organic compounds
tert-Butyldimethylsilanol hemihydrate
aCentre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, bSchool of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and cSchool of Chemistry F11, University of Sydney, NSW 2006, Australia
*Correspondence e-mail: p.rutledge@chem.usyd.edu.au
The 6H16OSi·0.5H2O, reveals an containing two molecules of the silanol and a single water molecule. There is evidence of hydrogen bonding between the three molecules in the The H atoms of the silanol OH groups and the water H atoms are each disordered equally over two positions.
of the title compound, CRelated literature
For related literature, see: Krall et al. (2005); Lickiss et al. (1995); Mansfeld, Schürmann & Mehring (2005); Mansfeld, Mehring & Schürmann (2005); McGeary et al. (1991); Veith et al. (2006); Barry & Rutledge (2008); Görbitz (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808015444/kj2088sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808015444/kj2088Isup2.hkl
The title compound crystallized serendipitously as colourless needles from a sample of the silyl ether 2-(bromomethyl)-6-((tert-butyldimethylsilyloxy)methyl)pyridine (isolated as an oil from a pentane:ether solvent mixture), upon standing at room temperature for several weeks.
Large crystals of the silanol were obtained (1.00 × 1.00 × 0.80 mm) and data was collected from a crystal at the upper size limit of the beam used. Moreover, the crystals of tert-butyldimethylsilanol hemihydrate that have been isolated exhibit remarkably low density (0.996 g cm-3), a property that may be linked to the high volitility of this compound.
A full sphere of the ϕ-ω scans. Hydrogen atoms of the silanol molecules were added at calculated positions and refined using a riding model. C–H distances were assumed to be 0.98 Å, O–H distances to be 0.84 Å. The water protons were located in the difference Fourier map. The distance of these protons to the oxygen atom was restrained to be 0.84 Å using the DFIX command. In the same way the H–O–H angles were restrained to be 114°, the value to which a preliminary of one component converged. Uiso(H) = 1.5 Ueq(carrier) for all H atoms.
was scanned byThe site occupation factor of the disordered hydrogen atoms was fixed to 0.5. Attempts to refine the occupation factors were unsuccessful. However, electron densities in the difference Fourier map suggest a fairly even distribution between the two disordered parts.
Discrepancies between the expected and reported values of the maximum and minimum transmission (Tmax/Tmin) are thought to have arisen from the large size of the crystal relative to the beam, and because the crystal mount has given rise to some absorption during data collection. However this is not thought to impact significantly on the dataset given that there is an almost fourfold redundancy with the collection of a full sphere, and the capacity of SADABS to handle data collected from large crystals (Görbitz, 1999, Sheldrick, 2000).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with atom labels and thermal ellipsoids drawn on the 50% probability level. Carbon atoms are shown in grey, the silicon in black and the oxygen in blue. | |
Fig. 2. View of two adjacent silanols and a bridging water showing the disorder that is present (Part 1 black bonds, Part 2 brown bonds); thermal ellipsoids are drawn on the 50% probabibility level. |
C6H16OSi·0.5H2O | F(000) = 632 |
Mr = 141.29 | Dx = 0.996 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7078 (18) Å | Cell parameters from 5333 reflections |
b = 22.119 (5) Å | θ = 2.6–29.4° |
c = 11.058 (3) Å | µ = 0.19 mm−1 |
β = 90.307 (4)° | T = 100 K |
V = 1885.2 (8) Å3 | Block, colourless |
Z = 8 | 1.00 × 1.00 × 0.80 mm |
Bruker SMART APEX detector diffractometer | 4093 independent reflections |
Radiation source: fine-focus sealed tube | 3529 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ϕ and ω scans | θmax = 27.0°, θmin = 0.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −9→9 |
Tmin = 0.519, Tmax = 0.865 | k = −28→28 |
15971 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.149 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0859P)2 + 1.0972P] where P = (Fo2 + 2Fc2)/3 |
4093 reflections | (Δ/σ)max = 0.040 |
181 parameters | Δρmax = 0.55 e Å−3 |
6 restraints | Δρmin = −0.49 e Å−3 |
C6H16OSi·0.5H2O | V = 1885.2 (8) Å3 |
Mr = 141.29 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.7078 (18) Å | µ = 0.19 mm−1 |
b = 22.119 (5) Å | T = 100 K |
c = 11.058 (3) Å | 1.00 × 1.00 × 0.80 mm |
β = 90.307 (4)° |
Bruker SMART APEX detector diffractometer | 4093 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 3529 reflections with I > 2σ(I) |
Tmin = 0.519, Tmax = 0.865 | Rint = 0.054 |
15971 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 6 restraints |
wR(F2) = 0.149 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.55 e Å−3 |
4093 reflections | Δρmin = −0.49 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Si1 | 0.08637 (10) | 0.59717 (3) | 1.24126 (7) | 0.01975 (18) | |
O1 | 0.0393 (3) | 0.56062 (9) | 1.1151 (2) | 0.0313 (5) | |
H1O1 | −0.0509 | 0.5399 | 1.1251 | 0.047* | 0.50 |
H2O1 | 0.1314 | 0.5488 | 1.0825 | 0.047* | 0.50 |
C1 | 0.0225 (5) | 0.55098 (15) | 1.3734 (3) | 0.0408 (8) | |
H1A | −0.1001 | 0.5398 | 1.3660 | 0.061* | |
H1B | 0.0400 | 0.5744 | 1.4477 | 0.061* | |
H1C | 0.0937 | 0.5143 | 1.3766 | 0.061* | |
C2 | 0.3243 (4) | 0.60908 (15) | 1.2437 (3) | 0.0350 (7) | |
H2A | 0.3834 | 0.5699 | 1.2401 | 0.052* | |
H2B | 0.3575 | 0.6301 | 1.3184 | 0.052* | |
H2C | 0.3580 | 0.6336 | 1.1738 | 0.052* | |
C3 | −0.0367 (4) | 0.67096 (12) | 1.2379 (2) | 0.0227 (5) | |
C4 | −0.0021 (5) | 0.70679 (15) | 1.3542 (3) | 0.0385 (8) | |
H4A | 0.1224 | 0.7151 | 1.3616 | 0.058* | |
H4B | −0.0405 | 0.6831 | 1.4240 | 0.058* | |
H4C | −0.0661 | 0.7451 | 1.3512 | 0.058* | |
C5 | 0.0191 (6) | 0.70852 (15) | 1.1297 (3) | 0.0471 (10) | |
H5A | −0.0453 | 0.7467 | 1.1288 | 0.071* | |
H5B | −0.0051 | 0.6861 | 1.0550 | 0.071* | |
H5C | 0.1437 | 0.7169 | 1.1355 | 0.071* | |
C6 | −0.2315 (4) | 0.65768 (16) | 1.2285 (3) | 0.0425 (8) | |
H6A | −0.2677 | 0.6336 | 1.2984 | 0.064* | |
H6B | −0.2553 | 0.6351 | 1.1541 | 0.064* | |
H6C | −0.2961 | 0.6958 | 1.2271 | 0.064* | |
Si2 | 0.41635 (10) | 0.62186 (3) | 0.80713 (7) | 0.02124 (19) | |
O2 | 0.4716 (3) | 0.56071 (10) | 0.8832 (2) | 0.0345 (5) | |
H1O2 | 0.5780 | 0.5619 | 0.8996 | 0.052* | 0.50 |
H2O2 | 0.3931 | 0.5346 | 0.8761 | 0.052* | 0.50 |
C7 | 0.4726 (5) | 0.68968 (15) | 0.8981 (3) | 0.0402 (8) | |
H7A | 0.3994 | 0.6911 | 0.9703 | 0.060* | |
H7B | 0.4531 | 0.7261 | 0.8496 | 0.060* | |
H7C | 0.5948 | 0.6876 | 0.9225 | 0.060* | |
C8 | 0.1783 (4) | 0.61756 (15) | 0.7803 (3) | 0.0381 (8) | |
H8A | 0.1509 | 0.5805 | 0.7356 | 0.057* | |
H8B | 0.1407 | 0.6528 | 0.7332 | 0.057* | |
H8C | 0.1179 | 0.6172 | 0.8581 | 0.057* | |
C9 | 0.5397 (4) | 0.62185 (11) | 0.6618 (2) | 0.0226 (6) | |
C10 | 0.4979 (5) | 0.56497 (14) | 0.5889 (3) | 0.0379 (8) | |
H10A | 0.5657 | 0.5650 | 0.5142 | 0.057* | |
H10B | 0.3739 | 0.5643 | 0.5690 | 0.057* | |
H10C | 0.5274 | 0.5291 | 0.6369 | 0.057* | |
C11 | 0.7347 (4) | 0.62329 (15) | 0.6898 (3) | 0.0375 (8) | |
H11A | 0.7654 | 0.5886 | 0.7407 | 0.056* | |
H11B | 0.7634 | 0.6608 | 0.7325 | 0.056* | |
H11C | 0.7998 | 0.6214 | 0.6140 | 0.056* | |
C12 | 0.4920 (5) | 0.67741 (14) | 0.5854 (3) | 0.0364 (7) | |
H12A | 0.5209 | 0.7143 | 0.6303 | 0.055* | |
H12B | 0.3673 | 0.6769 | 0.5674 | 0.055* | |
H12C | 0.5572 | 0.6766 | 0.5096 | 0.055* | |
O3 | 0.2501 (2) | 0.48396 (9) | 0.99424 (19) | 0.0261 (4) | |
H1O3 | 0.190 (7) | 0.503 (2) | 1.043 (5) | 0.039* | 0.50 |
H2O3 | 0.316 (7) | 0.506 (2) | 0.956 (5) | 0.039* | 0.50 |
H3O3 | 0.327 (6) | 0.464 (2) | 1.026 (6) | 0.039* | 0.50 |
H4O3 | 0.172 (6) | 0.464 (2) | 0.963 (6) | 0.039* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0189 (3) | 0.0196 (3) | 0.0207 (3) | −0.0005 (3) | −0.0001 (3) | 0.0000 (3) |
O1 | 0.0248 (11) | 0.0336 (12) | 0.0354 (11) | −0.0016 (8) | 0.0018 (9) | −0.0151 (9) |
C1 | 0.050 (2) | 0.0316 (17) | 0.0408 (18) | 0.0045 (14) | 0.0121 (16) | 0.0115 (14) |
C2 | 0.0251 (16) | 0.0441 (18) | 0.0357 (17) | 0.0006 (13) | −0.0040 (13) | −0.0035 (14) |
C3 | 0.0275 (14) | 0.0209 (13) | 0.0198 (12) | −0.0004 (10) | 0.0043 (10) | −0.0001 (10) |
C4 | 0.055 (2) | 0.0293 (16) | 0.0317 (16) | −0.0003 (14) | 0.0047 (15) | −0.0066 (13) |
C5 | 0.077 (3) | 0.0299 (17) | 0.0342 (17) | 0.0152 (17) | 0.0179 (18) | 0.0108 (14) |
C6 | 0.0287 (17) | 0.0419 (18) | 0.057 (2) | 0.0116 (14) | −0.0020 (15) | −0.0126 (16) |
Si2 | 0.0187 (4) | 0.0208 (3) | 0.0242 (4) | −0.0002 (3) | −0.0008 (3) | 0.0022 (3) |
O2 | 0.0254 (11) | 0.0366 (12) | 0.0415 (12) | 0.0014 (9) | 0.0020 (10) | 0.0170 (10) |
C7 | 0.053 (2) | 0.0360 (17) | 0.0315 (16) | −0.0072 (15) | 0.0082 (15) | −0.0135 (14) |
C8 | 0.0212 (15) | 0.0394 (18) | 0.054 (2) | 0.0025 (12) | −0.0009 (14) | 0.0073 (15) |
C9 | 0.0282 (14) | 0.0184 (12) | 0.0211 (13) | 0.0008 (10) | 0.0008 (11) | −0.0017 (10) |
C10 | 0.053 (2) | 0.0259 (16) | 0.0349 (17) | 0.0045 (14) | −0.0021 (15) | −0.0099 (13) |
C11 | 0.0272 (16) | 0.0475 (19) | 0.0379 (17) | −0.0007 (13) | 0.0123 (14) | 0.0009 (14) |
C12 | 0.055 (2) | 0.0263 (15) | 0.0279 (15) | 0.0023 (14) | 0.0011 (15) | 0.0053 (12) |
O3 | 0.0188 (11) | 0.0259 (10) | 0.0334 (11) | 0.0004 (8) | −0.0024 (9) | −0.0003 (9) |
Si1—O1 | 1.651 (2) | Si2—C8 | 1.859 (3) |
Si1—C1 | 1.852 (3) | Si2—C9 | 1.871 (3) |
Si1—C2 | 1.853 (3) | O2—H1O2 | 0.8400 |
Si1—C3 | 1.888 (3) | O2—H2O2 | 0.8400 |
O1—H1O1 | 0.8400 | C7—H7A | 0.9800 |
O1—H2O1 | 0.8400 | C7—H7B | 0.9800 |
C1—H1A | 0.9800 | C7—H7C | 0.9800 |
C1—H1B | 0.9800 | C8—H8A | 0.9800 |
C1—H1C | 0.9800 | C8—H8B | 0.9800 |
C2—H2A | 0.9800 | C8—H8C | 0.9800 |
C2—H2B | 0.9800 | C9—C10 | 1.528 (4) |
C2—H2C | 0.9800 | C9—C11 | 1.533 (4) |
C3—C5 | 1.521 (4) | C9—C12 | 1.535 (4) |
C3—C4 | 1.532 (4) | C10—H10A | 0.9800 |
C3—C6 | 1.533 (4) | C10—H10B | 0.9800 |
C4—H4A | 0.9800 | C10—H10C | 0.9800 |
C4—H4B | 0.9800 | C11—H11A | 0.9800 |
C4—H4C | 0.9800 | C11—H11B | 0.9800 |
C5—H5A | 0.9800 | C11—H11C | 0.9800 |
C5—H5B | 0.9800 | C12—H12A | 0.9800 |
C5—H5C | 0.9800 | C12—H12B | 0.9800 |
C6—H6A | 0.9800 | C12—H12C | 0.9800 |
C6—H6B | 0.9800 | O3—H1O3 | 0.824 (19) |
C6—H6C | 0.9800 | O3—H2O3 | 0.82 (2) |
Si2—O2 | 1.648 (2) | O3—H3O3 | 0.822 (19) |
Si2—C7 | 1.856 (3) | O3—H4O3 | 0.815 (19) |
O1—Si1—C1 | 109.79 (15) | O2—Si2—C9 | 107.90 (12) |
O1—Si1—C2 | 107.15 (13) | C7—Si2—C9 | 110.33 (14) |
C1—Si1—C2 | 109.53 (17) | C8—Si2—C9 | 111.62 (16) |
O1—Si1—C3 | 107.38 (12) | Si2—O2—H1O2 | 109.5 |
C1—Si1—C3 | 110.88 (14) | Si2—O2—H2O2 | 109.5 |
C2—Si1—C3 | 112.00 (14) | Si2—C7—H7A | 109.5 |
Si1—O1—H1O1 | 109.5 | Si2—C7—H7B | 109.5 |
Si1—O1—H2O1 | 109.5 | H7A—C7—H7B | 109.5 |
Si1—C1—H1A | 109.5 | Si2—C7—H7C | 109.5 |
Si1—C1—H1B | 109.5 | H7A—C7—H7C | 109.5 |
H1A—C1—H1B | 109.5 | H7B—C7—H7C | 109.5 |
Si1—C1—H1C | 109.5 | Si2—C8—H8A | 109.5 |
H1A—C1—H1C | 109.5 | Si2—C8—H8B | 109.5 |
H1B—C1—H1C | 109.5 | H8A—C8—H8B | 109.5 |
Si1—C2—H2A | 109.5 | Si2—C8—H8C | 109.5 |
Si1—C2—H2B | 109.5 | H8A—C8—H8C | 109.5 |
H2A—C2—H2B | 109.5 | H8B—C8—H8C | 109.5 |
Si1—C2—H2C | 109.5 | C10—C9—C11 | 109.1 (3) |
H2A—C2—H2C | 109.5 | C10—C9—C12 | 108.6 (3) |
H2B—C2—H2C | 109.5 | C11—C9—C12 | 109.0 (3) |
C5—C3—C4 | 109.2 (2) | C10—C9—Si2 | 110.3 (2) |
C5—C3—C6 | 109.4 (3) | C11—C9—Si2 | 109.2 (2) |
C4—C3—C6 | 108.8 (3) | C12—C9—Si2 | 110.6 (2) |
C5—C3—Si1 | 110.1 (2) | C9—C10—H10A | 109.5 |
C4—C3—Si1 | 110.2 (2) | C9—C10—H10B | 109.5 |
C6—C3—Si1 | 109.13 (19) | H10A—C10—H10B | 109.5 |
C3—C4—H4A | 109.5 | C9—C10—H10C | 109.5 |
C3—C4—H4B | 109.5 | H10A—C10—H10C | 109.5 |
H4A—C4—H4B | 109.5 | H10B—C10—H10C | 109.5 |
C3—C4—H4C | 109.5 | C9—C11—H11A | 109.5 |
H4A—C4—H4C | 109.5 | C9—C11—H11B | 109.5 |
H4B—C4—H4C | 109.5 | H11A—C11—H11B | 109.5 |
C3—C5—H5A | 109.5 | C9—C11—H11C | 109.5 |
C3—C5—H5B | 109.5 | H11A—C11—H11C | 109.5 |
H5A—C5—H5B | 109.5 | H11B—C11—H11C | 109.5 |
C3—C5—H5C | 109.5 | C9—C12—H12A | 109.5 |
H5A—C5—H5C | 109.5 | C9—C12—H12B | 109.5 |
H5B—C5—H5C | 109.5 | H12A—C12—H12B | 109.5 |
C3—C6—H6A | 109.5 | C9—C12—H12C | 109.5 |
C3—C6—H6B | 109.5 | H12A—C12—H12C | 109.5 |
H6A—C6—H6B | 109.5 | H12B—C12—H12C | 109.5 |
C3—C6—H6C | 109.5 | H1O3—O3—H2O3 | 113 (4) |
H6A—C6—H6C | 109.5 | H1O3—O3—H3O3 | 113 (7) |
H6B—C6—H6C | 109.5 | H2O3—O3—H3O3 | 95 (6) |
O2—Si2—C7 | 109.13 (16) | H1O3—O3—H4O3 | 98 (7) |
O2—Si2—C8 | 106.94 (13) | H2O3—O3—H4O3 | 123 (7) |
C7—Si2—C8 | 110.79 (16) | H3O3—O3—H4O3 | 115 (4) |
O1—Si1—C3—C5 | −60.8 (2) | O2—Si2—C9—C10 | 59.0 (2) |
C1—Si1—C3—C5 | 179.3 (2) | C7—Si2—C9—C10 | 178.1 (2) |
C2—Si1—C3—C5 | 56.6 (3) | C8—Si2—C9—C10 | −58.3 (2) |
O1—Si1—C3—C4 | 178.8 (2) | O2—Si2—C9—C11 | −60.9 (2) |
C1—Si1—C3—C4 | 58.8 (3) | C7—Si2—C9—C11 | 58.3 (2) |
C2—Si1—C3—C4 | −63.9 (2) | C8—Si2—C9—C11 | −178.1 (2) |
O1—Si1—C3—C6 | 59.4 (2) | O2—Si2—C9—C12 | 179.1 (2) |
C1—Si1—C3—C6 | −60.6 (3) | C7—Si2—C9—C12 | −61.7 (3) |
C2—Si1—C3—C6 | 176.7 (2) | C8—Si2—C9—C12 | 61.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O3i | 0.84 | 2.09 | 2.717 (3) | 131 |
O1—H2O1···O3 | 0.84 | 1.96 | 2.706 (3) | 147 |
O2—H1O2···O3ii | 0.84 | 2.04 | 2.718 (3) | 138 |
O2—H2O2···O3 | 0.84 | 2.05 | 2.707 (3) | 135 |
O3—H1O3···O1 | 0.82 (2) | 1.91 (3) | 2.706 (3) | 163 (6) |
O3—H4O3···O1i | 0.82 (2) | 1.92 (2) | 2.717 (3) | 164 (6) |
O3—H2O3···O2 | 0.82 (2) | 1.89 (2) | 2.707 (3) | 173 (6) |
O3—H3O3···O2ii | 0.82 (2) | 1.92 (2) | 2.718 (3) | 164 (6) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C6H16OSi·0.5H2O |
Mr | 141.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.7078 (18), 22.119 (5), 11.058 (3) |
β (°) | 90.307 (4) |
V (Å3) | 1885.2 (8) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.19 |
Crystal size (mm) | 1.00 × 1.00 × 0.80 |
Data collection | |
Diffractometer | Bruker SMART APEX detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.519, 0.865 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15971, 4093, 3529 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.149, 1.05 |
No. of reflections | 4093 |
No. of parameters | 181 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.55, −0.49 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O3i | 0.84 | 2.09 | 2.717 (3) | 131.3 |
O1—H2O1···O3 | 0.84 | 1.96 | 2.706 (3) | 147.0 |
O2—H1O2···O3ii | 0.84 | 2.04 | 2.718 (3) | 137.8 |
O2—H2O2···O3 | 0.84 | 2.05 | 2.707 (3) | 135.0 |
O3—H1O3···O1 | 0.824 (19) | 1.91 (3) | 2.706 (3) | 163 (6) |
O3—H4O3···O1i | 0.815 (19) | 1.92 (2) | 2.717 (3) | 164 (6) |
O3—H2O3···O2 | 0.82 (2) | 1.89 (2) | 2.707 (3) | 173 (6) |
O3—H3O3···O2ii | 0.822 (19) | 1.92 (2) | 2.718 (3) | 164 (6) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+1, −z+2. |
Acknowledgements
The authors thank the Irish Research Council for Science, Engineering and Technology for an Embark Award postgraduate scholarship to SMB, the Centre for Synthesis & Chemical Biology (CSCB) funded by the Irish Higher Education Authority (HEA) through the Programme for Research in Third-Level Institutions (PRTLI) for financial support, and Professor Cameron Kepert for helpful advice.
References
Barry, S. M. & Rutledge, P. J. (2008). In preparation. Google Scholar
Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krall, J. A., Rutledge, P. J. & Baldwin, J. E. (2005). Tetrahedron, 61, 137–143. Web of Science CrossRef CAS Google Scholar
Lickiss, P. D., Clipston, N. L., Rankin, D. W. H. & Robertson, H. E. (1995). J. Mol. Struct. 344, 111–116. CrossRef CAS Web of Science Google Scholar
Mansfeld, D., Mehring, M. & Schürmann, M. (2005). Angew. Chem. Int. Ed. 44, 245–249. Web of Science CSD CrossRef CAS Google Scholar
Mansfeld, D., Schürmann, M. & Mehring, M. (2005). Appl. Organomet. Chem. 19, 1185–1188. Web of Science CSD CrossRef CAS Google Scholar
McGeary, M. J., Coan, P. S., Folting, K., Streib, W. E. & Caulton, K. G. (1991). Inorg. Chem. 30, 1723–1735. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, C. M. (2000). SADABS. Bruker AXS Inc., Madison, Wisconson, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Veith, M., Freres, J., Huch, V. & Zimmer, M. (2006). Organometallics, 25, 1875–1880. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The stucture of the title compound tert-butyldimethylsilanol hemihydrate is shown below (Fig. 1, 2); dimensions are available in the archived CIF. This compound has previously been characterized by gas-phase electron diffraction of both the free silanol and its hemihydrate (Lickiss et al., 1995). It has also been structurally characterized within lanthanoid complexes (McGeary et al., 1991) and in recent structures of complexes with several main group and transition metals (for examples see Mansfeld, Mehring & Schürmann, 2005; Mansfeld, Schürmann & Mehring, 2005, Veith et al., 2006). However direct crystallographic characterization of the silanol has hitherto remained elusive.
tert-Butyldimethylsilanol hemihydrate was isolated in crystalline form during the synthesis of biomimetic ligands for iron-mediated hydrocarbon oxidation (Krall et al., 2005, Barry & Rutledge, 2008). The title compound was obtained as the side product of reactions to prepare a compound incorporating the tert-butyldimethylsilyl ether as a protecting group (2-(bromomethyl)-6-((tert-butyldimethylsilyloxy)methyl)pyridine).
The assymetric unit contains two molecules of the silanol and one water molecule, linked by hydrogen bonding. The hydrogen atoms of the water molecule and the silanol O—H groups are disordered between two alternative occupancies (Fig. 2).