metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′-Di­bromo-2,2′-[propane-1,3-diyl­bis­(nitrilo­methyl­­idyne)]diphenolato}zinc(II)

aChemical Engineering and Pharmaceutics College, Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China, and Department of Chemistry, Pingdingshan University, Pingdingshan, Henan 467000, People's Republic of China
*Correspondence e-mail: junying-ma@163.com

(Received 14 May 2008; accepted 23 May 2008; online 30 May 2008)

The title mononuclear zinc(II) complex, [Zn(C17H14Br2N2O2)], possesses a crystallographically imposed C2 axis. The Zn atom is four-coordinated by two O and two N atoms from two Schiff base ligands, forming a severely distorted square-planar geometry. The central C atom of the propyl group is disordered over two positions about the twofold axis.

Related literature

For background on the chemistry of Schiff base zinc(II) complexes and their biological activity, see: Anderson et al. (1997[Anderson, O. P., LaCour, A., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. F. & Toftlund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111-120.]); Chohan & Kausar (1992[Chohan, Z. H. & Kausar, S. (1992). Chem. Pharm. Bull. 40, 2555-2556.], 1993[Chohan, Z. H. & Kausar, S. (1993). Chem. Pharm. Bull. 41, 951-953.]); Chohan et al. (2003[Chohan, Z. H., Scozzafava, A. & Supuran, C. T. (2003). J. Enzyme Inhib. Med. Chem. 18, 259-263.]); Osowole et al. (2005[Osowole, A. A., Kolawole, G. A. & Fagade, O. E. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 829-836.]); Yu et al., (2007[Yu, Y.-Y., Zhao, G.-L. & Wen, Y.-H. (2007). Chin. J. Struct. Chem. 26, 1395-1402.]). For related structures, see: Li & Zhang (2005[Li, Z.-X. & Zhang, X.-L. (2005). Acta Cryst. E61, m1755-m1756.]); Wu et al. (2006[Wu, Y., Shi, S.-M., Jia, B. & Hu, Z.-Q. (2006). Acta Cryst. E62, m648-m649.]); Xu et al. (2006[Xu, H.-J., Liu, Z.-D. & Sheng, L.-Q. (2006). Acta Cryst. E62, m2695-m2697.]); Ma et al. (2005[Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2005). Acta Cryst. E61, m695-m696.]); Ma, Gu et al. (2006[Ma, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437-m1438.]); Ma, Lv et al. (2006[Ma, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322-m1323.]); Ma, Wu et al. (2006[Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 53-54.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C17H14Br2N2O2)]

  • Mr = 503.49

  • Monoclinic, C 2/c

  • a = 21.418 (6) Å

  • b = 8.161 (2) Å

  • c = 9.524 (3) Å

  • β = 92.910 (3)°

  • V = 1662.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.30 mm−1

  • T = 298 (2) K

  • 0.32 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.143, Tmax = 0.152

  • 4709 measured reflections

  • 1809 independent reflections

  • 1444 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.05

  • 1809 reflections

  • 121 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.912 (3)
Zn1—N1 1.968 (3)
O1—Zn1—O1i 87.42 (16)
O1—Zn1—N1i 153.75 (12)
O1—Zn1—N1 93.21 (12)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Zinc(II) complexes derived from Schiff bases have been widely studied (Anderson et al., 1997). Some of them have been found to have pharmacological and antitumor properties (Chohan & Kausar, 1992, 1993; Osowole et al., 2005; Chohan et al., 2003; Yu et al., 2007). Recently, we have reported some metal complexes derived from the Schiff base ligands (Ma, Lv et al., 2006; Ma, Gu et al., 2006; Ma, We et al., 2005, 2006). As part of a further investigation of the structures of such complexes, the title mononuclear zinc(II) complex (Fig 1) is reported in this paper.

The title compound possesses a crystallographically imposed C2 axis passing through the zinc(II) atom and the midpoint of the propyl group, causing the C9 atom to be disordered over two positions. The Zn atom is coordinated by two nitrogen atoms and two oxygen atoms from a Schiff base ligand, giving a severely distorted square planar geometry. Bond lengths and angles (Table 1) related to the Zn atom in the complex are within normal ranges, and comparable to the values observed in other Schiff base zinc(II) complexes (Li & Zhang, 2005; Xu et al., 2006; Wu et al., 2006).

Related literature top

For background on the chemistry of Schiff base zinc(II) complexes and their biological activity, see: Anderson et al. (1997); Chohan & Kausar (1992, 1993); Chohan et al. (2003); Osowole et al. (2005); Yu et al., (2007). For related structures, see: Li & Zhang (2005); Wu et al. (2006); Xu et al. (2006); Ma et al. (2005); Ma, Gu et al. (2006); Ma, Lv et al. (2006); Ma, Wu et al. (2006).

Experimental top

N,N'-Propane-1,3-diamine (0.1 mmol, 14.8 mg) and 5-bromosalicylaldehyde (0.1 mmol, 20.1 mg) were dissolved in methanol (20 ml). The mixture was stirred for 1 h to obtain a clear yellow solution. To the solution was added with stirring a methanol solution (20 ml) of zinc(II) acetate (0.1 mmol, 22.0 mg). After keeping the resulting solution in air for a few days, colourless block-shaped crystals were formed on slow evaporation of the solvent.

Refinement top

H9A and H9B were located from a difference Fourier map and refined freely, with C–H and H···H distances restrained to 0.96 (1) and 1.50 (2) respectively, and with an isotropic displacement parameter fixed to 0.08 Å2. %A. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93-96 Å and Uiso = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Only one component of the disordered C9 atom is shown. H atoms are omitted for clarity. Unlabelled atoms are related to the labelled atoms by the symmetry operation (-x, y, 1/2-z).
{4,4'-Dibromo-2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato}zinc(II) top
Crystal data top
[Zn(C17H14Br2N2O2)]F(000) = 984
Mr = 503.49Dx = 2.011 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1595 reflections
a = 21.418 (6) Åθ = 2.5–26.3°
b = 8.161 (2) ŵ = 6.30 mm1
c = 9.524 (3) ÅT = 298 K
β = 92.910 (3)°Block, colourless
V = 1662.6 (8) Å30.32 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1809 independent reflections
Radiation source: fine-focus sealed tube1444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2727
Tmin = 0.143, Tmax = 0.152k = 109
4709 measured reflectionsl = 1211
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0396P)2 + 3.1273P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1809 reflectionsΔρmax = 0.45 e Å3
121 parametersΔρmin = 0.64 e Å3
3 restraintsExtinction correction: SHELXTL (Bruker, 2000), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0078 (5)
Crystal data top
[Zn(C17H14Br2N2O2)]V = 1662.6 (8) Å3
Mr = 503.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.418 (6) ŵ = 6.30 mm1
b = 8.161 (2) ÅT = 298 K
c = 9.524 (3) Å0.32 × 0.30 × 0.30 mm
β = 92.910 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1809 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1444 reflections with I > 2σ(I)
Tmin = 0.143, Tmax = 0.152Rint = 0.036
4709 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.45 e Å3
1809 reflectionsΔρmin = 0.64 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.00000.01735 (7)0.25000.0347 (2)
Br10.23023 (2)0.25397 (6)0.81463 (5)0.0539 (2)
N10.04072 (14)0.1416 (3)0.3803 (3)0.0343 (7)
O10.05877 (12)0.1867 (3)0.2995 (3)0.0370 (6)
C10.09920 (16)0.1906 (4)0.4060 (4)0.0310 (8)
C20.10887 (15)0.0587 (4)0.5015 (4)0.0298 (7)
C30.14983 (16)0.0782 (5)0.6219 (4)0.0362 (8)
H30.15570.00800.68510.043*
C40.18070 (17)0.2229 (5)0.6459 (4)0.0367 (8)
C50.17583 (18)0.3491 (5)0.5466 (4)0.0406 (9)
H50.19950.44390.55980.049*
C60.13625 (17)0.3329 (5)0.4299 (4)0.0376 (8)
H60.13360.41760.36450.045*
C70.08158 (16)0.1003 (4)0.4779 (4)0.0332 (8)
H70.09490.18270.53990.040*
C80.0244 (3)0.3170 (5)0.3736 (5)0.0577 (13)
H8A0.01190.34810.46520.069*
H8B0.06230.37520.35780.069*
C90.0202 (3)0.3766 (8)0.2766 (9)0.0375 (17)0.50
H9A0.024 (4)0.4935 (16)0.280 (12)0.080*0.50
H9B0.059 (2)0.340 (9)0.310 (11)0.080*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0395 (4)0.0264 (3)0.0374 (4)0.0000.0056 (2)0.000
Br10.0500 (3)0.0645 (4)0.0453 (3)0.0064 (2)0.01642 (19)0.0038 (2)
N10.0442 (17)0.0228 (15)0.0354 (17)0.0001 (13)0.0019 (14)0.0015 (13)
O10.0465 (15)0.0277 (13)0.0354 (15)0.0030 (11)0.0111 (11)0.0031 (11)
C10.0307 (18)0.0281 (18)0.034 (2)0.0026 (14)0.0015 (14)0.0022 (14)
C20.0269 (16)0.0318 (19)0.0304 (18)0.0034 (14)0.0006 (13)0.0008 (14)
C30.0334 (18)0.041 (2)0.034 (2)0.0074 (16)0.0008 (15)0.0032 (16)
C40.0270 (18)0.045 (2)0.037 (2)0.0001 (15)0.0064 (15)0.0041 (17)
C50.039 (2)0.036 (2)0.046 (2)0.0077 (16)0.0026 (17)0.0016 (18)
C60.040 (2)0.0304 (19)0.042 (2)0.0015 (16)0.0026 (16)0.0028 (16)
C70.0371 (19)0.0305 (19)0.0317 (19)0.0077 (15)0.0009 (15)0.0041 (15)
C80.097 (4)0.025 (2)0.051 (3)0.009 (2)0.000 (3)0.0003 (19)
C90.045 (5)0.020 (3)0.047 (5)0.001 (3)0.003 (4)0.005 (3)
Geometric parameters (Å, º) top
Zn1—O11.912 (3)C4—C51.398 (6)
Zn1—O1i1.912 (3)C5—C61.370 (5)
Zn1—N1i1.968 (3)C5—H50.9300
Zn1—N11.968 (3)C6—H60.9300
Br1—C41.897 (4)C7—H70.9300
N1—C71.289 (5)C8—C91.383 (9)
N1—C81.474 (5)C8—C9i1.509 (9)
O1—C11.301 (4)C8—H8A0.9600
C1—C21.417 (5)C8—H8B0.9599
C1—C61.419 (5)C9—C9i1.025 (15)
C2—C31.417 (5)C9—C8i1.509 (9)
C2—C71.436 (5)C9—H9A0.958 (10)
C3—C41.367 (5)C9—H9B0.960 (10)
C3—H30.9300
O1—Zn1—O1i87.42 (16)C5—C6—C1121.8 (4)
O1—Zn1—N1i153.75 (12)C5—C6—H6119.1
O1i—Zn1—N1i93.21 (12)C1—C6—H6119.1
O1—Zn1—N193.21 (12)N1—C7—C2127.3 (3)
O1i—Zn1—N1153.75 (12)N1—C7—H7116.4
N1i—Zn1—N197.53 (18)C2—C7—H7116.4
C7—N1—C8115.9 (3)C9—C8—N1121.7 (5)
C7—N1—Zn1123.0 (2)N1—C8—C9i110.9 (4)
C8—N1—Zn1121.1 (3)C9—C8—H8A107.4
C1—O1—Zn1127.9 (2)N1—C8—H8A107.1
O1—C1—C2123.5 (3)C9i—C8—H8A140.4
O1—C1—C6119.3 (3)C9—C8—H8B106.4
C2—C1—C6117.2 (3)N1—C8—H8B106.6
C1—C2—C3119.9 (3)C9i—C8—H8B72.7
C1—C2—C7122.7 (3)H8A—C8—H8B106.8
C3—C2—C7117.3 (3)C9i—C9—C876.0 (9)
C4—C3—C2120.4 (3)C9i—C9—C8i62.8 (8)
C4—C3—H3119.8C8—C9—C8i121.7 (6)
C2—C3—H3119.8C9i—C9—H9A95 (4)
C3—C4—C5120.3 (4)C8—C9—H9A112 (7)
C3—C4—Br1120.1 (3)C8i—C9—H9A111 (7)
C5—C4—Br1119.6 (3)C9i—C9—H9B160 (5)
C6—C5—C4120.0 (3)C8—C9—H9B105 (6)
C6—C5—H5120.0C8i—C9—H9B102 (6)
C4—C5—H5120.0H9A—C9—H9B103 (2)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C17H14Br2N2O2)]
Mr503.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)21.418 (6), 8.161 (2), 9.524 (3)
β (°) 92.910 (3)
V3)1662.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)6.30
Crystal size (mm)0.32 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.143, 0.152
No. of measured, independent and
observed [I > 2σ(I)] reflections
4709, 1809, 1444
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.05
No. of reflections1809
No. of parameters121
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.64

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O11.912 (3)Zn1—N11.968 (3)
O1—Zn1—O1i87.42 (16)O1—Zn1—N193.21 (12)
O1—Zn1—N1i153.75 (12)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The Scientific Research Foundation of Henan University of Science and Technology (Project No. 05-072) is gratefully acknowledged.

References

First citationAnderson, O. P., LaCour, A., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. F. & Toftlund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. & Kausar, S. (1992). Chem. Pharm. Bull. 40, 2555–2556.  CrossRef PubMed CAS Web of Science Google Scholar
First citationChohan, Z. H. & Kausar, S. (1993). Chem. Pharm. Bull. 41, 951–953.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChohan, Z. H., Scozzafava, A. & Supuran, C. T. (2003). J. Enzyme Inhib. Med. Chem. 18, 259–263.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2005). Acta Cryst. E61, m1755–m1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437–m1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322–m1323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2005). Acta Cryst. E61, m695–m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 53–54.  CAS Google Scholar
First citationOsowole, A. A., Kolawole, G. A. & Fagade, O. E. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 829–836.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y., Shi, S.-M., Jia, B. & Hu, Z.-Q. (2006). Acta Cryst. E62, m648–m649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, H.-J., Liu, Z.-D. & Sheng, L.-Q. (2006). Acta Cryst. E62, m2695–m2697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, Y.-Y., Zhao, G.-L. & Wen, Y.-H. (2007). Chin. J. Struct. Chem. 26, 1395–1402.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds