metal-organic compounds
1,4,10,13-Tetraoxa-7,16-diazoniacyclooctadecane bis[tetrachloridoaurate(III)] dihydrate
aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: myousefi50@yahoo.com
The 12H28N2O4)[AuCl4]2·2H2O, contains one half-cation, one anion and one water molecule; the cation is centrosymmetric. The Au ion has a square-planar coordination. In the intramolecular N—H⋯O and O—H⋯O, and intermolecular N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds link the ions and water molecules, forming a supramolecular structure.
of the title compound, (CRelated literature
For related literature, see: Calleja et al. (2001); Chekhlov (2000, 2001, 2005); Chekhlov & Martynov (1998); Chekhlov et al. (1994); Fonari et al. (2004); Hasan et al. (1999); Johnson & Steed (1998); Moers et al. (2000); Simonov et al. (2003); Yap et al. (1995); Yousefi, Amani & Khavasi (2007); Yousefi, Teimouri et al. (2007); Zhang et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808015353/hk2465sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808015353/hk2465Isup2.hkl
For the preparation of the title compound, (I), a solution of 1,10-diaza-18 -crown-6 (0.10 g, 0.37 mmol) in EtOH (20 ml) was added to a solution of HAuCl4.3H2O, (0.29 g, 0.74 mmol) in water (30 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals of (I) were isolated (yield; 0.26 g; 72.0%).
H atoms (for H2O) were located in a difference syntheses and refined [O-H = 0.71 (6) and 0.76 (6) Å; Uiso(H) = 0.019 (15) and 0.034 (17) Å2]. The remaining H atoms were positioned geometrically, with N-H = 0.90 Å (for NH2) and C-H = 0.97 Å for methylene H and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The asymmetric unit of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) 1 - x, 1 - y, -z]. | |
Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines. |
(C12H28N2O4)[AuCl4]2·2H2O | Z = 1 |
Mr = 977.94 | F(000) = 460 |
Triclinic, P1 | Dx = 2.367 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0168 (10) Å | Cell parameters from 1139 reflections |
b = 8.3359 (9) Å | θ = 1.9–25.2° |
c = 11.2989 (15) Å | µ = 11.49 mm−1 |
α = 73.063 (11)° | T = 120 K |
β = 75.965 (10)° | Block, yellow |
γ = 74.929 (9)° | 0.32 × 0.22 × 0.20 mm |
V = 686.02 (15) Å3 |
Stoe IPDSII diffractometer | 2390 independent reflections |
Radiation source: fine-focus sealed tube | 2381 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 0.15 mm pixels mm-1 | θmax = 25.2°, θmin = 1.9° |
rotation method scans | h = −9→8 |
Absorption correction: numerical shape of crystal determined optically | k = −9→8 |
Tmin = 0.065, Tmax = 0.108 | l = −12→12 |
4188 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.017 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.18 | w = 1/[σ2(Fo2) + (0.0216P)2 + 1.1824P] where P = (Fo2 + 2Fc2)/3 |
2390 reflections | (Δ/σ)max = 0.018 |
144 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
(C12H28N2O4)[AuCl4]2·2H2O | γ = 74.929 (9)° |
Mr = 977.94 | V = 686.02 (15) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.0168 (10) Å | Mo Kα radiation |
b = 8.3359 (9) Å | µ = 11.49 mm−1 |
c = 11.2989 (15) Å | T = 120 K |
α = 73.063 (11)° | 0.32 × 0.22 × 0.20 mm |
β = 75.965 (10)° |
Stoe IPDSII diffractometer | 2390 independent reflections |
Absorption correction: numerical shape of crystal determined optically | 2381 reflections with I > 2σ(I) |
Tmin = 0.065, Tmax = 0.108 | Rint = 0.027 |
4188 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | 0 restraints |
wR(F2) = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.18 | Δρmax = 0.59 e Å−3 |
2390 reflections | Δρmin = −0.67 e Å−3 |
144 parameters |
Experimental. (X-SHAPE and X-RED; Stoe & Cie, 2005) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Au1 | 0.774200 (17) | 0.949008 (17) | 0.436516 (13) | 0.01917 (8) | |
Cl1 | 0.65158 (14) | 0.91699 (13) | 0.64419 (10) | 0.0271 (2) | |
Cl2 | 0.77516 (14) | 0.66859 (13) | 0.45325 (10) | 0.0249 (2) | |
Cl3 | 0.88196 (14) | 0.98407 (13) | 0.22535 (10) | 0.0257 (2) | |
Cl4 | 0.79013 (16) | 1.22269 (14) | 0.42240 (12) | 0.0362 (3) | |
O1 | 0.8055 (4) | 0.5576 (4) | −0.1123 (3) | 0.0230 (6) | |
O2 | 0.6857 (4) | 0.6728 (3) | 0.1006 (3) | 0.0227 (6) | |
O3 | 0.6136 (4) | 0.3371 (5) | 0.0862 (4) | 0.0259 (7) | |
H3C | 0.666 (7) | 0.406 (7) | 0.049 (5) | 0.019 (15)* | |
H3D | 0.689 (8) | 0.264 (8) | 0.118 (5) | 0.034 (17)* | |
N1 | 0.3824 (4) | 0.5189 (4) | 0.2598 (3) | 0.0193 (7) | |
H1C | 0.4424 | 0.4823 | 0.1909 | 0.023* | |
H1D | 0.3672 | 0.4259 | 0.3230 | 0.023* | |
C1 | 0.7938 (5) | 0.3778 (5) | −0.2343 (4) | 0.0231 (9) | |
H1A | 0.7787 | 0.2856 | −0.1594 | 0.028* | |
H1B | 0.8544 | 0.3272 | −0.3043 | 0.028* | |
C2 | 0.9019 (5) | 0.4874 (5) | −0.2162 (4) | 0.0228 (9) | |
H2A | 1.0152 | 0.4194 | −0.1983 | 0.027* | |
H2B | 0.9210 | 0.5783 | −0.2913 | 0.027* | |
C3 | 0.8743 (5) | 0.6921 (5) | −0.0984 (4) | 0.0232 (9) | |
H3A | 0.9062 | 0.7677 | −0.1798 | 0.028* | |
H3B | 0.9779 | 0.6447 | −0.0597 | 0.028* | |
C4 | 0.7321 (6) | 0.7883 (5) | −0.0161 (4) | 0.0259 (9) | |
H4A | 0.7733 | 0.8800 | −0.0025 | 0.031* | |
H4B | 0.6303 | 0.8385 | −0.0566 | 0.031* | |
C5 | 0.5532 (5) | 0.7528 (5) | 0.1851 (4) | 0.0242 (9) | |
H5A | 0.4568 | 0.8215 | 0.1431 | 0.029* | |
H5B | 0.5998 | 0.8274 | 0.2147 | 0.029* | |
C6 | 0.4895 (5) | 0.6163 (5) | 0.2940 (4) | 0.0232 (9) | |
H6A | 0.4190 | 0.6689 | 0.3610 | 0.028* | |
H6B | 0.5900 | 0.5367 | 0.3257 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Au1 | 0.01758 (11) | 0.01715 (11) | 0.02133 (12) | −0.00433 (7) | −0.00015 (7) | −0.00455 (7) |
Cl1 | 0.0296 (5) | 0.0268 (5) | 0.0227 (6) | −0.0041 (4) | −0.0003 (4) | −0.0077 (4) |
Cl2 | 0.0334 (6) | 0.0204 (5) | 0.0217 (5) | −0.0106 (4) | −0.0006 (4) | −0.0055 (4) |
Cl3 | 0.0271 (5) | 0.0229 (5) | 0.0236 (5) | −0.0074 (4) | 0.0019 (4) | −0.0037 (4) |
Cl4 | 0.0433 (7) | 0.0205 (5) | 0.0411 (7) | −0.0105 (5) | 0.0085 (5) | −0.0118 (5) |
O1 | 0.0223 (14) | 0.0256 (15) | 0.0229 (16) | −0.0110 (12) | 0.0022 (12) | −0.0083 (12) |
O2 | 0.0249 (15) | 0.0196 (14) | 0.0227 (16) | −0.0063 (12) | −0.0022 (12) | −0.0039 (12) |
O3 | 0.0223 (17) | 0.0229 (17) | 0.0312 (19) | −0.0092 (16) | 0.0008 (15) | −0.0049 (14) |
N1 | 0.0197 (17) | 0.0206 (17) | 0.0162 (17) | −0.0061 (13) | 0.0016 (14) | −0.0046 (14) |
C1 | 0.020 (2) | 0.023 (2) | 0.027 (2) | −0.0009 (16) | −0.0022 (17) | −0.0108 (18) |
C2 | 0.018 (2) | 0.027 (2) | 0.022 (2) | −0.0043 (17) | 0.0019 (17) | −0.0077 (18) |
C3 | 0.023 (2) | 0.024 (2) | 0.025 (2) | −0.0102 (17) | −0.0032 (17) | −0.0057 (18) |
C4 | 0.032 (2) | 0.019 (2) | 0.027 (2) | −0.0099 (18) | −0.0062 (19) | −0.0021 (17) |
C5 | 0.025 (2) | 0.021 (2) | 0.029 (2) | −0.0057 (17) | −0.0029 (18) | −0.0100 (18) |
C6 | 0.022 (2) | 0.026 (2) | 0.026 (2) | −0.0046 (17) | −0.0044 (17) | −0.0123 (18) |
Cl1—Au1 | 2.2796 (11) | C2—H2B | 0.9700 |
Cl2—Au1 | 2.2877 (10) | C3—O1 | 1.432 (5) |
Cl3—Au1 | 2.2912 (11) | C3—C4 | 1.500 (6) |
Cl4—Au1 | 2.2751 (11) | C3—H3A | 0.9700 |
O3—H3C | 0.71 (6) | C3—H3B | 0.9700 |
O3—H3D | 0.76 (6) | C4—O2 | 1.419 (5) |
N1—C1i | 1.496 (5) | C4—H4A | 0.9700 |
N1—H1C | 0.9000 | C4—H4B | 0.9700 |
N1—H1D | 0.9000 | C5—O2 | 1.412 (5) |
C1—C2 | 1.495 (6) | C5—C6 | 1.501 (6) |
C1—N1i | 1.496 (5) | C5—H5A | 0.9700 |
C1—H1A | 0.9700 | C5—H5B | 0.9700 |
C1—H1B | 0.9700 | C6—N1 | 1.501 (5) |
C2—O1 | 1.429 (5) | C6—H6A | 0.9700 |
C2—H2A | 0.9700 | C6—H6B | 0.9700 |
Cl4—Au1—Cl1 | 90.20 (4) | H2A—C2—H2B | 108.6 |
Cl4—Au1—Cl2 | 176.52 (4) | O1—C3—C4 | 106.8 (3) |
Cl1—Au1—Cl2 | 89.96 (4) | O1—C3—H3A | 110.4 |
Cl4—Au1—Cl3 | 90.30 (4) | C4—C3—H3A | 110.4 |
Cl1—Au1—Cl3 | 176.79 (3) | O1—C3—H3B | 110.4 |
Cl2—Au1—Cl3 | 89.74 (4) | C4—C3—H3B | 110.4 |
C2—O1—C3 | 113.3 (3) | H3A—C3—H3B | 108.6 |
C5—O2—C4 | 112.8 (3) | O2—C4—C3 | 108.8 (3) |
H3C—O3—H3D | 103 (6) | O2—C4—H4A | 109.9 |
C1i—N1—C6 | 113.5 (3) | C3—C4—H4A | 109.9 |
C1i—N1—H1C | 108.9 | O2—C4—H4B | 109.9 |
C6—N1—H1C | 108.9 | C3—C4—H4B | 109.9 |
C1i—N1—H1D | 108.9 | H4A—C4—H4B | 108.3 |
C6—N1—H1D | 108.9 | O2—C5—C6 | 108.5 (3) |
H1C—N1—H1D | 107.7 | O2—C5—H5A | 110.0 |
C2—C1—N1i | 110.8 (3) | C6—C5—H5A | 110.0 |
C2—C1—H1A | 109.5 | O2—C5—H5B | 110.0 |
N1i—C1—H1A | 109.5 | C6—C5—H5B | 110.0 |
C2—C1—H1B | 109.5 | H5A—C5—H5B | 108.4 |
N1i—C1—H1B | 109.5 | C5—C6—N1 | 112.9 (3) |
H1A—C1—H1B | 108.1 | C5—C6—H6A | 109.0 |
O1—C2—C1 | 106.6 (3) | N1—C6—H6A | 109.0 |
O1—C2—H2A | 110.4 | C5—C6—H6B | 109.0 |
C1—C2—H2A | 110.4 | N1—C6—H6B | 109.0 |
O1—C2—H2B | 110.4 | H6A—C6—H6B | 107.8 |
C1—C2—H2B | 110.4 | ||
N1i—C1—C2—O1 | 59.1 (4) | C1—C2—O1—C3 | −168.3 (3) |
O1—C3—C4—O2 | 58.5 (4) | C4—C3—O1—C2 | 162.2 (3) |
O2—C5—C6—N1 | −71.6 (4) | C6—C5—O2—C4 | 169.1 (3) |
C5—C6—N1—C1i | −70.3 (4) | C3—C4—O2—C5 | 179.4 (3) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O1i | 0.90 | 2.49 | 2.791 (5) | 100 |
N1—H1C···O3 | 0.90 | 1.98 | 2.844 (3) | 160 |
N1—H1D···Cl1ii | 0.90 | 2.81 | 3.540 (4) | 139 |
N1—H1D···Cl2ii | 0.90 | 2.49 | 3.262 (3) | 143 |
O3—H3C···O1 | 0.76 (6) | 2.14 (6) | 2.858 (4) | 158 (6) |
O3—H3C···O2 | 0.76 (6) | 2.51 (6) | 3.057 (3) | 130 (5) |
O3—H3D···Cl3iii | 0.81 (7) | 2.59 (6) | 3.378 (4) | 167.00 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | (C12H28N2O4)[AuCl4]2·2H2O |
Mr | 977.94 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 8.0168 (10), 8.3359 (9), 11.2989 (15) |
α, β, γ (°) | 73.063 (11), 75.965 (10), 74.929 (9) |
V (Å3) | 686.02 (15) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 11.49 |
Crystal size (mm) | 0.32 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Stoe IPDSII diffractometer |
Absorption correction | Numerical shape of crystal determined optically |
Tmin, Tmax | 0.065, 0.108 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4188, 2390, 2381 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.600 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.017, 0.045, 1.18 |
No. of reflections | 2390 |
No. of parameters | 144 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.59, −0.67 |
Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cl1—Au1 | 2.2796 (11) | Cl3—Au1 | 2.2912 (11) |
Cl2—Au1 | 2.2877 (10) | Cl4—Au1 | 2.2751 (11) |
Cl4—Au1—Cl1 | 90.20 (4) | Cl4—Au1—Cl3 | 90.30 (4) |
Cl4—Au1—Cl2 | 176.52 (4) | Cl1—Au1—Cl3 | 176.79 (3) |
Cl1—Au1—Cl2 | 89.96 (4) | Cl2—Au1—Cl3 | 89.74 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O1i | 0.90 | 2.49 | 2.791 (5) | 100.00 |
N1—H1C···O3 | 0.90 | 1.98 | 2.844 (3) | 160.00 |
N1—H1D···Cl1ii | 0.90 | 2.81 | 3.540 (4) | 139.00 |
N1—H1D···Cl2ii | 0.90 | 2.49 | 3.262 (3) | 143.00 |
O3—H3C···O1 | 0.76 (6) | 2.14 (6) | 2.858 (4) | 158 (6) |
O3—H3C···O2 | 0.76 (6) | 2.51 (6) | 3.057 (3) | 130 (5) |
O3—H3D···Cl3iii | 0.81 (7) | 2.59 (6) | 3.378 (4) | 167.00 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z. |
Acknowledgements
We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.
References
Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978–4985. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chekhlov, A. N. (2000). J. Struct. Chem. 41, 1046–1052. Web of Science CrossRef CAS Google Scholar
Chekhlov, A. N. (2001). Dokl. Akad. Nauk SSSR, 42, 854–859. CAS Google Scholar
Chekhlov, A. N. (2005). Russ. J. Gen. Chem. 75, 1618–1621. Web of Science CrossRef CAS Google Scholar
Chekhlov, A. N. & Martynov, I. V. (1998). Dokl. Akad. Nauk SSSR, 363, 362–366. CAS Google Scholar
Chekhlov, A. N., Yurtanov, A. I. & Martynov, I. V. (1994). Dokl. Akad. Nauk SSSR, 339, 635–640. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fonari, M. S., Simonov, Y. A., Chumakov, Y. M., Bocelli, G., Ganin, E. V. & Yavolovskii, A. A. (2004). Supramol. Chem. 16, 23–30. Web of Science CSD CrossRef CAS Google Scholar
Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637–5641. Web of Science CSD CrossRef CAS Google Scholar
Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479–1480. Web of Science CSD CrossRef Google Scholar
Moers, O., Henschel, D., Lange, I., Blaschette, A. & Jones, P. G. (2000). Z. Anorg. Allg. Chem. 626, 2388–2398. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simonov, Y. A., Fonari, M. S., Lipkowski, J., Yavolovskii, A. A. & Ganin, E. V. (2003). J. Incl. Phenom. Macrocycl. Chem. 46, 27–35. Web of Science CSD CrossRef CAS Google Scholar
Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474–3476. CSD CrossRef CAS Web of Science Google Scholar
Yousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, o3782. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2460–m2461. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, we reported the synthesis and crystal structure of the [(H2DA18C6)Cl2], (II), (Yousefi, Amani & Khavasi, 2007) and [(H2DA18C6)][PtCl6].2H2O, (III), (Yousefi, Teimouri et al., 2007) [where H2DA18C6 is 1,10-Diazonia-18-crown-6]. Several proton transfer systems using 1,10-diaza-18-crown-6, with proton donor molecules, such as [(H2DA18C6)I2.2H2O], (IV), (Chekhlov, 2005), [(H2DA18C6)(C2HO4)2], (V), and [(H2DA18C6)2(C2O4)2.2H2O], (VI), (Chekhlov, 2000), [(H2DA18C6)(picrate)2], (VII), (Chekhlov, 2001), [(H2DA18C6)(HPTD)2], (VIII), (Simonov et al., 2003), [(H2DA18C6)(PD)2.(H2O)4], (IX), and [(H2DA18C6)(PS)2.(H2O)2], (X), (Fonari et al., 2004), [(H2DA18C6)(CCl3COO)2(CCl3COOH)2], (XI), (Chekhlov et al., 1994), [(H2DA18C6)(CCl3COO)2], (XII), (Chekhlov & Martynov, 1998), and {[H2DA18C6][(ArSO2)2N]2}, (XIII), (Moers et al., 2000) [where C2O4 is oxalate, HPTD is (4Z,5E)-pyrimidine-2,4,5,6(1H,3H) -tetraone 4,5-dioxime anion, PD is 2-(2-methylphenyl)-2H-[1,2,3]- triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione 3-oxide anion, PS is 6-amino-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-ylsulfamate and (ArSO2)2N is bis(4-chlorobenzenesulfonyl)imide] have been synthesized and characterized by single-crystal X-ray diffraction methods.
There are also several proton transfer systems using HAuCl4 with proton acceptor molecules, such as [EMI][AuCl4] (XIV) and [BMI]2[AuCl4].2H2O, (XV), (Hasan et al., 1999), [H2bipy][AuCl4][Cl], (XVI), (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4], (XVII) and [H5O2][benzo-15-crown-5] 2[AuCl4], (XVIII), (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2 [AuCl4]2, (XIX), [H3O][18-crown-6][AuCl4], (XX) and [H3O] [4-nitrobenzo-18-crown-6][AuCl4], (XXI), (Calleja et al., 2001) and [DPpy.H][AuCl4], (XXII), (Yap et al., 1995) [where EMI is 1-ethyl-3-methylimidazolium, BMI is 1-butyl-3-methylimidazolium, H2bipy is 2,2'-bipyridinium and DPpy.H is 2,6-Diphenylpyridinium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).
The asymmetric unit of (I), (Fig. 1) contains one half-cation, one anion and one water molecule; the cation is centrosymmetric. The Au ion has a square-planar coordination (Table 1). The bond lengths and angles, in cation, are in good agreement with the corresponding values in (II), (III) and (IV). Also, the Au-Cl bond lengths and angles (Table 1) are within normal range [XXII].
In the crystal structure, intramolecular N-H···O and O-H···O and intermolecular N-H···O, O-H···Cl and N-H···Cl hydrogen bonds (Table 2) link the molecules to form a supramolecular structure (Fig. 2), in which they may be effective in the stabilization of the structure.