.0198 (7)0.0315 (8)
O20.0700 (11)0.0936 (14)0.0784 (12)0.0350 (9)0.0273 (9)0.0124 (10)
N10.0391 (9)0.0370 (9)0.0405 (9)0.0024 (7)0.0088 (7)0.0084 (7)
N20.0482 (10)0.0465 (10)0.0431 (9)0.0064 (8)0.0137 (8)0.0107 (8)
N30.0453 (10)0.0457 (10)0.0420 (9)0.0050 (7)0.0114 (8)0.0120 (8)
N40.0350 (9)0.0435 (10)0.0399 (9)0.0056 (7)0.0097 (7)0.0063 (7)
C10.0363 (11)0.0372 (11)0.0418 (11)0.0000 (8)0.0074 (8)0.0080 (9)
C20.0460 (12)0.0499 (13)0.0486 (12)0.0020 (9)0.0143 (10)0.0184 (10)
C30.0385 (11)0.0556 (14)0.0518 (12)0.0004 (9)0.0143 (9)0.0139 (10)
C40.0386 (11)0.0416 (12)0.0458 (11)0.0027 (8)0.0075 (9)0.0115 (9)
C50.0497 (12)0.0472 (13)0.0580 (13)0.0045 (9)0.0210 (10)0.0230 (10)
C60.0398 (11)0.0442 (12)0.0574 (13)0.0011 (9)0.0173 (9)0.0140 (10)
C70.0433 (12)0.0603 (15)0.0537 (13)0.0073 (10)0.0133 (10)0.0062 (11)
C80.0607 (15)0.0736 (18)0.0824 (17)0.0250 (12)0.0215 (13)0.0245 (14)
C90.0676 (14)0.0489 (14)0.0469 (12)0.0082 (10)0.0117 (10)0.0025 (10)
C100.0394 (11)0.0376 (11)0.0374 (11)0.0010 (8)0.0064 (8)0.0072 (9)
C110.0357 (10)0.0387 (11)0.0381 (11)0.0021 (8)0.0101 (8)0.0088 (8)
C120.0343 (10)0.0371 (11)0.0368 (10)0.0013 (8)0.0071 (8)0.0075 (8)
C130.0529 (13)0.0483 (14)0.0624 (14)0.0114 (10)0.0118 (11)0.0078 (11)
C140.0630 (15)0.0685 (17)0.0713 (16)0.0269 (12)0.0161 (13)0.0038 (13)
C150.0514 (14)0.093 (2)0.0739 (16)0.0184 (13)0.0269 (12)0.0018 (15)
C160.0476 (13)0.0729 (16)0.0506 (13)0.0136 (10)0.0192 (10)0.0004 (11)
C170.0371 (10)0.0389 (11)0.0397 (11)0.0016 (8)0.0124 (9)0.0072 (9)
C180.0435 (12)0.0436 (13)0.0573 (13)0.0032 (9)0.0037 (10)0.0107 (10)
C190.0583 (14)0.0498 (15)0.0693 (16)0.0149 (11)0.0071 (12)0.0021 (12)
C200.0746 (16)0.0380 (13)0.0671 (15)0.0085 (11)0.0260 (13)0.0023 (11)
C210.0698 (15)0.0442 (14)0.0623 (14)0.0079 (11)0.0113 (12)0.0139 (11)
C220.0539 (13)0.0446 (13)0.0516 (13)0.0006 (9)0.0016 (10)0.0065 (10)
C230.0460 (11)0.0324 (11)0.0425 (11)0.0013 (8)0.0145 (9)0.0090 (8)
C240.0554 (14)0.0533 (14)0.0637 (14)0.0053 (10)0.0261 (11)0.0110 (11)
C250.0843 (18)0.0559 (16)0.0863 (19)0.0046 (12)0.0538 (16)0.0121 (13)
C260.120 (2)0.0568 (16)0.0623 (17)0.0066 (15)0.0526 (17)0.0146 (13)
C270.096 (2)0.0720 (18)0.0433 (13)0.0057 (14)0.0225 (13)0.0090 (12)
C280.0586 (14)0.0582 (14)0.0418 (12)0.0035 (10)0.0134 (10)0.0101 (10)
Geometric parameters (Å, º) top
O1—C41.363 (2)C12—C231.541 (2)
O1—C71.424 (2)C12—C171.544 (2)
O2—C141.414 (3)C13—C141.512 (3)
O2—C151.419 (3)C13—H13A0.9700
N1—N21.3554 (19)C13—H13B0.9700
N1—C101.364 (2)C14—H14A0.9700
N1—C11.434 (2)C14—H14B0.9700
N2—N31.3126 (19)C15—C161.504 (3)
N3—C111.368 (2)C15—H15A0.9700
N4—C131.462 (2)C15—H15B0.9700
N4—C161.469 (2)C16—H16A0.9700
N4—C121.500 (2)C16—H16B0.9700
C1—C21.376 (2)C17—C181.376 (3)
C1—C61.379 (3)C17—C221.388 (2)
C2—C31.390 (2)C18—C191.381 (3)
C2—H20.9300C18—H180.9300
C3—C41.383 (3)C19—C201.372 (3)
C3—H30.9300C19—H190.9300
C4—C51.384 (2)C20—C211.370 (3)
C5—C61.372 (2)C20—H200.9300
C5—H50.9300C21—C221.381 (3)
C6—H60.9300C21—H210.9300
C7—C81.499 (3)C22—H220.9300
C7—H7A0.9700C23—C281.378 (3)
C7—H7B0.9700C23—C241.392 (3)
C8—H8A0.9600C24—C251.382 (3)
C8—H8B0.9600C24—H240.9300
C8—H8C0.9600C25—C261.366 (3)
C9—C101.495 (2)C25—H250.9300
C9—H9A0.9600C26—C271.367 (3)
C9—H9B0.9600C26—H260.9300
C9—H9C0.9600C27—C281.385 (3)
C10—C111.381 (2)C27—H270.9300
C11—C121.525 (2)C28—H280.9300
C4—O1—C7118.54 (15)N4—C13—H13A109.7
C14—O2—C15110.11 (17)C14—C13—H13A109.7
N2—N1—C10111.22 (14)N4—C13—H13B109.7
N2—N1—C1118.18 (14)C14—C13—H13B109.7
C10—N1—C1130.58 (15)H13A—C13—H13B108.2
N3—N2—N1106.67 (14)O2—C14—C13111.94 (19)
N2—N3—C11109.81 (14)O2—C14—H14A109.2
C13—N4—C16107.06 (16)C13—C14—H14A109.2
C13—N4—C12113.90 (13)O2—C14—H14B109.2
C16—N4—C12116.16 (14)C13—C14—H14B109.2
C2—C1—C6120.09 (17)H14A—C14—H14B107.9
C2—C1—N1121.16 (16)O2—C15—C16112.19 (19)
C6—C1—N1118.67 (16)O2—C15—H15A109.2
C1—C2—C3119.83 (18)C16—C15—H15A109.2
C1—C2—H2120.1O2—C15—H15B109.2
C3—C2—H2120.1C16—C15—H15B109.2
C4—C3—C2119.99 (18)H15A—C15—H15B107.9
C4—C3—H3120.0N4—C16—C15108.98 (17)
C2—C3—H3120.0N4—C16—H16A109.9
O1—C4—C3125.11 (17)C15—C16—H16A109.9
O1—C4—C5115.37 (17)N4—C16—H16B109.9
C3—C4—C5119.51 (17)C15—C16—H16B109.9
C6—C5—C4120.41 (18)H16A—C16—H16B108.3
C6—C5—H5119.8C18—C17—C22117.13 (18)
C4—C5—H5119.8C18—C17—C12123.62 (16)
C5—C6—C1120.16 (18)C22—C17—C12119.13 (17)
C5—C6—H6119.9C17—C18—C19121.45 (18)
C1—C6—H6119.9C17—C18—H18119.3
O1—C7—C8107.35 (17)C19—C18—H18119.3
O1—C7—H7A110.2C20—C19—C18120.8 (2)
C8—C7—H7A110.2C20—C19—H19119.6
O1—C7—H7B110.2C18—C19—H19119.6
C8—C7—H7B110.2C21—C20—C19118.5 (2)
H7A—C7—H7B108.5C21—C20—H20120.7
C7—C8—H8A109.5C19—C20—H20120.7
C7—C8—H8B109.5C20—C21—C22120.7 (2)
H8A—C8—H8B109.5C20—C21—H21119.6
C7—C8—H8C109.5C22—C21—H21119.6
H8A—C8—H8C109.5C21—C22—C17121.3 (2)
H8B—C8—H8C109.5C21—C22—H22119.3
C10—C9—H9A109.5C17—C22—H22119.3
C10—C9—H9B109.5C28—C23—C24117.90 (18)
H9A—C9—H9B109.5C28—C23—C12122.05 (17)
C10—C9—H9C109.5C24—C23—C12119.77 (17)
H9A—C9—H9C109.5C25—C24—C23120.8 (2)
H9B—C9—H9C109.5C25—C24—H24119.6
N1—C10—C11104.16 (15)C23—C24—H24119.6
N1—C10—C9120.80 (16)C26—C25—C24120.4 (2)
C11—C10—C9134.81 (17)C26—C25—H25119.8
N3—C11—C10108.11 (15)C24—C25—H25119.8
N3—C11—C12119.18 (15)C25—C26—C27119.5 (2)
C10—C11—C12132.53 (16)C25—C26—H26120.2
N4—C12—C11110.13 (14)C27—C26—H26120.2
N4—C12—C23109.34 (14)C26—C27—C28120.5 (2)
C11—C12—C23112.04 (13)C26—C27—H27119.7
N4—C12—C17108.86 (13)C28—C27—H27119.7
C11—C12—C17112.32 (14)C23—C28—C27120.8 (2)
C23—C12—C17103.93 (14)C23—C28—H28119.6
N4—C13—C14109.61 (16)C27—C28—H28119.6
C10—N1—N2—N30.7 (2)C10—C11—C12—C2320.6 (3)
C1—N1—N2—N3177.98 (16)N3—C11—C12—C1748.4 (2)
N1—N2—N3—C110.4 (2)C10—C11—C12—C17137.1 (2)
N2—N1—C1—C2126.47 (19)C16—N4—C13—C1460.2 (2)
C10—N1—C1—C251.9 (3)C12—N4—C13—C14169.95 (15)
N2—N1—C1—C650.3 (2)C15—O2—C14—C1355.7 (2)
C10—N1—C1—C6131.3 (2)N4—C13—C14—O259.1 (2)
C6—C1—C2—C30.9 (3)C14—O2—C15—C1656.5 (2)
N1—C1—C2—C3177.65 (17)C13—N4—C16—C1560.5 (2)
C1—C2—C3—C41.0 (3)C12—N4—C16—C15170.98 (17)
C7—O1—C4—C39.5 (3)O2—C15—C16—N459.9 (2)
C7—O1—C4—C5171.69 (18)N4—C12—C17—C18134.58 (18)
C2—C3—C4—O1178.55 (18)C11—C12—C17—C1812.3 (2)
C2—C3—C4—C50.2 (3)C23—C12—C17—C18108.97 (19)
O1—C4—C5—C6179.58 (18)N4—C12—C17—C2249.4 (2)
C3—C4—C5—C60.7 (3)C11—C12—C17—C22171.63 (16)
C4—C5—C6—C10.8 (3)C23—C12—C17—C2267.1 (2)
C2—C1—C6—C50.0 (3)C22—C17—C18—C190.5 (3)
N1—C1—C6—C5176.83 (17)C12—C17—C18—C19176.55 (18)
C4—O1—C7—C8175.31 (18)C17—C18—C19—C200.0 (3)
N2—N1—C10—C111.4 (2)C18—C19—C20—C210.4 (3)
C1—N1—C10—C11177.04 (18)C19—C20—C21—C220.3 (3)
N2—N1—C10—C9173.86 (17)C20—C21—C22—C170.2 (3)
C1—N1—C10—C97.7 (3)C18—C17—C22—C210.6 (3)
N2—N3—C11—C101.3 (2)C12—C17—C22—C21176.84 (18)
N2—N3—C11—C12177.05 (16)N4—C12—C23—C2814.1 (2)
N1—C10—C11—N31.6 (2)C11—C12—C23—C28136.44 (19)
C9—C10—C11—N3172.7 (2)C17—C12—C23—C28102.1 (2)
N1—C10—C11—C12176.61 (18)N4—C12—C23—C24172.18 (15)
C9—C10—C11—C122.3 (4)C11—C12—C23—C2449.8 (2)
C13—N4—C12—C1150.70 (19)C17—C12—C23—C2471.71 (19)
C16—N4—C12—C1174.41 (19)C28—C23—C24—C251.7 (3)
C13—N4—C12—C2372.82 (18)C12—C23—C24—C25175.68 (18)
C16—N4—C12—C23162.07 (15)C23—C24—C25—C261.1 (3)
C13—N4—C12—C17174.25 (15)C24—C25—C26—C270.2 (4)
C16—N4—C12—C1749.1 (2)C25—C26—C27—C280.8 (3)
N3—C11—C12—N473.2 (2)C24—C23—C28—C271.0 (3)
C10—C11—C12—N4101.4 (2)C12—C23—C28—C27174.90 (18)
N3—C11—C12—C23164.90 (16)C26—C27—C28—C230.2 (3)

Experimental details

Crystal data
Chemical formulaC28H30N4O2
Mr454.56
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.406 (1), 10.125 (1), 13.670 (2)
α, β, γ (°)81.408 (1), 73.621 (1), 81.547 (1)
V3)1227.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6395, 4437, 2830
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 0.99
No. of reflections4437
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

 

Acknowledgements

The authors thank the State Key Laboratory of Applied Organic Chemistry, Lanzhou University, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, H.-S., Huo, G.-Y. & Ma, Z.-T. (2008). Indian J. Chem. Sect. B, 47, 171–174.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds