metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m840-m841

1,4,10,13-Tetra­oxa-7,16-diazo­nia­cyclo­octa­decane bis­­[tetra­chloridoaurate(III)] dihydrate

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: myousefi50@yahoo.com

(Received 18 May 2008; accepted 21 May 2008; online 24 May 2008)

The asymmetric unit of the title compound, (C12H28N2O4)[AuCl4]2·2H2O, contains one half-cation, one anion and one water mol­ecule; the cation is centrosymmetric. The Au ion has a square-planar coordination. In the crystal structure, intra­molecular N—H⋯O and O—H⋯O, and inter­molecular N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds link the ions and water mol­ecules, forming a supra­molecular structure.

Related literature

For related literature, see: Calleja et al. (2001[Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978-4985.]); Chekhlov (2000[Chekhlov, A. N. (2000). J. Struct. Chem. 41, 1046-1052.], 2001[Chekhlov, A. N. (2001). Dokl. Akad. Nauk SSSR, 42, 854-859.], 2005[Chekhlov, A. N. (2005). Russ. J. Gen. Chem. 75, 1618-1621.]); Chekhlov & Martynov (1998[Chekhlov, A. N. & Martynov, I. V. (1998). Dokl. Akad. Nauk SSSR, 363, 362-366.]); Chekhlov et al. (1994[Chekhlov, A. N., Yurtanov, A. I. & Martynov, I. V. (1994). Dokl. Akad. Nauk SSSR, 339, 635-640.]); Fonari et al. (2004[Fonari, M. S., Simonov, Y. A., Chumakov, Y. M., Bocelli, G., Ganin, E. V. & Yavolovskii, A. A. (2004). Supramol. Chem. 16, 23-30.]); Hasan et al. (1999[Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637-5641.]); Johnson & Steed (1998[Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479-1480.]); Moers et al. (2000[Moers, O., Henschel, D., Lange, I., Blaschette, A. & Jones, P. G. (2000). Z. Anorg. Allg. Chem. 626, 2388-2398.]); Simonov et al. (2003[Simonov, Y. A., Fonari, M. S., Lipkowski, J., Yavolovskii, A. A. & Ganin, E. V. (2003). J. Incl. Phenom. Macrocycl. Chem. 46, 27-35.]); Yap et al. (1995[Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474-3476.]); Yousefi, Amani & Khavasi (2007[Yousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, o3782.]); Yousefi, Teimouri et al. (2007[Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2460-m2461.]); Zhang et al. (2006[Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H28N2O4)[AuCl4]2·2H2O

  • Mr = 977.94

  • Triclinic, [P \overline 1]

  • a = 8.0168 (10) Å

  • b = 8.3359 (9) Å

  • c = 11.2989 (15) Å

  • α = 73.063 (11)°

  • β = 75.965 (10)°

  • γ = 74.929 (9)°

  • V = 686.02 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 11.49 mm−1

  • T = 120 (2) K

  • 0.32 × 0.22 × 0.20 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.])Tmin = 0.065, Tmax = 0.108

  • 4188 measured reflections

  • 2390 independent reflections

  • 2381 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.045

  • S = 1.18

  • 2390 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl1—Au1 2.2796 (11)
Cl2—Au1 2.2877 (10)
Cl3—Au1 2.2912 (11)
Cl4—Au1 2.2751 (11)
Cl4—Au1—Cl1 90.20 (4)
Cl4—Au1—Cl2 176.52 (4)
Cl1—Au1—Cl2 89.96 (4)
Cl4—Au1—Cl3 90.30 (4)
Cl1—Au1—Cl3 176.79 (3)
Cl2—Au1—Cl3 89.74 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1i 0.90 2.49 2.791 (5) 100
N1—H1C⋯O3 0.90 1.98 2.844 (3) 160
N1—H1D⋯Cl1ii 0.90 2.81 3.540 (4) 139
N1—H1D⋯Cl2ii 0.90 2.49 3.262 (3) 143
O3—H3C⋯O1 0.76 (6) 2.14 (6) 2.858 (4) 158 (6)
O3—H3C⋯O2 0.76 (6) 2.51 (6) 3.057 (3) 130 (5)
O3—H3D⋯Cl3iii 0.81 (7) 2.59 (6) 3.378 (4) 167.00
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the synthesis and crystal structure of the [(H2DA18C6)Cl2], (II), (Yousefi, Amani & Khavasi, 2007) and [(H2DA18C6)][PtCl6].2H2O, (III), (Yousefi, Teimouri et al., 2007) [where H2DA18C6 is 1,10-Diazonia-18-crown-6]. Several proton transfer systems using 1,10-diaza-18-crown-6, with proton donor molecules, such as [(H2DA18C6)I2.2H2O], (IV), (Chekhlov, 2005), [(H2DA18C6)(C2HO4)2], (V), and [(H2DA18C6)2(C2O4)2.2H2O], (VI), (Chekhlov, 2000), [(H2DA18C6)(picrate)2], (VII), (Chekhlov, 2001), [(H2DA18C6)(HPTD)2], (VIII), (Simonov et al., 2003), [(H2DA18C6)(PD)2.(H2O)4], (IX), and [(H2DA18C6)(PS)2.(H2O)2], (X), (Fonari et al., 2004), [(H2DA18C6)(CCl3COO)2(CCl3COOH)2], (XI), (Chekhlov et al., 1994), [(H2DA18C6)(CCl3COO)2], (XII), (Chekhlov & Martynov, 1998), and {[H2DA18C6][(ArSO2)2N]2}, (XIII), (Moers et al., 2000) [where C2O4 is oxalate, HPTD is (4Z,5E)-pyrimidine-2,4,5,6(1H,3H) -tetraone 4,5-dioxime anion, PD is 2-(2-methylphenyl)-2H-[1,2,3]- triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione 3-oxide anion, PS is 6-amino-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-ylsulfamate and (ArSO2)2N is bis(4-chlorobenzenesulfonyl)imide] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several proton transfer systems using HAuCl4 with proton acceptor molecules, such as [EMI][AuCl4] (XIV) and [BMI]2[AuCl4].2H2O, (XV), (Hasan et al., 1999), [H2bipy][AuCl4][Cl], (XVI), (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4], (XVII) and [H5O2][benzo-15-crown-5] 2[AuCl4], (XVIII), (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2 [AuCl4]2, (XIX), [H3O][18-crown-6][AuCl4], (XX) and [H3O] [4-nitrobenzo-18-crown-6][AuCl4], (XXI), (Calleja et al., 2001) and [DPpy.H][AuCl4], (XXII), (Yap et al., 1995) [where EMI is 1-ethyl-3-methylimidazolium, BMI is 1-butyl-3-methylimidazolium, H2bipy is 2,2'-bipyridinium and DPpy.H is 2,6-Diphenylpyridinium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1) contains one half-cation, one anion and one water molecule; the cation is centrosymmetric. The Au ion has a square-planar coordination (Table 1). The bond lengths and angles, in cation, are in good agreement with the corresponding values in (II), (III) and (IV). Also, the Au-Cl bond lengths and angles (Table 1) are within normal range [XXII].

In the crystal structure, intramolecular N-H···O and O-H···O and intermolecular N-H···O, O-H···Cl and N-H···Cl hydrogen bonds (Table 2) link the molecules to form a supramolecular structure (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Calleja et al. (2001); Chekhlov (2000, 2001, 2005); Chekhlov & Martynov (1998); Chekhlov et al. (1994); Fonari et al. (2004); Hasan et al. (1999); Johnson & Steed (1998); Moers et al. (2000); Simonov et al. (2003); Yap et al. (1995); Yousefi, Amani & Khavasi (2007); Yousefi, Teimouri et al. (2007); Zhang et al. (2006).

Experimental top

For the preparation of the title compound, (I), a solution of 1,10-diaza-18 -crown-6 (0.10 g, 0.37 mmol) in EtOH (20 ml) was added to a solution of HAuCl4.3H2O, (0.29 g, 0.74 mmol) in water (30 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals of (I) were isolated (yield; 0.26 g; 72.0%).

Refinement top

H atoms (for H2O) were located in a difference syntheses and refined [O-H = 0.71 (6) and 0.76 (6) Å; Uiso(H) = 0.019 (15) and 0.034 (17) Å2]. The remaining H atoms were positioned geometrically, with N-H = 0.90 Å (for NH2) and C-H = 0.97 Å for methylene H and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) 1 - x, 1 - y, -z].
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
1,4,10,13-Tetraoxa-7,16-diazoniacyclooctadecane bis[tetrachloridoaurate(III)] dihydrate top
Crystal data top
(C12H28N2O4)[AuCl4]2·2H2OZ = 1
Mr = 977.94F(000) = 460
Triclinic, P1Dx = 2.367 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0168 (10) ÅCell parameters from 1139 reflections
b = 8.3359 (9) Åθ = 1.9–25.2°
c = 11.2989 (15) ŵ = 11.49 mm1
α = 73.063 (11)°T = 120 K
β = 75.965 (10)°Block, yellow
γ = 74.929 (9)°0.32 × 0.22 × 0.20 mm
V = 686.02 (15) Å3
Data collection top
Stoe IPDSII
diffractometer
2390 independent reflections
Radiation source: fine-focus sealed tube2381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 0.15 mm pixels mm-1θmax = 25.2°, θmin = 1.9°
rotation method scansh = 98
Absorption correction: numerical
shape of crystal determined optically
k = 98
Tmin = 0.065, Tmax = 0.108l = 1212
4188 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0216P)2 + 1.1824P]
where P = (Fo2 + 2Fc2)/3
2390 reflections(Δ/σ)max = 0.018
144 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
(C12H28N2O4)[AuCl4]2·2H2Oγ = 74.929 (9)°
Mr = 977.94V = 686.02 (15) Å3
Triclinic, P1Z = 1
a = 8.0168 (10) ÅMo Kα radiation
b = 8.3359 (9) ŵ = 11.49 mm1
c = 11.2989 (15) ÅT = 120 K
α = 73.063 (11)°0.32 × 0.22 × 0.20 mm
β = 75.965 (10)°
Data collection top
Stoe IPDSII
diffractometer
2390 independent reflections
Absorption correction: numerical
shape of crystal determined optically
2381 reflections with I > 2σ(I)
Tmin = 0.065, Tmax = 0.108Rint = 0.027
4188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.59 e Å3
2390 reflectionsΔρmin = 0.67 e Å3
144 parameters
Special details top

Experimental. (X-SHAPE and X-RED; Stoe & Cie, 2005)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.774200 (17)0.949008 (17)0.436516 (13)0.01917 (8)
Cl10.65158 (14)0.91699 (13)0.64419 (10)0.0271 (2)
Cl20.77516 (14)0.66859 (13)0.45325 (10)0.0249 (2)
Cl30.88196 (14)0.98407 (13)0.22535 (10)0.0257 (2)
Cl40.79013 (16)1.22269 (14)0.42240 (12)0.0362 (3)
O10.8055 (4)0.5576 (4)0.1123 (3)0.0230 (6)
O20.6857 (4)0.6728 (3)0.1006 (3)0.0227 (6)
O30.6136 (4)0.3371 (5)0.0862 (4)0.0259 (7)
H3C0.666 (7)0.406 (7)0.049 (5)0.019 (15)*
H3D0.689 (8)0.264 (8)0.118 (5)0.034 (17)*
N10.3824 (4)0.5189 (4)0.2598 (3)0.0193 (7)
H1C0.44240.48230.19090.023*
H1D0.36720.42590.32300.023*
C10.7938 (5)0.3778 (5)0.2343 (4)0.0231 (9)
H1A0.77870.28560.15940.028*
H1B0.85440.32720.30430.028*
C20.9019 (5)0.4874 (5)0.2162 (4)0.0228 (9)
H2A1.01520.41940.19830.027*
H2B0.92100.57830.29130.027*
C30.8743 (5)0.6921 (5)0.0984 (4)0.0232 (9)
H3A0.90620.76770.17980.028*
H3B0.97790.64470.05970.028*
C40.7321 (6)0.7883 (5)0.0161 (4)0.0259 (9)
H4A0.77330.88000.00250.031*
H4B0.63030.83850.05660.031*
C50.5532 (5)0.7528 (5)0.1851 (4)0.0242 (9)
H5A0.45680.82150.14310.029*
H5B0.59980.82740.21470.029*
C60.4895 (5)0.6163 (5)0.2940 (4)0.0232 (9)
H6A0.41900.66890.36100.028*
H6B0.59000.53670.32570.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01758 (11)0.01715 (11)0.02133 (12)0.00433 (7)0.00015 (7)0.00455 (7)
Cl10.0296 (5)0.0268 (5)0.0227 (6)0.0041 (4)0.0003 (4)0.0077 (4)
Cl20.0334 (6)0.0204 (5)0.0217 (5)0.0106 (4)0.0006 (4)0.0055 (4)
Cl30.0271 (5)0.0229 (5)0.0236 (5)0.0074 (4)0.0019 (4)0.0037 (4)
Cl40.0433 (7)0.0205 (5)0.0411 (7)0.0105 (5)0.0085 (5)0.0118 (5)
O10.0223 (14)0.0256 (15)0.0229 (16)0.0110 (12)0.0022 (12)0.0083 (12)
O20.0249 (15)0.0196 (14)0.0227 (16)0.0063 (12)0.0022 (12)0.0039 (12)
O30.0223 (17)0.0229 (17)0.0312 (19)0.0092 (16)0.0008 (15)0.0049 (14)
N10.0197 (17)0.0206 (17)0.0162 (17)0.0061 (13)0.0016 (14)0.0046 (14)
C10.020 (2)0.023 (2)0.027 (2)0.0009 (16)0.0022 (17)0.0108 (18)
C20.018 (2)0.027 (2)0.022 (2)0.0043 (17)0.0019 (17)0.0077 (18)
C30.023 (2)0.024 (2)0.025 (2)0.0102 (17)0.0032 (17)0.0057 (18)
C40.032 (2)0.019 (2)0.027 (2)0.0099 (18)0.0062 (19)0.0021 (17)
C50.025 (2)0.021 (2)0.029 (2)0.0057 (17)0.0029 (18)0.0100 (18)
C60.022 (2)0.026 (2)0.026 (2)0.0046 (17)0.0044 (17)0.0123 (18)
Geometric parameters (Å, º) top
Cl1—Au12.2796 (11)C2—H2B0.9700
Cl2—Au12.2877 (10)C3—O11.432 (5)
Cl3—Au12.2912 (11)C3—C41.500 (6)
Cl4—Au12.2751 (11)C3—H3A0.9700
O3—H3C0.71 (6)C3—H3B0.9700
O3—H3D0.76 (6)C4—O21.419 (5)
N1—C1i1.496 (5)C4—H4A0.9700
N1—H1C0.9000C4—H4B0.9700
N1—H1D0.9000C5—O21.412 (5)
C1—C21.495 (6)C5—C61.501 (6)
C1—N1i1.496 (5)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700C6—N11.501 (5)
C2—O11.429 (5)C6—H6A0.9700
C2—H2A0.9700C6—H6B0.9700
Cl4—Au1—Cl190.20 (4)H2A—C2—H2B108.6
Cl4—Au1—Cl2176.52 (4)O1—C3—C4106.8 (3)
Cl1—Au1—Cl289.96 (4)O1—C3—H3A110.4
Cl4—Au1—Cl390.30 (4)C4—C3—H3A110.4
Cl1—Au1—Cl3176.79 (3)O1—C3—H3B110.4
Cl2—Au1—Cl389.74 (4)C4—C3—H3B110.4
C2—O1—C3113.3 (3)H3A—C3—H3B108.6
C5—O2—C4112.8 (3)O2—C4—C3108.8 (3)
H3C—O3—H3D103 (6)O2—C4—H4A109.9
C1i—N1—C6113.5 (3)C3—C4—H4A109.9
C1i—N1—H1C108.9O2—C4—H4B109.9
C6—N1—H1C108.9C3—C4—H4B109.9
C1i—N1—H1D108.9H4A—C4—H4B108.3
C6—N1—H1D108.9O2—C5—C6108.5 (3)
H1C—N1—H1D107.7O2—C5—H5A110.0
C2—C1—N1i110.8 (3)C6—C5—H5A110.0
C2—C1—H1A109.5O2—C5—H5B110.0
N1i—C1—H1A109.5C6—C5—H5B110.0
C2—C1—H1B109.5H5A—C5—H5B108.4
N1i—C1—H1B109.5C5—C6—N1112.9 (3)
H1A—C1—H1B108.1C5—C6—H6A109.0
O1—C2—C1106.6 (3)N1—C6—H6A109.0
O1—C2—H2A110.4C5—C6—H6B109.0
C1—C2—H2A110.4N1—C6—H6B109.0
O1—C2—H2B110.4H6A—C6—H6B107.8
C1—C2—H2B110.4
N1i—C1—C2—O159.1 (4)C1—C2—O1—C3168.3 (3)
O1—C3—C4—O258.5 (4)C4—C3—O1—C2162.2 (3)
O2—C5—C6—N171.6 (4)C6—C5—O2—C4169.1 (3)
C5—C6—N1—C1i70.3 (4)C3—C4—O2—C5179.4 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.902.492.791 (5)100
N1—H1C···O30.901.982.844 (3)160
N1—H1D···Cl1ii0.902.813.540 (4)139
N1—H1D···Cl2ii0.902.493.262 (3)143
O3—H3C···O10.76 (6)2.14 (6)2.858 (4)158 (6)
O3—H3C···O20.76 (6)2.51 (6)3.057 (3)130 (5)
O3—H3D···Cl3iii0.81 (7)2.59 (6)3.378 (4)167.00
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C12H28N2O4)[AuCl4]2·2H2O
Mr977.94
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.0168 (10), 8.3359 (9), 11.2989 (15)
α, β, γ (°)73.063 (11), 75.965 (10), 74.929 (9)
V3)686.02 (15)
Z1
Radiation typeMo Kα
µ (mm1)11.49
Crystal size (mm)0.32 × 0.22 × 0.20
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionNumerical
shape of crystal determined optically
Tmin, Tmax0.065, 0.108
No. of measured, independent and
observed [I > 2σ(I)] reflections
4188, 2390, 2381
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.045, 1.18
No. of reflections2390
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.67

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cl1—Au12.2796 (11)Cl3—Au12.2912 (11)
Cl2—Au12.2877 (10)Cl4—Au12.2751 (11)
Cl4—Au1—Cl190.20 (4)Cl4—Au1—Cl390.30 (4)
Cl4—Au1—Cl2176.52 (4)Cl1—Au1—Cl3176.79 (3)
Cl1—Au1—Cl289.96 (4)Cl2—Au1—Cl389.74 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.902.492.791 (5)100.00
N1—H1C···O30.901.982.844 (3)160.00
N1—H1D···Cl1ii0.902.813.540 (4)139.00
N1—H1D···Cl2ii0.902.493.262 (3)143.00
O3—H3C···O10.76 (6)2.14 (6)2.858 (4)158 (6)
O3—H3C···O20.76 (6)2.51 (6)3.057 (3)130 (5)
O3—H3D···Cl3iii0.81 (7)2.59 (6)3.378 (4)167.00
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationCalleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978–4985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChekhlov, A. N. (2000). J. Struct. Chem. 41, 1046–1052.  Web of Science CrossRef CAS Google Scholar
First citationChekhlov, A. N. (2001). Dokl. Akad. Nauk SSSR, 42, 854–859.  CAS Google Scholar
First citationChekhlov, A. N. (2005). Russ. J. Gen. Chem. 75, 1618–1621.  Web of Science CrossRef CAS Google Scholar
First citationChekhlov, A. N. & Martynov, I. V. (1998). Dokl. Akad. Nauk SSSR, 363, 362–366.  CAS Google Scholar
First citationChekhlov, A. N., Yurtanov, A. I. & Martynov, I. V. (1994). Dokl. Akad. Nauk SSSR, 339, 635–640.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFonari, M. S., Simonov, Y. A., Chumakov, Y. M., Bocelli, G., Ganin, E. V. & Yavolovskii, A. A. (2004). Supramol. Chem. 16, 23–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationHasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637–5641.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479–1480.  Web of Science CSD CrossRef Google Scholar
First citationMoers, O., Henschel, D., Lange, I., Blaschette, A. & Jones, P. G. (2000). Z. Anorg. Allg. Chem. 626, 2388–2398.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimonov, Y. A., Fonari, M. S., Lipkowski, J., Yavolovskii, A. A. & Ganin, E. V. (2003). J. Incl. Phenom. Macrocycl. Chem. 46, 27–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474–3476.  CSD CrossRef CAS Web of Science Google Scholar
First citationYousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, o3782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2460–m2461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m840-m841
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds