organic compounds
(4R,5S)-5-Benzyl-4-isopropyl-1,3,4-oxadiazinan-2-one
aCB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA
*Correspondence e-mail: ferrence@illinoisstate.edu
The title compound, C13H18N2O2, is an N4-isopropyl-L-phenylalanine-based oxadiazinanone. Although the two molecules in the are oriented appropriately for hydrogen bonding, the distance between the donor and acceptor atoms is large enough to support only weak, if any, hydrogen bonding. The is known based on the known starting compounds in the synthetic procedure.
Related literature
For related literature, see: Burgeson et al. (2004); Casper, Blackburn et al. (2002); Casper, Burgeson et al. (2002); Casper & Hitchcock (2003); Dore et al. (2006); Ferrence et al. (2003); Hitchcock et al. (2004); Hitchcock et al. (2001); Squire et al. (2005); Szczepura et al. (2004); Bruno et al. (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2003); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808013056/sg2243sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808013056/sg2243Isup2.hkl
All non-H atoms were refined anisotropically without disorder. All H atoms were initially identified through difference Fourier syntheses then removed and included in the
in the riding-model approximation (C–H = 0.95, 0.98, 0.99 and 1.00 Å for Ar–H, CH3 and CH2 and CH; N–H = 0.88 Å; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)). In the absence of significant effects, Friedel pairs were merged.Data collection: SMART (Bruker, 2003); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).C13H18N2O2 | F(000) = 1008 |
Mr = 234.29 | Dx = 1.242 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 8817 reflections |
a = 9.6423 (14) Å | θ = 2.3–30.5° |
b = 11.4974 (17) Å | µ = 0.09 mm−1 |
c = 22.600 (3) Å | T = 100 K |
V = 2505.5 (6) Å3 | Block, colourless |
Z = 8 | 0.43 × 0.23 × 0.23 mm |
Bruker SMART APEX CCD diffractometer | 3499 independent reflections |
Radiation source: sealed tube | 3403 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ω scans | θmax = 28.3°, θmin = 1.8° |
Absorption correction: multi-scan SADABS in SAINT-Plus (Bruker, 2003) | h = −12→12 |
Tmin = 0.965, Tmax = 0.981 | k = −15→15 |
25602 measured reflections | l = −29→30 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.060 | w = 1/[σ2(Fo2) + (0.0413P)2 + 1.6549P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.133 | (Δ/σ)max < 0.001 |
S = 1.32 | Δρmax = 0.37 e Å−3 |
3499 reflections | Δρmin = −0.25 e Å−3 |
307 parameters |
C13H18N2O2 | V = 2505.5 (6) Å3 |
Mr = 234.29 | Z = 8 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.6423 (14) Å | µ = 0.09 mm−1 |
b = 11.4974 (17) Å | T = 100 K |
c = 22.600 (3) Å | 0.43 × 0.23 × 0.23 mm |
Bruker SMART APEX CCD diffractometer | 3499 independent reflections |
Absorption correction: multi-scan SADABS in SAINT-Plus (Bruker, 2003) | 3403 reflections with I > 2σ(I) |
Tmin = 0.965, Tmax = 0.981 | Rint = 0.041 |
25602 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.32 | Δρmax = 0.37 e Å−3 |
3499 reflections | Δρmin = −0.25 e Å−3 |
307 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1A | 0.5275 (2) | 0.74524 (18) | 0.71574 (9) | 0.0200 (4) | |
C2A | 0.5986 (3) | 0.7897 (3) | 0.76134 (13) | 0.0176 (6) | |
O17A | 0.6692 (2) | 0.87684 (18) | 0.75304 (9) | 0.0213 (4) | |
N3A | 0.5897 (2) | 0.7389 (2) | 0.81457 (10) | 0.0170 (5) | |
H3A | 0.6512 | 0.7603 | 0.8412 | 0.02* | |
N4A | 0.4904 (2) | 0.6534 (2) | 0.83257 (10) | 0.0154 (5) | |
C5A | 0.3806 (3) | 0.6483 (2) | 0.78779 (12) | 0.0165 (5) | |
H5A | 0.3265 | 0.5752 | 0.7943 | 0.02* | |
C6A | 0.4435 (3) | 0.6429 (3) | 0.72638 (13) | 0.0191 (6) | |
H6A1 | 0.5015 | 0.5723 | 0.7227 | 0.023* | |
H6A2 | 0.3687 | 0.6385 | 0.6964 | 0.023* | |
C7A | 0.2806 (3) | 0.7517 (3) | 0.79456 (13) | 0.0206 (6) | |
H7A1 | 0.3317 | 0.8247 | 0.7865 | 0.025* | |
H7A2 | 0.2059 | 0.7447 | 0.7647 | 0.025* | |
C8A | 0.2163 (3) | 0.7588 (3) | 0.85530 (13) | 0.0189 (6) | |
C9A | 0.0827 (3) | 0.7173 (3) | 0.86541 (14) | 0.0232 (6) | |
H9A | 0.031 | 0.686 | 0.8333 | 0.028* | |
C10A | 0.0233 (3) | 0.7206 (3) | 0.92131 (15) | 0.0263 (7) | |
H10A | −0.0681 | 0.6921 | 0.9273 | 0.032* | |
C11A | 0.0976 (3) | 0.7656 (3) | 0.96826 (14) | 0.0251 (7) | |
H11A | 0.0584 | 0.7669 | 1.0068 | 0.03* | |
C12A | 0.2293 (3) | 0.8086 (3) | 0.95870 (15) | 0.0281 (7) | |
H12A | 0.2802 | 0.8407 | 0.9908 | 0.034* | |
C13A | 0.2878 (3) | 0.8053 (3) | 0.90287 (15) | 0.0249 (7) | |
H13A | 0.3786 | 0.8354 | 0.8971 | 0.03* | |
C14A | 0.5541 (3) | 0.5392 (2) | 0.84671 (13) | 0.0180 (6) | |
H14A | 0.5723 | 0.4953 | 0.8093 | 0.022* | |
C15A | 0.6894 (3) | 0.5566 (3) | 0.88013 (14) | 0.0250 (7) | |
H15A | 0.7547 | 0.5999 | 0.8552 | 0.037* | |
H15B | 0.7291 | 0.4808 | 0.8902 | 0.037* | |
H15C | 0.6714 | 0.6006 | 0.9165 | 0.037* | |
C16A | 0.4514 (4) | 0.4714 (3) | 0.88512 (15) | 0.0285 (7) | |
H16A | 0.3644 | 0.4606 | 0.8633 | 0.043* | |
H16B | 0.4331 | 0.5149 | 0.9216 | 0.043* | |
H16C | 0.4908 | 0.3952 | 0.895 | 0.043* | |
O1B | 0.8672 (2) | 0.98233 (18) | 0.94720 (9) | 0.0218 (5) | |
C2B | 0.7980 (3) | 0.9425 (2) | 0.89999 (13) | 0.0175 (5) | |
O17B | 0.7047 (2) | 0.87193 (19) | 0.90751 (9) | 0.0221 (5) | |
N3B | 0.8282 (3) | 0.9856 (2) | 0.84613 (11) | 0.0187 (5) | |
H3B | 0.7824 | 0.955 | 0.8163 | 0.022* | |
N4B | 0.9257 (3) | 1.0754 (2) | 0.83144 (11) | 0.0177 (5) | |
C5B | 0.9584 (3) | 1.1386 (2) | 0.88641 (13) | 0.0188 (6) | |
H5B | 1.0451 | 1.1841 | 0.8792 | 0.023* | |
C6B | 0.9879 (3) | 1.0537 (2) | 0.93632 (14) | 0.0200 (6) | |
H6B1 | 1.0676 | 1.0036 | 0.9256 | 0.024* | |
H6B2 | 1.0123 | 1.0971 | 0.9727 | 0.024* | |
C7B | 0.8430 (3) | 1.2258 (3) | 0.90152 (14) | 0.0216 (6) | |
H7B1 | 0.8272 | 1.2779 | 0.8673 | 0.026* | |
H7B2 | 0.7558 | 1.1832 | 0.9094 | 0.026* | |
C8B | 0.8812 (3) | 1.2979 (2) | 0.95530 (14) | 0.0205 (6) | |
C9B | 0.9766 (4) | 1.3882 (3) | 0.95059 (15) | 0.0261 (7) | |
H9B | 1.0129 | 1.4084 | 0.9129 | 0.031* | |
C10B | 1.0197 (4) | 1.4496 (3) | 1.00054 (16) | 0.0291 (7) | |
H10B | 1.0845 | 1.5114 | 0.9968 | 0.035* | |
C11B | 0.9680 (4) | 1.4202 (3) | 1.05520 (17) | 0.0325 (8) | |
H11B | 0.9978 | 1.4613 | 1.0894 | 0.039* | |
C12B | 0.8727 (4) | 1.3309 (3) | 1.06053 (16) | 0.0341 (8) | |
H12B | 0.8368 | 1.3108 | 1.0983 | 0.041* | |
C13B | 0.8296 (4) | 1.2707 (3) | 1.01068 (15) | 0.0286 (7) | |
H13B | 0.7636 | 1.2099 | 1.0146 | 0.034* | |
C14B | 1.0493 (3) | 1.0225 (3) | 0.80199 (13) | 0.0207 (6) | |
H14B | 1.0973 | 0.9692 | 0.8303 | 0.025* | |
C15B | 1.0028 (4) | 0.9540 (3) | 0.74778 (15) | 0.0255 (6) | |
H15D | 0.9394 | 0.8919 | 0.76 | 0.038* | |
H15E | 1.084 | 0.9198 | 0.7283 | 0.038* | |
H15F | 0.9553 | 1.0062 | 0.7201 | 0.038* | |
C16B | 1.1483 (4) | 1.1180 (3) | 0.78295 (15) | 0.0320 (8) | |
H16D | 1.1788 | 1.1619 | 0.8178 | 0.048* | |
H16E | 1.101 | 1.1705 | 0.7554 | 0.048* | |
H16F | 1.229 | 1.0833 | 0.7634 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0219 (10) | 0.0205 (10) | 0.0176 (9) | −0.0022 (9) | −0.0014 (8) | 0.0017 (8) |
C2A | 0.0151 (12) | 0.0162 (13) | 0.0215 (14) | 0.0042 (11) | −0.0003 (11) | −0.0015 (11) |
O17A | 0.0237 (10) | 0.0186 (10) | 0.0217 (10) | −0.0034 (9) | −0.0026 (9) | 0.0017 (9) |
N3A | 0.0147 (11) | 0.0186 (11) | 0.0178 (11) | −0.0011 (10) | −0.0048 (9) | −0.0007 (9) |
N4A | 0.0146 (11) | 0.0122 (10) | 0.0193 (11) | 0.0005 (9) | −0.0011 (9) | 0.0018 (9) |
C5A | 0.0141 (12) | 0.0171 (12) | 0.0182 (13) | −0.0037 (11) | −0.0020 (10) | 0.0000 (11) |
C6A | 0.0199 (14) | 0.0189 (13) | 0.0185 (14) | −0.0034 (12) | −0.0037 (11) | −0.0001 (11) |
C7A | 0.0178 (13) | 0.0234 (15) | 0.0207 (14) | 0.0031 (12) | −0.0033 (11) | 0.0025 (12) |
C8A | 0.0175 (13) | 0.0149 (13) | 0.0243 (14) | 0.0059 (11) | −0.0035 (11) | 0.0008 (11) |
C9A | 0.0196 (14) | 0.0234 (14) | 0.0267 (15) | −0.0036 (13) | −0.0054 (12) | −0.0021 (13) |
C10A | 0.0217 (15) | 0.0255 (15) | 0.0317 (16) | −0.0036 (13) | 0.0020 (13) | 0.0049 (13) |
C11A | 0.0286 (16) | 0.0246 (15) | 0.0221 (14) | 0.0080 (14) | 0.0000 (13) | 0.0029 (12) |
C12A | 0.0248 (15) | 0.0331 (18) | 0.0265 (16) | 0.0082 (14) | −0.0089 (13) | −0.0110 (14) |
C13A | 0.0147 (13) | 0.0271 (16) | 0.0329 (17) | 0.0028 (12) | −0.0013 (12) | −0.0063 (13) |
C14A | 0.0232 (14) | 0.0139 (12) | 0.0169 (13) | 0.0039 (11) | −0.0021 (11) | 0.0013 (10) |
C15A | 0.0276 (16) | 0.0234 (15) | 0.0239 (15) | 0.0076 (13) | −0.0055 (13) | 0.0013 (12) |
C16A | 0.0364 (18) | 0.0229 (15) | 0.0262 (15) | −0.0040 (14) | −0.0032 (14) | 0.0086 (13) |
O1B | 0.0249 (11) | 0.0187 (10) | 0.0218 (10) | −0.0014 (9) | −0.0009 (9) | 0.0005 (9) |
C2B | 0.0183 (13) | 0.0134 (12) | 0.0207 (13) | 0.0045 (11) | 0.0003 (11) | −0.0028 (11) |
O17B | 0.0254 (11) | 0.0210 (10) | 0.0197 (10) | −0.0059 (9) | 0.0037 (9) | −0.0019 (8) |
N3B | 0.0194 (12) | 0.0183 (12) | 0.0185 (11) | −0.0044 (10) | −0.0018 (10) | 0.0001 (9) |
N4B | 0.0174 (11) | 0.0136 (10) | 0.0222 (12) | −0.0026 (9) | −0.0005 (9) | 0.0021 (9) |
C5B | 0.0183 (13) | 0.0146 (12) | 0.0233 (14) | −0.0044 (11) | −0.0033 (11) | 0.0017 (11) |
C6B | 0.0190 (13) | 0.0160 (12) | 0.0249 (15) | 0.0004 (11) | −0.0045 (12) | 0.0010 (11) |
C7B | 0.0202 (13) | 0.0159 (13) | 0.0286 (15) | 0.0020 (11) | −0.0040 (12) | −0.0003 (12) |
C8B | 0.0190 (13) | 0.0141 (13) | 0.0284 (15) | 0.0063 (11) | −0.0065 (12) | −0.0013 (11) |
C9B | 0.0283 (16) | 0.0179 (14) | 0.0319 (17) | 0.0011 (13) | −0.0076 (14) | 0.0023 (13) |
C10B | 0.0257 (16) | 0.0160 (14) | 0.046 (2) | 0.0012 (13) | −0.0127 (15) | −0.0024 (14) |
C11B | 0.0362 (19) | 0.0232 (15) | 0.0382 (19) | 0.0108 (15) | −0.0117 (16) | −0.0114 (14) |
C12B | 0.0343 (18) | 0.0376 (19) | 0.0305 (17) | 0.0087 (16) | 0.0041 (15) | −0.0045 (15) |
C13B | 0.0257 (15) | 0.0237 (17) | 0.0365 (18) | 0.0026 (14) | 0.0035 (14) | −0.0045 (14) |
C14B | 0.0161 (13) | 0.0246 (14) | 0.0215 (14) | 0.0050 (12) | 0.0007 (11) | 0.0062 (12) |
C15B | 0.0250 (14) | 0.0223 (14) | 0.0291 (15) | −0.0023 (13) | 0.0086 (12) | −0.0022 (13) |
C16B | 0.0276 (16) | 0.045 (2) | 0.0236 (16) | −0.0147 (16) | 0.0054 (13) | −0.0039 (15) |
O1A—C2A | 1.339 (3) | O1B—C2B | 1.339 (3) |
O1A—C6A | 1.449 (3) | O1B—C6B | 1.444 (4) |
C2A—O17A | 1.226 (4) | C2B—O17B | 1.223 (4) |
C2A—N3A | 1.340 (4) | C2B—N3B | 1.346 (4) |
N3A—N4A | 1.431 (3) | N3B—N4B | 1.435 (3) |
N3A—H3A | 0.88 | N3B—H3B | 0.88 |
N4A—C5A | 1.466 (3) | N4B—C5B | 1.474 (4) |
N4A—C14A | 1.484 (3) | N4B—C14B | 1.494 (4) |
C5A—C6A | 1.516 (4) | C5B—C6B | 1.519 (4) |
C5A—C7A | 1.538 (4) | C5B—C7B | 1.536 (4) |
C5A—H5A | 1 | C5B—H5B | 1 |
C6A—H6A1 | 0.99 | C6B—H6B1 | 0.99 |
C6A—H6A2 | 0.99 | C6B—H6B2 | 0.99 |
C7A—C8A | 1.508 (4) | C7B—C8B | 1.517 (4) |
C7A—H7A1 | 0.99 | C7B—H7B1 | 0.99 |
C7A—H7A2 | 0.99 | C7B—H7B2 | 0.99 |
C8A—C13A | 1.385 (4) | C8B—C13B | 1.383 (5) |
C8A—C9A | 1.393 (4) | C8B—C9B | 1.391 (4) |
C9A—C10A | 1.388 (4) | C9B—C10B | 1.394 (5) |
C9A—H9A | 0.95 | C9B—H9B | 0.95 |
C10A—C11A | 1.381 (5) | C10B—C11B | 1.374 (5) |
C10A—H10A | 0.95 | C10B—H10B | 0.95 |
C11A—C12A | 1.380 (5) | C11B—C12B | 1.383 (5) |
C11A—H11A | 0.95 | C11B—H11B | 0.95 |
C12A—C13A | 1.383 (5) | C12B—C13B | 1.386 (5) |
C12A—H12A | 0.95 | C12B—H12B | 0.95 |
C13A—H13A | 0.95 | C13B—H13B | 0.95 |
C14A—C15A | 1.521 (4) | C14B—C16B | 1.517 (4) |
C14A—C16A | 1.530 (4) | C14B—C15B | 1.524 (5) |
C14A—H14A | 1 | C14B—H14B | 1 |
C15A—H15A | 0.98 | C15B—H15D | 0.98 |
C15A—H15B | 0.98 | C15B—H15E | 0.98 |
C15A—H15C | 0.98 | C15B—H15F | 0.98 |
C16A—H16A | 0.98 | C16B—H16D | 0.98 |
C16A—H16B | 0.98 | C16B—H16E | 0.98 |
C16A—H16C | 0.98 | C16B—H16F | 0.98 |
C2A—O1A—C6A | 117.9 (2) | C2B—O1B—C6B | 117.4 (2) |
O17A—C2A—O1A | 118.6 (3) | O17B—C2B—O1B | 118.9 (3) |
O17A—C2A—N3A | 121.9 (3) | O17B—C2B—N3B | 121.9 (3) |
O1A—C2A—N3A | 119.5 (3) | O1B—C2B—N3B | 119.1 (3) |
C2A—N3A—N4A | 126.7 (2) | C2B—N3B—N4B | 128.0 (2) |
C2A—N3A—H3A | 116.7 | C2B—N3B—H3B | 116 |
N4A—N3A—H3A | 116.7 | N4B—N3B—H3B | 116 |
N3A—N4A—C5A | 108.3 (2) | N3B—N4B—C5B | 107.4 (2) |
N3A—N4A—C14A | 113.1 (2) | N3B—N4B—C14B | 109.5 (2) |
C5A—N4A—C14A | 114.3 (2) | C5B—N4B—C14B | 114.0 (2) |
N4A—C5A—C6A | 110.2 (2) | N4B—C5B—C6B | 110.4 (2) |
N4A—C5A—C7A | 110.7 (2) | N4B—C5B—C7B | 110.8 (2) |
C6A—C5A—C7A | 111.9 (2) | C6B—C5B—C7B | 113.0 (3) |
N4A—C5A—H5A | 108 | N4B—C5B—H5B | 107.5 |
C6A—C5A—H5A | 108 | C6B—C5B—H5B | 107.5 |
C7A—C5A—H5A | 108 | C7B—C5B—H5B | 107.5 |
O1A—C6A—C5A | 110.1 (2) | O1B—C6B—C5B | 109.9 (2) |
O1A—C6A—H6A1 | 109.6 | O1B—C6B—H6B1 | 109.7 |
C5A—C6A—H6A1 | 109.6 | C5B—C6B—H6B1 | 109.7 |
O1A—C6A—H6A2 | 109.6 | O1B—C6B—H6B2 | 109.7 |
C5A—C6A—H6A2 | 109.6 | C5B—C6B—H6B2 | 109.7 |
H6A1—C6A—H6A2 | 108.2 | H6B1—C6B—H6B2 | 108.2 |
C8A—C7A—C5A | 112.9 (2) | C8B—C7B—C5B | 111.1 (2) |
C8A—C7A—H7A1 | 109 | C8B—C7B—H7B1 | 109.4 |
C5A—C7A—H7A1 | 109 | C5B—C7B—H7B1 | 109.4 |
C8A—C7A—H7A2 | 109 | C8B—C7B—H7B2 | 109.4 |
C5A—C7A—H7A2 | 109 | C5B—C7B—H7B2 | 109.4 |
H7A1—C7A—H7A2 | 107.8 | H7B1—C7B—H7B2 | 108 |
C13A—C8A—C9A | 117.8 (3) | C13B—C8B—C9B | 118.4 (3) |
C13A—C8A—C7A | 121.5 (3) | C13B—C8B—C7B | 120.9 (3) |
C9A—C8A—C7A | 120.7 (3) | C9B—C8B—C7B | 120.5 (3) |
C10A—C9A—C8A | 121.4 (3) | C8B—C9B—C10B | 120.8 (3) |
C10A—C9A—H9A | 119.3 | C8B—C9B—H9B | 119.6 |
C8A—C9A—H9A | 119.3 | C10B—C9B—H9B | 119.6 |
C11A—C10A—C9A | 119.7 (3) | C11B—C10B—C9B | 119.7 (3) |
C11A—C10A—H10A | 120.1 | C11B—C10B—H10B | 120.2 |
C9A—C10A—H10A | 120.1 | C9B—C10B—H10B | 120.2 |
C12A—C11A—C10A | 119.4 (3) | C10B—C11B—C12B | 120.1 (3) |
C12A—C11A—H11A | 120.3 | C10B—C11B—H11B | 119.9 |
C10A—C11A—H11A | 120.3 | C12B—C11B—H11B | 119.9 |
C11A—C12A—C13A | 120.6 (3) | C11B—C12B—C13B | 119.9 (3) |
C11A—C12A—H12A | 119.7 | C11B—C12B—H12B | 120 |
C13A—C12A—H12A | 119.7 | C13B—C12B—H12B | 120 |
C12A—C13A—C8A | 121.0 (3) | C8B—C13B—C12B | 121.0 (3) |
C12A—C13A—H13A | 119.5 | C8B—C13B—H13B | 119.5 |
C8A—C13A—H13A | 119.5 | C12B—C13B—H13B | 119.5 |
N4A—C14A—C15A | 110.2 (2) | N4B—C14B—C16B | 109.5 (3) |
N4A—C14A—C16A | 107.8 (2) | N4B—C14B—C15B | 109.5 (2) |
C15A—C14A—C16A | 109.9 (2) | C16B—C14B—C15B | 109.3 (3) |
N4A—C14A—H14A | 109.7 | N4B—C14B—H14B | 109.5 |
C15A—C14A—H14A | 109.7 | C16B—C14B—H14B | 109.5 |
C16A—C14A—H14A | 109.7 | C15B—C14B—H14B | 109.5 |
C14A—C15A—H15A | 109.5 | C14B—C15B—H15D | 109.5 |
C14A—C15A—H15B | 109.5 | C14B—C15B—H15E | 109.5 |
H15A—C15A—H15B | 109.5 | H15D—C15B—H15E | 109.5 |
C14A—C15A—H15C | 109.5 | C14B—C15B—H15F | 109.5 |
H15A—C15A—H15C | 109.5 | H15D—C15B—H15F | 109.5 |
H15B—C15A—H15C | 109.5 | H15E—C15B—H15F | 109.5 |
C14A—C16A—H16A | 109.5 | C14B—C16B—H16D | 109.5 |
C14A—C16A—H16B | 109.5 | C14B—C16B—H16E | 109.5 |
H16A—C16A—H16B | 109.5 | H16D—C16B—H16E | 109.5 |
C14A—C16A—H16C | 109.5 | C14B—C16B—H16F | 109.5 |
H16A—C16A—H16C | 109.5 | H16D—C16B—H16F | 109.5 |
H16B—C16A—H16C | 109.5 | H16E—C16B—H16F | 109.5 |
C6A—O1A—C2A—O17A | −179.4 (2) | C6B—O1B—C2B—O17B | 172.3 (2) |
C6A—O1A—C2A—N3A | −0.1 (4) | C6B—O1B—C2B—N3B | −11.2 (4) |
O17A—C2A—N3A—N4A | 166.0 (3) | O17B—C2B—N3B—N4B | 174.2 (3) |
O1A—C2A—N3A—N4A | −13.3 (4) | O1B—C2B—N3B—N4B | −2.2 (4) |
C2A—N3A—N4A—C5A | −12.3 (4) | C2B—N3B—N4B—C5B | −17.0 (4) |
C2A—N3A—N4A—C14A | 115.5 (3) | C2B—N3B—N4B—C14B | 107.2 (3) |
N3A—N4A—C5A—C6A | 47.0 (3) | N3B—N4B—C5B—C6B | 46.5 (3) |
C14A—N4A—C5A—C6A | −80.2 (3) | C14B—N4B—C5B—C6B | −75.0 (3) |
N3A—N4A—C5A—C7A | −77.3 (3) | N3B—N4B—C5B—C7B | −79.5 (3) |
C14A—N4A—C5A—C7A | 155.5 (2) | C14B—N4B—C5B—C7B | 159.1 (2) |
C2A—O1A—C6A—C5A | 35.5 (3) | C2B—O1B—C6B—C5B | 41.9 (3) |
N4A—C5A—C6A—O1A | −60.1 (3) | N4B—C5B—C6B—O1B | −61.0 (3) |
C7A—C5A—C6A—O1A | 63.5 (3) | C7B—C5B—C6B—O1B | 63.7 (3) |
N4A—C5A—C7A—C8A | −56.9 (3) | N4B—C5B—C7B—C8B | −175.5 (2) |
C6A—C5A—C7A—C8A | 179.9 (2) | C6B—C5B—C7B—C8B | 60.0 (3) |
C5A—C7A—C8A—C13A | 79.7 (4) | C5B—C7B—C8B—C13B | −99.3 (3) |
C5A—C7A—C8A—C9A | −99.6 (3) | C5B—C7B—C8B—C9B | 76.3 (3) |
C13A—C8A—C9A—C10A | −0.9 (5) | C13B—C8B—C9B—C10B | 0.3 (5) |
C7A—C8A—C9A—C10A | 178.4 (3) | C7B—C8B—C9B—C10B | −175.4 (3) |
C8A—C9A—C10A—C11A | −0.2 (5) | C8B—C9B—C10B—C11B | 0.4 (5) |
C9A—C10A—C11A—C12A | 1.1 (5) | C9B—C10B—C11B—C12B | −0.6 (5) |
C10A—C11A—C12A—C13A | −1.0 (5) | C10B—C11B—C12B—C13B | 0.2 (5) |
C11A—C12A—C13A—C8A | −0.2 (5) | C9B—C8B—C13B—C12B | −0.7 (5) |
C9A—C8A—C13A—C12A | 1.1 (5) | C7B—C8B—C13B—C12B | 175.0 (3) |
C7A—C8A—C13A—C12A | −178.3 (3) | C11B—C12B—C13B—C8B | 0.5 (5) |
N3A—N4A—C14A—C15A | 40.3 (3) | N3B—N4B—C14B—C16B | 176.4 (2) |
C5A—N4A—C14A—C15A | 164.9 (2) | C5B—N4B—C14B—C16B | −63.2 (3) |
N3A—N4A—C14A—C16A | 160.2 (2) | N3B—N4B—C14B—C15B | 56.5 (3) |
C5A—N4A—C14A—C16A | −75.2 (3) | C5B—N4B—C14B—C15B | 176.9 (2) |
Experimental details
Crystal data | |
Chemical formula | C13H18N2O2 |
Mr | 234.29 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 9.6423 (14), 11.4974 (17), 22.600 (3) |
V (Å3) | 2505.5 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.43 × 0.23 × 0.23 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan SADABS in SAINT-Plus (Bruker, 2003) |
Tmin, Tmax | 0.965, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25602, 3499, 3403 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.133, 1.32 |
No. of reflections | 3499 |
No. of parameters | 307 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.25 |
Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).
C2A—N3A | 1.340 (4) | C2B—N3B | 1.346 (4) |
C14A—N4A—C5A—C7A | 155.5 (2) | C14B—N4B—C5B—C7B | 159.1 (2) |
Acknowledgements
This material is based upon work supported by the US National Science Foundation (CHE-0348158 to GMF) and the American Chemical Society Petroleum Research Fund (to SRH & GMF). GMF thanks Adam Beitelman (ISU) and Matthias Zeller, Youngstown State University Structure & Chemical Instrumentation Facility, for the data collection and useful discussions. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and YSU.
References
Bruker (2003). SMART-Plus and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CrossRef PubMed CAS Google Scholar
Burgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem. 69, 727–734. Web of Science CSD CrossRef PubMed CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002). J. Org. Chem. 67, 8871–8876. Web of Science CSD CrossRef PubMed CAS Google Scholar
Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002). Org. Lett. 4, 3739–3742. Web of Science CSD CrossRef PubMed CAS Google Scholar
Casper, D. M. & Hitchcock, S. R. (2003). Tetrahedron Asymmetry, 14, 517–521. Web of Science CrossRef CAS Google Scholar
Dore, D. D., Burgeson, J. R., Davis, R. A. & Hitchcock, S. R. (2006). Tetrahedron:Asymmetry. 17, 2386–2392. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ferrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212–o214. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem. 69, 714–718. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hitchcock, S. R., Nora, G. P., Casper, D. M., Squire, M. D., Maroules, C. D., Ferrence, G. M., Szczepura, L. F. & Standard, J. M. (2001). Tetrahedron, 57, 9789–9798. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Squire, M. D., Davis, R. A., Chianakas, K. A., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2005). Tetrahedron Asymmetry, 16, 1047–1053. Web of Science CSD CrossRef CAS Google Scholar
Szczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467–o1469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis (Hitchcock et al., 2001), conformational analysis (Casper, Blackburn et al., 2002; Burgeson et al. 2004), and asymmetric applications (Casper & Hitchcock, 2003; Casper, Burgeson et al., 2002; Ferrence et al. 2003; Hitchcock et al. 2004; Hitchcock et al. 2001; Squire et al. 2005; Szczepura et al. 2004) of 3,4,5,6-tetrahydro-2H-1,3,4-oxadiazinan-2-ones have only thoroughly been studied in the last ten years. We have been interested in synthesizing new oxadiazinanones for use as chiral auxillaries in aldol addition reactions. We synthesized the title compound in order to study the conformation that the heterocycle adopts. Herein we report the single-crystal X-ray structure analysis of the N4-isopropyl-L-phenylalanine based oxiadiazinanone.
Other oxadiazinanones have been reported and studied, but the title compound is one of few studied that is not substituted at the N3 position. Other oxadiazinanone structures (Burgeson et al., 2004; Casper, Blackburn et al., 2002; Casper, Burgeson et al., 2002; Ferrence et al., 2003; Hitchcock et al., 2001, 2004) are substituted with a carbonyl at the N3 position. These N3 substituted oxadiazinanones adopt a twist-boat conformation, as does the title compound. This is also consistent with related oxadiazinanones not substituted at the N3 position (Szczepura et al., 2004). The C7B—C5B—N4B—C14B torsion angle is 159.1 (2)°, and the C7A—C5A—N4A—C14A torsion angle is 155.5 (2)°. Previously reported oxadiazinanones with no substitution at the N3 position have torsion angles between 161.79–163.16°. A Mogul (Bruno et al. 2004) geometry check showed all non-H bond angles and distances to be normal. The molecular structure (Fig. 1.) of I includes two independent molecules in the asymmetric unit. The oxadiazinanone moieties are essentially isostructural. The primary difference between the two molecules is the orientation of the benzyl group attached to C5A/B (Figs. 2. and 3.). The respective -56.9 (3)° N4A—C5A—C7B—C8A and -175.5 (2)° N4A—C5A—C7B—C8A torsion angles quantify this difference.
Hydrogen-bonding interactions usually appear to play a key role in the crystal packing of oxadiazinanones (Szczepura et al., 2004). However, it may be that the optimal crystal packing simply happens to yield an arrangement of molecules which are suggestive of a hydrogen bonding motif. That is packing forces other than formation of the weak H-bonding fortuitously lead to the motif. In the title compound, the 2.83 Å N3A—O17B and 2.89 Å N3B—O17A donor to acceptor separations are large enough to support only weak, if any, hydrogen bonding (Fig 4.). This interaction is further illustrated in the Jmol enhanced figure (Fig. 5).