metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-di­methylamino-1,10-phenanthroline-κ2N,N′)bis­­(thio­cyanato-κN)nickel(II) methanol disolvate

aDepartment of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: zhangshiguo1970@yahoo.com.cn

(Received 7 April 2008; accepted 24 April 2008; online 3 May 2008)

In the title complex, [Ni(NCS)2(C14H13N3)2]·2CH3OH, the NiII atom lies on a crystallographic twofold rotation axis and is in a slightly distorted octa­hedral NiN6 coordination environment. The crystal structure is stabilized by a combination of weak ππ stacking inter­actions between symmetry-related 1,10-phenanthroline ligands [centroi–centroid distance between benzene rings = 3.5936 (18) Å] and weak O—H⋯S, C—H⋯O and C—H⋯S hydrogen bonds between methanol and complex mol­ecules.

Related literature

For related literature, see: Zhang et al. (2006[Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2006). Eur. J. Inorg. Chem. pp. 3407-3412.]); Liu et al. (2008[Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58-m60.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C14H13N3)2]·2CH4O

  • Mr = 685.50

  • Monoclinic, C 2/c

  • a = 19.573 (3) Å

  • b = 11.452 (3) Å

  • c = 16.338 (3) Å

  • β = 117.693 (4)°

  • V = 3242.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 298 (2) K

  • 0.31 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.796, Tmax = 0.855

  • 8459 measured reflections

  • 3064 independent reflections

  • 2668 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.05

  • 3064 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Ni1 2.0569 (19)
N2—Ni1 2.2556 (18)
N3—Ni1 2.047 (2)
N3i—Ni1—N3 90.27 (11)
N3—Ni1—N1i 93.08 (7)
N3—Ni1—N1 88.63 (7)
N1i—Ni1—N1 177.57 (10)
N3—Ni1—N2 96.75 (7)
N1—Ni1—N2 77.31 (7)
N3—Ni1—N2i 167.90 (7)
N1—Ni1—N2i 100.76 (7)
N2—Ni1—N2i 78.13 (9)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14C⋯S1ii 0.96 2.86 3.784 (3) 163
O1—H4⋯S1iii 0.82 2.65 3.331 (2) 142
C15—H15B⋯O1iv 0.96 2.51 3.427 (4) 161
Symmetry codes: (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of 1,10-phenanthroline play a pivotal role in the area of modern coordination chemistry (Zhang et al. 2006) and a number of complexes have been reported with derivatives as ligands (Liu et al. 2008). Here we report the crystal structure of the title complex, (I), formed using 2-(dimethyl)amine-1,10-phenanthroline as a ligand.

The molecular structure of (I) is shown in Fig. 1. In the mononuclear complex, atom Ni1 is in a slightly distorted octahedral geometry (Table 1). There is a single π-π stacking interaction involving symmetry related 1,10-phenanthroline ligands, with the the relevant distances being Cg1···Cg1i = 3.5936 (18) Å and Cg1···Cg1iperp = 3.449 Å; α = 0.00° [symmetry code: (i) 1-x,-y,-z; Cg1 is the centroid of the C4—C9 ring; Cg1···Cg1perp is the perpendicular distance from ring Cg1 to ring Cg1i; α is the dihedral between the two ring planes]. In addition, the crystal structure contains weak O—H···S, C—H···O and C—H···S hydrogen bonds between methanol molecules and complex molecules [Fig. 2 and Table 2]. In addition to the π-π stacking interactions and the hydrogen bonds there is relatively close contact between the H atom of the hydroxyl and symmetry-related pyridine ring [H···Cg2 = 2.82, where Cg2 is the centroid of N1/C1—C5 ring]. The combination of the above interactions help stabilize the crystal structure.

Related literature top

For related literature, see: Zhang et al. (2006); Liu et al. (2008).

Experimental top

15 ml me thanol solution of Ni(ClO4).6H2O (0.2503 g, 0.684 mmol) was added into a 10 ml me thanol solution containing 2-(dimethl)amine-1,10-phenanthroline (0.1531 g, 0.686 mmol), and the mixed solution was stirred for a few minutes. Then 10 ml me thanol solution of NaSCN (0.1112 g, 1.37 mmol) was added into the mixed solution above. The green single crystals were obtained after the solution had been allowed to stand at room temperature for two weeks.

Refinement top

H atom of hydroxyl was located in a difference Fourier map and refined as riding in its as found position with Uiso(H) = 1.5 Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.96 Å for methyl group and C—H = 0.93 Å for other H atoms) and refined as riding with Uiso = 1.5 Ueq(C) for methyl H and Uiso = 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of complex (I), showing the the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level (methanol molecules are not shown). Primed atoms are related by the symmetry operator (-x+1, y, -z+1/2).
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds between methanol molecules and complex molecules (dashed lines).
Bis(2-dimethylamino-1,10-phenanthroline-κ2N,N')bis(thiocyanato- κN)nickel(II) methanol disolvate top
Crystal data top
[Ni(NCS)2(C14H13N3)2]·2CH4OF(000) = 1432
Mr = 685.50Dx = 1.404 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3100 reflections
a = 19.573 (3) Åθ = 2.4–27.8°
b = 11.452 (3) ŵ = 0.77 mm1
c = 16.338 (3) ÅT = 298 K
β = 117.693 (4)°Block, green
V = 3242.6 (10) Å30.31 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3064 independent reflections
Radiation source: fine-focus sealed tube2668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1823
Tmin = 0.796, Tmax = 0.855k = 1213
8459 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0522P)2 + 2.7575P]
where P = (Fo2 + 2Fc2)/3
3064 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ni(NCS)2(C14H13N3)2]·2CH4OV = 3242.6 (10) Å3
Mr = 685.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.573 (3) ŵ = 0.77 mm1
b = 11.452 (3) ÅT = 298 K
c = 16.338 (3) Å0.31 × 0.24 × 0.21 mm
β = 117.693 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3064 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2668 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.855Rint = 0.030
8459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.52 e Å3
3064 reflectionsΔρmin = 0.27 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38579 (14)0.2002 (2)0.05726 (16)0.0324 (6)
H10.38460.27060.08500.039*
C20.33596 (15)0.1849 (2)0.03666 (17)0.0385 (6)
H20.30330.24510.07110.046*
C30.33558 (15)0.0809 (3)0.07755 (17)0.0371 (6)
H30.30130.06880.13960.045*
C40.38688 (14)0.0075 (2)0.02593 (16)0.0310 (5)
C50.43824 (13)0.01749 (19)0.06749 (15)0.0248 (5)
C60.49639 (13)0.06546 (19)0.12309 (15)0.0234 (5)
C70.38961 (16)0.1199 (2)0.06162 (17)0.0358 (6)
H70.35620.13720.12310.043*
C80.43990 (15)0.2013 (2)0.00747 (17)0.0359 (6)
H80.43910.27520.03140.043*
C90.49437 (14)0.1764 (2)0.08600 (16)0.0296 (5)
C100.54844 (15)0.2582 (2)0.14486 (18)0.0351 (6)
H100.54750.33440.12480.042*
C110.60188 (15)0.2262 (2)0.23065 (17)0.0336 (6)
H110.63660.28110.27010.040*
C120.60511 (14)0.10882 (19)0.26076 (16)0.0269 (5)
C140.69963 (14)0.0403 (2)0.34968 (18)0.0340 (6)
H14A0.66240.09340.30640.051*
H14B0.71790.07000.41130.051*
H14C0.74220.03240.33620.051*
C150.71573 (17)0.1587 (2)0.40742 (18)0.0445 (7)
H15A0.74980.18850.38510.067*
H15B0.74550.12250.46660.067*
H15C0.68600.22160.41350.067*
C160.5917 (2)0.4773 (3)0.3971 (3)0.0682 (10)
H60.55320.53180.35770.096 (14)*
H90.59110.47280.45540.14 (2)*
H50.58090.40160.36850.129 (19)*
C170.59639 (13)0.3261 (2)0.21965 (15)0.0258 (5)
N10.43477 (11)0.11804 (16)0.10854 (12)0.0257 (4)
N20.55031 (11)0.03107 (15)0.20930 (12)0.0231 (4)
N30.56731 (12)0.24797 (17)0.23466 (13)0.0290 (4)
N40.66394 (12)0.07266 (17)0.34233 (13)0.0305 (5)
Ni10.50000.12186 (3)0.25000.02153 (14)
O10.66464 (13)0.5147 (2)0.41138 (16)0.0681 (7)
H40.66880.49400.36580.102*
S10.63832 (4)0.43760 (6)0.19758 (5)0.0419 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0360 (14)0.0320 (13)0.0322 (12)0.0045 (11)0.0184 (11)0.0052 (10)
C20.0362 (15)0.0467 (15)0.0341 (13)0.0091 (12)0.0177 (12)0.0138 (12)
C30.0300 (14)0.0549 (16)0.0236 (12)0.0040 (12)0.0102 (11)0.0049 (11)
C40.0321 (14)0.0406 (14)0.0246 (12)0.0092 (11)0.0167 (11)0.0005 (10)
C50.0283 (12)0.0275 (12)0.0239 (11)0.0060 (10)0.0166 (10)0.0002 (9)
C60.0283 (12)0.0245 (11)0.0247 (11)0.0056 (9)0.0186 (10)0.0020 (9)
C70.0413 (15)0.0440 (15)0.0242 (12)0.0139 (12)0.0170 (11)0.0085 (11)
C80.0494 (17)0.0318 (13)0.0339 (13)0.0151 (12)0.0256 (13)0.0133 (11)
C90.0392 (14)0.0246 (12)0.0341 (12)0.0067 (10)0.0247 (12)0.0048 (10)
C100.0466 (16)0.0217 (12)0.0459 (15)0.0021 (11)0.0291 (13)0.0050 (11)
C110.0412 (15)0.0265 (13)0.0379 (14)0.0066 (11)0.0225 (12)0.0033 (10)
C120.0316 (13)0.0272 (12)0.0286 (12)0.0013 (10)0.0195 (10)0.0027 (9)
C140.0272 (13)0.0349 (13)0.0392 (14)0.0001 (10)0.0148 (11)0.0060 (11)
C150.0419 (16)0.0427 (16)0.0365 (14)0.0094 (13)0.0078 (13)0.0080 (12)
C160.060 (2)0.059 (2)0.093 (3)0.0081 (18)0.041 (2)0.012 (2)
C170.0264 (12)0.0272 (12)0.0234 (11)0.0000 (10)0.0112 (10)0.0046 (9)
N10.0286 (11)0.0259 (10)0.0239 (9)0.0002 (8)0.0134 (8)0.0030 (8)
N20.0269 (10)0.0217 (9)0.0255 (9)0.0008 (8)0.0162 (8)0.0003 (7)
N30.0375 (12)0.0237 (10)0.0282 (10)0.0038 (9)0.0174 (9)0.0018 (8)
N40.0307 (11)0.0285 (10)0.0285 (10)0.0030 (9)0.0105 (9)0.0001 (8)
Ni10.0277 (2)0.0178 (2)0.0207 (2)0.0000.01265 (18)0.000
O10.0449 (13)0.0956 (18)0.0573 (14)0.0003 (12)0.0182 (11)0.0297 (13)
S10.0482 (4)0.0367 (4)0.0449 (4)0.0161 (3)0.0250 (3)0.0006 (3)
Geometric parameters (Å, º) top
C1—N11.326 (3)C12—N41.359 (3)
C1—C21.395 (3)C14—N41.449 (3)
C1—H10.9300C14—H14A0.9600
C2—C31.364 (4)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
C3—C41.399 (4)C15—N41.458 (3)
C3—H30.9300C15—H15A0.9600
C4—C51.413 (3)C15—H15B0.9600
C4—C71.424 (4)C15—H15C0.9600
C5—N11.350 (3)C16—O11.402 (4)
C5—C61.436 (3)C16—H60.9600
C6—N21.368 (3)C16—H90.9600
C6—C91.400 (3)C16—H50.9600
C7—C81.346 (4)C17—N31.146 (3)
C7—H70.9300C17—S11.646 (2)
C8—C91.427 (3)N1—Ni12.0569 (19)
C8—H80.9300N2—Ni12.2556 (18)
C9—C101.406 (3)N3—Ni12.047 (2)
C10—C111.353 (4)Ni1—N3i2.047 (2)
C10—H100.9300Ni1—N1i2.0569 (19)
C11—C121.422 (3)Ni1—N2i2.2556 (18)
C11—H110.9300O1—H40.8217
C12—N21.346 (3)
N1—C1—C2122.5 (2)H14B—C14—H14C109.5
N1—C1—H1118.8N4—C15—H15A109.5
C2—C1—H1118.8N4—C15—H15B109.5
C3—C2—C1119.3 (2)H15A—C15—H15B109.5
C3—C2—H2120.3N4—C15—H15C109.5
C1—C2—H2120.3H15A—C15—H15C109.5
C2—C3—C4119.9 (2)H15B—C15—H15C109.5
C2—C3—H3120.1O1—C16—H6109.5
C4—C3—H3120.1O1—C16—H9109.5
C3—C4—C5117.1 (2)H6—C16—H9109.5
C3—C4—C7124.1 (2)O1—C16—H5109.5
C5—C4—C7118.8 (2)H6—C16—H5109.5
N1—C5—C4122.3 (2)H9—C16—H5109.5
N1—C5—C6117.26 (19)N3—C17—S1179.6 (2)
C4—C5—C6120.4 (2)C1—N1—C5118.7 (2)
N2—C6—C9124.0 (2)C1—N1—Ni1125.71 (16)
N2—C6—C5117.80 (19)C5—N1—Ni1115.34 (14)
C9—C6—C5118.2 (2)C12—N2—C6117.53 (19)
C8—C7—C4120.8 (2)C12—N2—Ni1131.28 (15)
C8—C7—H7119.6C6—N2—Ni1107.06 (14)
C4—C7—H7119.6C17—N3—Ni1171.3 (2)
C7—C8—C9121.3 (2)C12—N4—C14120.6 (2)
C7—C8—H8119.4C12—N4—C15119.6 (2)
C9—C8—H8119.4C14—N4—C15113.4 (2)
C6—C9—C10116.6 (2)N3i—Ni1—N390.27 (11)
C6—C9—C8120.1 (2)N3i—Ni1—N1i88.63 (7)
C10—C9—C8123.3 (2)N3—Ni1—N1i93.08 (7)
C11—C10—C9120.1 (2)N3i—Ni1—N193.08 (7)
C11—C10—H10119.9N3—Ni1—N188.63 (7)
C9—C10—H10119.9N1i—Ni1—N1177.57 (10)
C10—C11—C12120.2 (2)N3i—Ni1—N2167.90 (7)
C10—C11—H11119.9N3—Ni1—N296.75 (7)
C12—C11—H11119.9N1i—Ni1—N2100.76 (7)
N2—C12—N4118.5 (2)N1—Ni1—N277.31 (7)
N2—C12—C11121.0 (2)N3i—Ni1—N2i96.75 (7)
N4—C12—C11120.5 (2)N3—Ni1—N2i167.90 (7)
N4—C14—H14A109.5N1i—Ni1—N2i77.31 (7)
N4—C14—H14B109.5N1—Ni1—N2i100.76 (7)
H14A—C14—H14B109.5N2—Ni1—N2i78.13 (9)
N4—C14—H14C109.5C16—O1—H4106.5
H14A—C14—H14C109.5
N1—C1—C2—C31.8 (4)C6—C5—N1—Ni111.1 (2)
C1—C2—C3—C42.3 (4)N4—C12—N2—C6173.0 (2)
C2—C3—C4—C51.1 (4)C11—C12—N2—C66.8 (3)
C2—C3—C4—C7178.3 (2)N4—C12—N2—Ni133.1 (3)
C3—C4—C5—N15.3 (3)C11—C12—N2—Ni1147.06 (18)
C7—C4—C5—N1174.2 (2)C9—C6—N2—C120.8 (3)
C3—C4—C5—C6175.4 (2)C5—C6—N2—C12179.39 (19)
C7—C4—C5—C65.2 (3)C9—C6—N2—Ni1158.98 (18)
N1—C5—C6—N28.4 (3)C5—C6—N2—Ni120.8 (2)
C4—C5—C6—N2172.2 (2)N2—C12—N4—C1441.2 (3)
N1—C5—C6—C9171.4 (2)C11—C12—N4—C14138.6 (2)
C4—C5—C6—C98.0 (3)N2—C12—N4—C15168.5 (2)
C3—C4—C7—C8179.1 (2)C11—C12—N4—C1511.7 (3)
C5—C4—C7—C80.3 (4)C1—N1—Ni1—N3i17.9 (2)
C4—C7—C8—C92.8 (4)C5—N1—Ni1—N3i155.82 (16)
N2—C6—C9—C104.6 (3)C1—N1—Ni1—N372.3 (2)
C5—C6—C9—C10175.2 (2)C5—N1—Ni1—N3113.98 (16)
N2—C6—C9—C8174.7 (2)C1—N1—Ni1—N2169.6 (2)
C5—C6—C9—C85.5 (3)C5—N1—Ni1—N216.74 (15)
C7—C8—C9—C60.1 (4)C1—N1—Ni1—N2i115.3 (2)
C7—C8—C9—C10179.4 (2)C5—N1—Ni1—N2i58.34 (17)
C6—C9—C10—C113.9 (4)C12—N2—Ni1—N3i137.6 (3)
C8—C9—C10—C11175.4 (2)C6—N2—Ni1—N3i18.3 (4)
C9—C10—C11—C121.8 (4)C12—N2—Ni1—N397.3 (2)
C10—C11—C12—N27.5 (4)C6—N2—Ni1—N3106.84 (14)
C10—C11—C12—N4172.3 (2)C12—N2—Ni1—N1i2.8 (2)
C2—C1—N1—C52.3 (4)C6—N2—Ni1—N1i158.71 (14)
C2—C1—N1—Ni1171.22 (18)C12—N2—Ni1—N1175.7 (2)
C4—C5—N1—C15.9 (3)C6—N2—Ni1—N119.77 (14)
C6—C5—N1—C1174.8 (2)C12—N2—Ni1—N2i71.63 (19)
C4—C5—N1—Ni1168.28 (17)C6—N2—Ni1—N2i84.28 (14)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···S1ii0.962.863.784 (3)163
O1—H4···S1iii0.822.653.331 (2)142
C15—H15B···O1iv0.962.513.427 (4)161
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C14H13N3)2]·2CH4O
Mr685.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)19.573 (3), 11.452 (3), 16.338 (3)
β (°) 117.693 (4)
V3)3242.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.31 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.796, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
8459, 3064, 2668
Rint0.030
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.05
No. of reflections3064
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—Ni12.0569 (19)N3—Ni12.047 (2)
N2—Ni12.2556 (18)
N3i—Ni1—N390.27 (11)N1—Ni1—N277.31 (7)
N3—Ni1—N1i93.08 (7)N3—Ni1—N2i167.90 (7)
N3—Ni1—N188.63 (7)N1—Ni1—N2i100.76 (7)
N1i—Ni1—N1177.57 (10)N2—Ni1—N2i78.13 (9)
N3—Ni1—N296.75 (7)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···S1ii0.962.863.784 (3)163.0
O1—H4···S1iii0.822.653.331 (2)141.9
C15—H15B···O1iv0.962.513.427 (4)160.9
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+3/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province of China for support (grant No. Y2007B26).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2006). Eur. J. Inorg. Chem. pp. 3407–3412.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds