organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[2-(2-Thien­yl)vin­yl]-1H-1,3-benzimidazole

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: yeqiong@seu.edu.cn

(Received 27 January 2008; accepted 7 March 2008; online 3 May 2008)

In the title compound, C13H10N2S, the dihedral angle between the imidazole and thio­phene rings is 16.89 (19)°, and the double bond adopts an E configuration. In the crystal structure, N—H⋯N hydrogen bonds link the mol­ecules into rows along b. There is also evidence of weak C—H⋯S inter­actions.

Related literature

For general background, see: Huang et al. (2003[Huang, X.-C., Zhang, J.-P. & Chen, X.-M. (2003). Chin. Sci. Bull. 48, 1531-1534.]); Wang et al. (2005[Wang, X.-S., Song, Y.-M., Ye, Q. & Xiong, R.-G. (2005). Chin. Sci. Bull. 50, 2317-2340.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.], 2007[Ye, Q., Song, Y.-M., Fu, D.-W., Wang, G.-X. & Xiong, R.-G. (2007). Cryst. Growth Des. 7, 1568-1570.]). For the crystal structures of related compounds, see: Ozbey et al. (1998[Ozbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23-30.]); Li & Clarkson (2007[Li, L. & Clarkson, G. J. (2007). Org. Lett. 9, 497-500.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2S

  • Mr = 226.06

  • Orthorhombic, P n n a

  • a = 12.239 (2) Å

  • b = 16.389 (3) Å

  • c = 11.487 (2) Å

  • V = 2304.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 (2) K

  • 0.15 × 0.10 × 0.07 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.796, Tmax = 1.000 (expected range = 0.782–0.983)

  • 21849 measured reflections

  • 2637 independent reflections

  • 1360 reflections with I > 2σ(I)

  • Rint = 0.145

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.214

  • S = 1.07

  • 2637 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯S1 0.93 2.76 3.161 (4) 107
N1—H1B⋯N1i 0.86 2.01 2.865 (6) 170
N2—H2B⋯N2ii 0.86 2.11 2.906 (5) 154
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z]; (ii) [x, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It has been generally accepted that imidazole groups play an important role in coordination chemistry (Huang et al., 2003). A flexible ligand readily induces coordination compounds to crystallize in non-centrosymmetric space groups, which makes it possible to investigate their interesting physical properties such as second harmonic generation, ferroelectric and piezoelectric properties (Wang et al., 2005). As a continuation of our work in this field, (Ye et al., 2006, 2007), we have synthesized the title compound, 1, Fig 1.

The title compound, C12H10N2S, was successfully prepared through the reaction between 2-methyl-1H-benzo[d]imidazole and thiophene-2-carbaldehyde. It adopts a trans configuration about the C9?C11 bond and the dihedral angle between the mean plane of the imidazole ring and thiophenyl ring is 16.89 (19)°. The crystal packing is dominated by N—H···N interactions linking the molecules into rows along b, Fig 2. There is also evidence of weak C—H···S interactions.

Related literature top

For general background, see: Huang et al. (2003); Wang et al. (2005); Ye et al. (2006, 2007). For the crystal structures of related compounds, see: Ozbey et al. (1998); Li & Clarkson (2007).

Experimental top

2-methyl-1H-benzo[d]imidazole (10 mmol, 1.32 g) and thiophene-2-carbaldehyde (45 mmol, 5.04 g) were reacted as a melt at 180°C with stirring for 18 h. Then 20 ml 2-propanol and 1.5 g oxalic acid were added to the reaction mixture, the solution filtered and the precipitate washed with copious quantities of boiling water. The pH was adjusted to 8–9 with ammonia to afford the title compound as a pale-yellow solid powder. Crystals suitable for single-crystal X-ray diffraction studies were obtained by slow evaporation of a solution in ethanol at room temperature over several days.

Refinement top

All carbon-bound H atoms were positioned geometrically, with C—H = 0.93 Å and included in the refinement as riding, withUiso(H) = 1.2Ueq. The H atoms attached to N were found in the difference Fourier map and were subsequently treated as riding atoms, with N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of 1 with hydrogen bonds drawn as dashed lines.
(E)-2-[2-(2-Thienyl)vinyl]-1H-1,3-benzimidazole top
Crystal data top
C13H10N2SF(000) = 944
Mr = 226.06Dx = 1.305 Mg m3
Orthorhombic, PnnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2bcCell parameters from 14820 reflections
a = 12.239 (2) Åθ = 3.0–29.2°
b = 16.389 (3) ŵ = 0.25 mm1
c = 11.487 (2) ÅT = 293 K
V = 2304.1 (7) Å3Block, colorless
Z = 80.15 × 0.10 × 0.07 mm
Data collection top
Mercury2 (2x2 bin mode)
diffractometer
2637 independent reflections
Radiation source: fine-focus sealed tube1360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.145
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD profile fitting scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2121
Tmin = 0.796, Tmax = 1.000l = 1414
21849 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.081P)2 + 0.7151P]
where P = (Fo2 + 2Fc2)/3
2637 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C13H10N2SV = 2304.1 (7) Å3
Mr = 226.06Z = 8
Orthorhombic, PnnaMo Kα radiation
a = 12.239 (2) ŵ = 0.25 mm1
b = 16.389 (3) ÅT = 293 K
c = 11.487 (2) Å0.15 × 0.10 × 0.07 mm
Data collection top
Mercury2 (2x2 bin mode)
diffractometer
2637 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1360 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 1.000Rint = 0.145
21849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0841 restraint
wR(F2) = 0.214H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
2637 reflectionsΔρmin = 0.28 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.88515 (10)0.06908 (7)0.51647 (11)0.0801 (5)
N10.6821 (2)0.07121 (18)0.1000 (3)0.0577 (9)
H1B0.72640.03090.09240.069*0.50
N20.5945 (2)0.17665 (16)0.1790 (2)0.0452 (7)
H2B0.57510.21340.22830.054*0.50
C10.5111 (4)0.1178 (3)0.1555 (4)0.0824 (14)
H1A0.49560.10280.23190.099*
C20.8179 (4)0.1317 (3)0.7051 (4)0.0898 (15)
H2A0.81360.14530.78360.108*
C30.8987 (5)0.0855 (3)0.6610 (4)0.0890 (16)
H3A0.95590.06470.70530.107*
C40.7391 (3)0.1583 (3)0.6209 (3)0.0653 (11)
H4A0.67900.19130.63640.078*
C50.5901 (4)0.0750 (3)0.0942 (4)0.0753 (13)
H5A0.62780.03160.12770.090*
C60.4751 (3)0.2076 (2)0.0054 (3)0.0604 (11)
H6A0.43760.25140.03810.073*
C70.4546 (4)0.1825 (3)0.1057 (4)0.0720 (12)
H7A0.40150.20940.14920.086*
C80.7672 (3)0.1264 (2)0.5105 (3)0.0581 (10)
C90.7079 (3)0.1380 (2)0.4039 (3)0.0532 (10)
H9A0.64610.17090.40740.064*
C100.6101 (3)0.0995 (2)0.0186 (3)0.0515 (9)
C110.7328 (3)0.1064 (2)0.3007 (3)0.0526 (10)
H11A0.79500.07400.29610.063*
C120.6700 (3)0.1188 (2)0.1941 (3)0.0479 (9)
C130.5538 (3)0.1655 (2)0.0678 (3)0.0461 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0830 (9)0.0654 (8)0.0918 (10)0.0012 (6)0.0304 (7)0.0032 (6)
N10.0607 (19)0.0583 (19)0.054 (2)0.0158 (16)0.0072 (15)0.0140 (16)
N20.0532 (17)0.0401 (16)0.0422 (17)0.0063 (13)0.0015 (13)0.0027 (13)
C10.097 (3)0.096 (4)0.054 (3)0.004 (3)0.017 (3)0.015 (3)
C20.113 (4)0.106 (4)0.050 (3)0.026 (3)0.023 (2)0.013 (3)
C30.112 (4)0.076 (3)0.079 (4)0.023 (3)0.043 (3)0.023 (3)
C40.070 (3)0.081 (3)0.045 (2)0.018 (2)0.0037 (18)0.001 (2)
C50.083 (3)0.079 (3)0.064 (3)0.018 (2)0.011 (2)0.028 (2)
C60.072 (3)0.054 (2)0.055 (2)0.009 (2)0.009 (2)0.001 (2)
C70.081 (3)0.071 (3)0.064 (3)0.009 (2)0.021 (2)0.007 (2)
C80.063 (2)0.051 (2)0.061 (3)0.0153 (19)0.014 (2)0.0087 (19)
C90.055 (2)0.049 (2)0.056 (3)0.0009 (18)0.0023 (18)0.0054 (18)
C100.053 (2)0.051 (2)0.051 (2)0.0034 (18)0.0051 (18)0.0070 (18)
C110.051 (2)0.048 (2)0.059 (3)0.0005 (17)0.0004 (19)0.0009 (18)
C120.048 (2)0.049 (2)0.047 (2)0.0011 (17)0.0016 (17)0.0022 (17)
C130.052 (2)0.0418 (19)0.044 (2)0.0023 (17)0.0020 (17)0.0001 (16)
Geometric parameters (Å, º) top
S1—C31.690 (5)C4—C81.415 (5)
S1—C81.723 (4)C4—H4A0.9300
N1—C121.341 (4)C5—C101.379 (5)
N1—C101.366 (4)C5—H5A0.9300
N1—H1B0.8600C6—C71.365 (5)
N2—C121.335 (4)C6—C131.385 (5)
N2—C131.383 (4)C6—H6A0.9300
N2—H2B0.8600C7—H7A0.9300
C1—C51.386 (6)C8—C91.436 (5)
C1—C71.390 (6)C9—C111.329 (5)
C1—H1A0.9300C9—H9A0.9300
C2—C31.344 (6)C10—C131.401 (5)
C2—C41.435 (6)C11—C121.461 (4)
C2—H2A0.9300C11—H11A0.9300
C3—H3A0.9300
C3—S1—C892.0 (3)C7—C6—H6A121.3
C12—N1—C10106.4 (3)C13—C6—H6A121.3
C12—N1—H1B126.8C6—C7—C1121.6 (4)
C10—N1—H1B126.8C6—C7—H7A119.2
C12—N2—C13106.0 (3)C1—C7—H7A119.2
C12—N2—H2B127.0C4—C8—C9126.3 (4)
C13—N2—H2B127.0C4—C8—S1111.7 (3)
C5—C1—C7121.6 (4)C9—C8—S1122.0 (3)
C5—C1—H1A119.2C11—C9—C8126.3 (4)
C7—C1—H1A119.2C11—C9—H9A116.8
C3—C2—C4114.3 (4)C8—C9—H9A116.8
C3—C2—H2A122.8N1—C10—C5131.2 (4)
C4—C2—H2A122.8N1—C10—C13107.7 (3)
C2—C3—S1112.8 (4)C5—C10—C13121.1 (4)
C2—C3—H3A123.6C9—C11—C12125.0 (3)
S1—C3—H3A123.6C9—C11—H11A117.5
C8—C4—C2109.2 (4)C12—C11—H11A117.5
C8—C4—H4A125.4N1—C12—N2112.7 (3)
C2—C4—H4A125.4N1—C12—C11122.5 (3)
C1—C5—C10117.0 (4)N2—C12—C11124.9 (3)
C1—C5—H5A121.5N2—C13—C6131.5 (3)
C10—C5—H5A121.5N2—C13—C10107.3 (3)
C7—C6—C13117.5 (4)C6—C13—C10121.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···S10.932.763.161 (4)107
N1—H1B···N1i0.862.012.865 (6)170
N2—H2B···N2ii0.862.112.906 (5)154
Symmetry codes: (i) x+3/2, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10N2S
Mr226.06
Crystal system, space groupOrthorhombic, Pnna
Temperature (K)293
a, b, c (Å)12.239 (2), 16.389 (3), 11.487 (2)
V3)2304.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.15 × 0.10 × 0.07
Data collection
DiffractometerMercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.796, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21849, 2637, 1360
Rint0.145
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.214, 1.07
No. of reflections2637
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···S10.932.763.161 (4)106.9
N1—H1B···N1i0.862.012.865 (6)170.0
N2—H2B···N2ii0.862.112.906 (5)154.2
Symmetry codes: (i) x+3/2, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University (to YQ).

References

First citationHuang, X.-C., Zhang, J.-P. & Chen, X.-M. (2003). Chin. Sci. Bull. 48, 1531–1534.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, L. & Clarkson, G. J. (2007). Org. Lett. 9, 497–500.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOzbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Song, Y.-M., Ye, Q. & Xiong, R.-G. (2005). Chin. Sci. Bull. 50, 2317–2340.  Google Scholar
First citationYe, Q., Song, Y.-M., Fu, D.-W., Wang, G.-X. & Xiong, R.-G. (2007). Cryst. Growth Des. 7, 1568–1570.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds