organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl­di­methyl­silanol hemihydrate

aCentre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, bSchool of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and cSchool of Chemistry F11, University of Sydney, NSW 2006, Australia
*Correspondence e-mail: p.rutledge@chem.usyd.edu.au

(Received 21 February 2008; accepted 22 May 2008; online 30 May 2008)

The crystal structure of the title compound, C6H16OSi·0.5H2O, reveals an asymmetric unit containing two mol­ecules of the silanol and a single water mol­ecule. There is evidence of hydrogen bonding between the three mol­ecules in the asymmetric unit. The H atoms of the silanol OH groups and the water H atoms are each disordered equally over two positions.

Related literature

For related literature, see: Krall et al. (2005[Krall, J. A., Rutledge, P. J. & Baldwin, J. E. (2005). Tetrahedron, 61, 137-143.]); Lickiss et al. (1995[Lickiss, P. D., Clipston, N. L., Rankin, D. W. H. & Robertson, H. E. (1995). J. Mol. Struct. 344, 111-116.]); Mansfeld, Schürmann & Mehring (2005[Mansfeld, D., Schürmann, M. & Mehring, M. (2005). Appl. Organomet. Chem. 19, 1185-1188.]); Mansfeld, Mehring & Schürmann (2005[Mansfeld, D., Mehring, M. & Schürmann, M. (2005). Angew. Chem. Int. Ed. 44, 245-249.]); McGeary et al. (1991[McGeary, M. J., Coan, P. S., Folting, K., Streib, W. E. & Caulton, K. G. (1991). Inorg. Chem. 30, 1723-1735.]); Veith et al. (2006[Veith, M., Freres, J., Huch, V. & Zimmer, M. (2006). Organometallics, 25, 1875-1880.]); Barry & Rutledge (2008[Barry, S. M. & Rutledge, P. J. (2008). In preparation.]); Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16OSi·0.5H2O

  • Mr = 141.29

  • Monoclinic, P 21 /c

  • a = 7.7078 (18) Å

  • b = 22.119 (5) Å

  • c = 11.058 (3) Å

  • β = 90.307 (4)°

  • V = 1885.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 (2) K

  • 1.00 × 1.00 × 0.80 mm

Data collection
  • Bruker SMART APEX detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, C. M. (2000). SADABS. Bruker AXS Inc., Madison, Wisconson, USA.]) Tmin = 0.519, Tmax = 0.865

  • 15971 measured reflections

  • 4093 independent reflections

  • 3529 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.149

  • S = 1.05

  • 4093 reflections

  • 181 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O3i 0.84 2.09 2.717 (3) 131
O1—H2O1⋯O3 0.84 1.96 2.706 (3) 147
O2—H1O2⋯O3ii 0.84 2.04 2.718 (3) 138
O2—H2O2⋯O3 0.84 2.05 2.707 (3) 135
O3—H1O3⋯O1 0.824 (19) 1.91 (3) 2.706 (3) 163 (6)
O3—H4O3⋯O1i 0.815 (19) 1.92 (2) 2.717 (3) 164 (6)
O3—H2O3⋯O2 0.82 (2) 1.89 (2) 2.707 (3) 173 (6)
O3—H3O3⋯O2ii 0.822 (19) 1.92 (2) 2.718 (3) 164 (6)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The stucture of the title compound tert-butyldimethylsilanol hemihydrate is shown below (Fig. 1, 2); dimensions are available in the archived CIF. This compound has previously been characterized by gas-phase electron diffraction of both the free silanol and its hemihydrate (Lickiss et al., 1995). It has also been structurally characterized within lanthanoid complexes (McGeary et al., 1991) and in recent structures of complexes with several main group and transition metals (for examples see Mansfeld, Mehring & Schürmann, 2005; Mansfeld, Schürmann & Mehring, 2005, Veith et al., 2006). However direct crystallographic characterization of the silanol has hitherto remained elusive.

tert-Butyldimethylsilanol hemihydrate was isolated in crystalline form during the synthesis of biomimetic ligands for iron-mediated hydrocarbon oxidation (Krall et al., 2005, Barry & Rutledge, 2008). The title compound was obtained as the side product of reactions to prepare a compound incorporating the tert-butyldimethylsilyl ether as a protecting group (2-(bromomethyl)-6-((tert-butyldimethylsilyloxy)methyl)pyridine).

The assymetric unit contains two molecules of the silanol and one water molecule, linked by hydrogen bonding. The hydrogen atoms of the water molecule and the silanol O—H groups are disordered between two alternative occupancies (Fig. 2).

Related literature top

For related literature, see: Krall et al. (2005); Lickiss et al. (1995); Mansfeld, Schürmann & Mehring (2005); Mansfeld, Mehring & Schürmann (2005); McGeary et al. (1991); Veith et al. (2006); Barry & Rutledge (2008); Görbitz (1999).

Experimental top

The title compound crystallized serendipitously as colourless needles from a sample of the silyl ether 2-(bromomethyl)-6-((tert-butyldimethylsilyloxy)methyl)pyridine (isolated as an oil from a pentane:ether solvent mixture), upon standing at room temperature for several weeks.

Large crystals of the silanol were obtained (1.00 × 1.00 × 0.80 mm) and data was collected from a crystal at the upper size limit of the beam used. Moreover, the crystals of tert-butyldimethylsilanol hemihydrate that have been isolated exhibit remarkably low density (0.996 g cm-3), a property that may be linked to the high volitility of this compound.

Refinement top

A full sphere of the reciprocal space was scanned by ϕ-ω scans. Hydrogen atoms of the silanol molecules were added at calculated positions and refined using a riding model. C–H distances were assumed to be 0.98 Å, O–H distances to be 0.84 Å. The water protons were located in the difference Fourier map. The distance of these protons to the oxygen atom was restrained to be 0.84 Å using the DFIX command. In the same way the H–O–H angles were restrained to be 114°, the value to which a preliminary refinement of one component converged. Uiso(H) = 1.5 Ueq(carrier) for all H atoms.

The site occupation factor of the disordered hydrogen atoms was fixed to 0.5. Attempts to refine the occupation factors were unsuccessful. However, electron densities in the difference Fourier map suggest a fairly even distribution between the two disordered parts.

Discrepancies between the expected and reported values of the maximum and minimum transmission (Tmax/Tmin) are thought to have arisen from the large size of the crystal relative to the beam, and because the crystal mount has given rise to some absorption during data collection. However this is not thought to impact significantly on the dataset given that there is an almost fourfold redundancy with the collection of a full sphere, and the capacity of SADABS to handle data collected from large crystals (Görbitz, 1999, Sheldrick, 2000).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and thermal ellipsoids drawn on the 50% probability level. Carbon atoms are shown in grey, the silicon in black and the oxygen in blue.
[Figure 2] Fig. 2. View of two adjacent silanols and a bridging water showing the disorder that is present (Part 1 black bonds, Part 2 brown bonds); thermal ellipsoids are drawn on the 50% probabibility level.
tert-Butyldimethylsilanol hemihydrate top
Crystal data top
C6H16OSi·0.5H2OF(000) = 632
Mr = 141.29Dx = 0.996 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7078 (18) ÅCell parameters from 5333 reflections
b = 22.119 (5) Åθ = 2.6–29.4°
c = 11.058 (3) ŵ = 0.19 mm1
β = 90.307 (4)°T = 100 K
V = 1885.2 (8) Å3Block, colourless
Z = 81.00 × 1.00 × 0.80 mm
Data collection top
Bruker SMART APEX detector
diffractometer
4093 independent reflections
Radiation source: fine-focus sealed tube3529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 27.0°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 99
Tmin = 0.519, Tmax = 0.865k = 2828
15971 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0859P)2 + 1.0972P]
where P = (Fo2 + 2Fc2)/3
4093 reflections(Δ/σ)max = 0.040
181 parametersΔρmax = 0.55 e Å3
6 restraintsΔρmin = 0.49 e Å3
Crystal data top
C6H16OSi·0.5H2OV = 1885.2 (8) Å3
Mr = 141.29Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.7078 (18) ŵ = 0.19 mm1
b = 22.119 (5) ÅT = 100 K
c = 11.058 (3) Å1.00 × 1.00 × 0.80 mm
β = 90.307 (4)°
Data collection top
Bruker SMART APEX detector
diffractometer
4093 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3529 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 0.865Rint = 0.054
15971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0556 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.55 e Å3
4093 reflectionsΔρmin = 0.49 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.08637 (10)0.59717 (3)1.24126 (7)0.01975 (18)
O10.0393 (3)0.56062 (9)1.1151 (2)0.0313 (5)
H1O10.05090.53991.12510.047*0.50
H2O10.13140.54881.08250.047*0.50
C10.0225 (5)0.55098 (15)1.3734 (3)0.0408 (8)
H1A0.10010.53981.36600.061*
H1B0.04000.57441.44770.061*
H1C0.09370.51431.37660.061*
C20.3243 (4)0.60908 (15)1.2437 (3)0.0350 (7)
H2A0.38340.56991.24010.052*
H2B0.35750.63011.31840.052*
H2C0.35800.63361.17380.052*
C30.0367 (4)0.67096 (12)1.2379 (2)0.0227 (5)
C40.0021 (5)0.70679 (15)1.3542 (3)0.0385 (8)
H4A0.12240.71511.36160.058*
H4B0.04050.68311.42400.058*
H4C0.06610.74511.35120.058*
C50.0191 (6)0.70852 (15)1.1297 (3)0.0471 (10)
H5A0.04530.74671.12880.071*
H5B0.00510.68611.05500.071*
H5C0.14370.71691.13550.071*
C60.2315 (4)0.65768 (16)1.2285 (3)0.0425 (8)
H6A0.26770.63361.29840.064*
H6B0.25530.63511.15410.064*
H6C0.29610.69581.22710.064*
Si20.41635 (10)0.62186 (3)0.80713 (7)0.02124 (19)
O20.4716 (3)0.56071 (10)0.8832 (2)0.0345 (5)
H1O20.57800.56190.89960.052*0.50
H2O20.39310.53460.87610.052*0.50
C70.4726 (5)0.68968 (15)0.8981 (3)0.0402 (8)
H7A0.39940.69110.97030.060*
H7B0.45310.72610.84960.060*
H7C0.59480.68760.92250.060*
C80.1783 (4)0.61756 (15)0.7803 (3)0.0381 (8)
H8A0.15090.58050.73560.057*
H8B0.14070.65280.73320.057*
H8C0.11790.61720.85810.057*
C90.5397 (4)0.62185 (11)0.6618 (2)0.0226 (6)
C100.4979 (5)0.56497 (14)0.5889 (3)0.0379 (8)
H10A0.56570.56500.51420.057*
H10B0.37390.56430.56900.057*
H10C0.52740.52910.63690.057*
C110.7347 (4)0.62329 (15)0.6898 (3)0.0375 (8)
H11A0.76540.58860.74070.056*
H11B0.76340.66080.73250.056*
H11C0.79980.62140.61400.056*
C120.4920 (5)0.67741 (14)0.5854 (3)0.0364 (7)
H12A0.52090.71430.63030.055*
H12B0.36730.67690.56740.055*
H12C0.55720.67660.50960.055*
O30.2501 (2)0.48396 (9)0.99424 (19)0.0261 (4)
H1O30.190 (7)0.503 (2)1.043 (5)0.039*0.50
H2O30.316 (7)0.506 (2)0.956 (5)0.039*0.50
H3O30.327 (6)0.464 (2)1.026 (6)0.039*0.50
H4O30.172 (6)0.464 (2)0.963 (6)0.039*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0189 (3)0.0196 (3)0.0207 (3)0.0005 (3)0.0001 (3)0.0000 (3)
O10.0248 (11)0.0336 (12)0.0354 (11)0.0016 (8)0.0018 (9)0.0151 (9)
C10.050 (2)0.0316 (17)0.0408 (18)0.0045 (14)0.0121 (16)0.0115 (14)
C20.0251 (16)0.0441 (18)0.0357 (17)0.0006 (13)0.0040 (13)0.0035 (14)
C30.0275 (14)0.0209 (13)0.0198 (12)0.0004 (10)0.0043 (10)0.0001 (10)
C40.055 (2)0.0293 (16)0.0317 (16)0.0003 (14)0.0047 (15)0.0066 (13)
C50.077 (3)0.0299 (17)0.0342 (17)0.0152 (17)0.0179 (18)0.0108 (14)
C60.0287 (17)0.0419 (18)0.057 (2)0.0116 (14)0.0020 (15)0.0126 (16)
Si20.0187 (4)0.0208 (3)0.0242 (4)0.0002 (3)0.0008 (3)0.0022 (3)
O20.0254 (11)0.0366 (12)0.0415 (12)0.0014 (9)0.0020 (10)0.0170 (10)
C70.053 (2)0.0360 (17)0.0315 (16)0.0072 (15)0.0082 (15)0.0135 (14)
C80.0212 (15)0.0394 (18)0.054 (2)0.0025 (12)0.0009 (14)0.0073 (15)
C90.0282 (14)0.0184 (12)0.0211 (13)0.0008 (10)0.0008 (11)0.0017 (10)
C100.053 (2)0.0259 (16)0.0349 (17)0.0045 (14)0.0021 (15)0.0099 (13)
C110.0272 (16)0.0475 (19)0.0379 (17)0.0007 (13)0.0123 (14)0.0009 (14)
C120.055 (2)0.0263 (15)0.0279 (15)0.0023 (14)0.0011 (15)0.0053 (12)
O30.0188 (11)0.0259 (10)0.0334 (11)0.0004 (8)0.0024 (9)0.0003 (9)
Geometric parameters (Å, º) top
Si1—O11.651 (2)Si2—C81.859 (3)
Si1—C11.852 (3)Si2—C91.871 (3)
Si1—C21.853 (3)O2—H1O20.8400
Si1—C31.888 (3)O2—H2O20.8400
O1—H1O10.8400C7—H7A0.9800
O1—H2O10.8400C7—H7B0.9800
C1—H1A0.9800C7—H7C0.9800
C1—H1B0.9800C8—H8A0.9800
C1—H1C0.9800C8—H8B0.9800
C2—H2A0.9800C8—H8C0.9800
C2—H2B0.9800C9—C101.528 (4)
C2—H2C0.9800C9—C111.533 (4)
C3—C51.521 (4)C9—C121.535 (4)
C3—C41.532 (4)C10—H10A0.9800
C3—C61.533 (4)C10—H10B0.9800
C4—H4A0.9800C10—H10C0.9800
C4—H4B0.9800C11—H11A0.9800
C4—H4C0.9800C11—H11B0.9800
C5—H5A0.9800C11—H11C0.9800
C5—H5B0.9800C12—H12A0.9800
C5—H5C0.9800C12—H12B0.9800
C6—H6A0.9800C12—H12C0.9800
C6—H6B0.9800O3—H1O30.824 (19)
C6—H6C0.9800O3—H2O30.82 (2)
Si2—O21.648 (2)O3—H3O30.822 (19)
Si2—C71.856 (3)O3—H4O30.815 (19)
O1—Si1—C1109.79 (15)O2—Si2—C9107.90 (12)
O1—Si1—C2107.15 (13)C7—Si2—C9110.33 (14)
C1—Si1—C2109.53 (17)C8—Si2—C9111.62 (16)
O1—Si1—C3107.38 (12)Si2—O2—H1O2109.5
C1—Si1—C3110.88 (14)Si2—O2—H2O2109.5
C2—Si1—C3112.00 (14)Si2—C7—H7A109.5
Si1—O1—H1O1109.5Si2—C7—H7B109.5
Si1—O1—H2O1109.5H7A—C7—H7B109.5
Si1—C1—H1A109.5Si2—C7—H7C109.5
Si1—C1—H1B109.5H7A—C7—H7C109.5
H1A—C1—H1B109.5H7B—C7—H7C109.5
Si1—C1—H1C109.5Si2—C8—H8A109.5
H1A—C1—H1C109.5Si2—C8—H8B109.5
H1B—C1—H1C109.5H8A—C8—H8B109.5
Si1—C2—H2A109.5Si2—C8—H8C109.5
Si1—C2—H2B109.5H8A—C8—H8C109.5
H2A—C2—H2B109.5H8B—C8—H8C109.5
Si1—C2—H2C109.5C10—C9—C11109.1 (3)
H2A—C2—H2C109.5C10—C9—C12108.6 (3)
H2B—C2—H2C109.5C11—C9—C12109.0 (3)
C5—C3—C4109.2 (2)C10—C9—Si2110.3 (2)
C5—C3—C6109.4 (3)C11—C9—Si2109.2 (2)
C4—C3—C6108.8 (3)C12—C9—Si2110.6 (2)
C5—C3—Si1110.1 (2)C9—C10—H10A109.5
C4—C3—Si1110.2 (2)C9—C10—H10B109.5
C6—C3—Si1109.13 (19)H10A—C10—H10B109.5
C3—C4—H4A109.5C9—C10—H10C109.5
C3—C4—H4B109.5H10A—C10—H10C109.5
H4A—C4—H4B109.5H10B—C10—H10C109.5
C3—C4—H4C109.5C9—C11—H11A109.5
H4A—C4—H4C109.5C9—C11—H11B109.5
H4B—C4—H4C109.5H11A—C11—H11B109.5
C3—C5—H5A109.5C9—C11—H11C109.5
C3—C5—H5B109.5H11A—C11—H11C109.5
H5A—C5—H5B109.5H11B—C11—H11C109.5
C3—C5—H5C109.5C9—C12—H12A109.5
H5A—C5—H5C109.5C9—C12—H12B109.5
H5B—C5—H5C109.5H12A—C12—H12B109.5
C3—C6—H6A109.5C9—C12—H12C109.5
C3—C6—H6B109.5H12A—C12—H12C109.5
H6A—C6—H6B109.5H12B—C12—H12C109.5
C3—C6—H6C109.5H1O3—O3—H2O3113 (4)
H6A—C6—H6C109.5H1O3—O3—H3O3113 (7)
H6B—C6—H6C109.5H2O3—O3—H3O395 (6)
O2—Si2—C7109.13 (16)H1O3—O3—H4O398 (7)
O2—Si2—C8106.94 (13)H2O3—O3—H4O3123 (7)
C7—Si2—C8110.79 (16)H3O3—O3—H4O3115 (4)
O1—Si1—C3—C560.8 (2)O2—Si2—C9—C1059.0 (2)
C1—Si1—C3—C5179.3 (2)C7—Si2—C9—C10178.1 (2)
C2—Si1—C3—C556.6 (3)C8—Si2—C9—C1058.3 (2)
O1—Si1—C3—C4178.8 (2)O2—Si2—C9—C1160.9 (2)
C1—Si1—C3—C458.8 (3)C7—Si2—C9—C1158.3 (2)
C2—Si1—C3—C463.9 (2)C8—Si2—C9—C11178.1 (2)
O1—Si1—C3—C659.4 (2)O2—Si2—C9—C12179.1 (2)
C1—Si1—C3—C660.6 (3)C7—Si2—C9—C1261.7 (3)
C2—Si1—C3—C6176.7 (2)C8—Si2—C9—C1261.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O3i0.842.092.717 (3)131
O1—H2O1···O30.841.962.706 (3)147
O2—H1O2···O3ii0.842.042.718 (3)138
O2—H2O2···O30.842.052.707 (3)135
O3—H1O3···O10.82 (2)1.91 (3)2.706 (3)163 (6)
O3—H4O3···O1i0.82 (2)1.92 (2)2.717 (3)164 (6)
O3—H2O3···O20.82 (2)1.89 (2)2.707 (3)173 (6)
O3—H3O3···O2ii0.82 (2)1.92 (2)2.718 (3)164 (6)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC6H16OSi·0.5H2O
Mr141.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7078 (18), 22.119 (5), 11.058 (3)
β (°) 90.307 (4)
V3)1885.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)1.00 × 1.00 × 0.80
Data collection
DiffractometerBruker SMART APEX detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.519, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
15971, 4093, 3529
Rint0.054
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.149, 1.05
No. of reflections4093
No. of parameters181
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.49

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O3i0.842.092.717 (3)131.3
O1—H2O1···O30.841.962.706 (3)147.0
O2—H1O2···O3ii0.842.042.718 (3)137.8
O2—H2O2···O30.842.052.707 (3)135.0
O3—H1O3···O10.824 (19)1.91 (3)2.706 (3)163 (6)
O3—H4O3···O1i0.815 (19)1.92 (2)2.717 (3)164 (6)
O3—H2O3···O20.82 (2)1.89 (2)2.707 (3)173 (6)
O3—H3O3···O2ii0.822 (19)1.92 (2)2.718 (3)164 (6)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the Irish Research Council for Science, Engineering and Technology for an Embark Award postgraduate scholarship to SMB, the Centre for Synthesis & Chemical Biology (CSCB) funded by the Irish Higher Education Authority (HEA) through the Programme for Research in Third-Level Institutions (PRTLI) for financial support, and Professor Cameron Kepert for helpful advice.

References

First citationBarry, S. M. & Rutledge, P. J. (2008). In preparation.  Google Scholar
First citationBruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrall, J. A., Rutledge, P. J. & Baldwin, J. E. (2005). Tetrahedron, 61, 137–143.  Web of Science CrossRef CAS Google Scholar
First citationLickiss, P. D., Clipston, N. L., Rankin, D. W. H. & Robertson, H. E. (1995). J. Mol. Struct. 344, 111–116.  CrossRef CAS Web of Science Google Scholar
First citationMansfeld, D., Mehring, M. & Schürmann, M. (2005). Angew. Chem. Int. Ed. 44, 245–249.  Web of Science CSD CrossRef CAS Google Scholar
First citationMansfeld, D., Schürmann, M. & Mehring, M. (2005). Appl. Organomet. Chem. 19, 1185–1188.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcGeary, M. J., Coan, P. S., Folting, K., Streib, W. E. & Caulton, K. G. (1991). Inorg. Chem. 30, 1723–1735.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, C. M. (2000). SADABS. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeith, M., Freres, J., Huch, V. & Zimmer, M. (2006). Organometallics, 25, 1875–1880.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds