organic compounds
Methyl 2-(5-bromo-2-methylnaphtho[2,1-b]furan-1-yl)acetate
aDepartment of Chemistry, The University of Adelaide, 5005 South Australia, Australia, bDepartment of Wine and Horticulture, The University of Adelaide, Waite Campus, Glen Osmond 5064, South Australia, Australia, and cDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
*Correspondence e-mail: edward.tiekink@utsa.edu
The three fused six-, six- and five-membered rings in the title compound, C16H13BrO3, are coplanar, the CH2C(=O)OCH3 residue being twisted out of this plane [dihedral angle = −26.9 (4)°]. Centrosymmetric dimers are found in the stabilized by C—H⋯O interactions involving the furan O atom.
Related literature
For related literature, see: Chatterjea et al. (1979); Einhorn et al. (1983); Monte et al. (1996); Jevric et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808015511/su2059sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808015511/su2059Isup2.hkl
Compound (I) was formed (Einhorn et al., 1983 & Monte et al., 1996) in 88% yield as a colourless solid recrystallized from n-heptane; m.p.: 391 - 393 K. Rf = 0.24 (12% acetone in hexane). IR (CH2Cl2, cm-1) 1741, 1618, 1577, 1521. 1H NMR (d6-benzene, 600 MHz) δ 2.00 (s, 3H), 3.21 (s, 3H), 3.41 (s, 2H), 7.27 (ddd, J = 7.0, 7.0, 1.2 Hz, 1H), 7.38 (ddd, J = 7.0, 7.0, 1.2 Hz, 1H), 7.81 (s, 1H), 8.36 (dd, J = 7.0, 1.2 Hz, 1H), 8.46 (dd, J = 7.0, 1.2 Hz, 1H) p.p.m.. 13C NMR (CDCl3, 50 MHz) δ 11.9, 31.4, 52.3, 109.5, 116.5, 118.1, 122.3, 123.1, 125.2, 126.9, 128.3, 128.4, 128.8, 150.7, 152.9, 171.3 p.p.m.. MS m/z (%): 332 (M+, 100), 273 (93), 259 (25), 194 (37), 165 (62). HRMS, C16H13BrO3: calcd, 332.0049; found 332.0062.
All H atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 - 0.98 Å, and with Uiso(H) = 1.5 or 1.2Ueq(C).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C16H13BrO3 | F(000) = 672 |
Mr = 333.17 | Dx = 1.678 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 2984 reflections |
a = 17.050 (2) Å | θ = 2.4–29.7° |
b = 14.5064 (17) Å | µ = 3.12 mm−1 |
c = 5.3660 (7) Å | T = 223 K |
β = 96.443 (3)° | Plate, pale-yellow |
V = 1318.8 (3) Å3 | 0.68 × 0.18 × 0.16 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 3817 independent reflections |
Radiation source: fine-focus sealed tube | 2967 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 30.1°, θmin = 1.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −23→23 |
Tmin = 0.492, Tmax = 1.0 | k = −14→20 |
10676 measured reflections | l = −7→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0586P)2 + 0.71P] where P = (Fo2 + 2Fc2)/3 |
3817 reflections | (Δ/σ)max < 0.001 |
183 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.77 e Å−3 |
C16H13BrO3 | V = 1318.8 (3) Å3 |
Mr = 333.17 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.050 (2) Å | µ = 3.12 mm−1 |
b = 14.5064 (17) Å | T = 223 K |
c = 5.3660 (7) Å | 0.68 × 0.18 × 0.16 mm |
β = 96.443 (3)° |
Bruker SMART CCD diffractometer | 3817 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2967 reflections with I > 2σ(I) |
Tmin = 0.492, Tmax = 1.0 | Rint = 0.035 |
10676 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.47 e Å−3 |
3817 reflections | Δρmin = −0.77 e Å−3 |
183 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br5 | 0.04963 (2) | 0.33514 (2) | −0.16830 (6) | 0.04284 (14) | |
O3 | 0.10671 (11) | 0.56263 (13) | 0.5779 (4) | 0.0285 (4) | |
O12 | 0.33445 (13) | 0.68019 (14) | 0.3251 (4) | 0.0321 (4) | |
O13 | 0.44151 (12) | 0.62588 (17) | 0.5516 (4) | 0.0379 (5) | |
C1 | 0.23909 (16) | 0.56919 (18) | 0.6116 (5) | 0.0242 (5) | |
C2 | 0.17380 (16) | 0.60179 (18) | 0.7005 (5) | 0.0258 (5) | |
C3A | 0.13162 (16) | 0.50429 (18) | 0.4058 (5) | 0.0262 (5) | |
C4 | 0.08136 (18) | 0.45375 (19) | 0.2380 (5) | 0.0308 (6) | |
H4 | 0.0263 | 0.4554 | 0.2388 | 0.037* | |
C5 | 0.11641 (18) | 0.40163 (19) | 0.0720 (5) | 0.0307 (6) | |
C5A | 0.19934 (18) | 0.39606 (18) | 0.0699 (5) | 0.0293 (6) | |
C6 | 0.2347 (2) | 0.34180 (19) | −0.1028 (6) | 0.0384 (7) | |
H6 | 0.2027 | 0.3084 | −0.2251 | 0.046* | |
C7 | 0.3142 (2) | 0.3368 (2) | −0.0963 (6) | 0.0422 (8) | |
H7 | 0.3368 | 0.3005 | −0.2146 | 0.051* | |
C8 | 0.3627 (2) | 0.3850 (2) | 0.0844 (6) | 0.0371 (7) | |
H8 | 0.4178 | 0.3802 | 0.0899 | 0.044* | |
C9 | 0.33055 (18) | 0.43933 (19) | 0.2536 (5) | 0.0306 (6) | |
H9 | 0.3639 | 0.4719 | 0.3744 | 0.037* | |
C9A | 0.24847 (17) | 0.44736 (18) | 0.2501 (5) | 0.0268 (5) | |
C9B | 0.21225 (16) | 0.50423 (17) | 0.4179 (5) | 0.0242 (5) | |
C11 | 0.32098 (16) | 0.59630 (19) | 0.7023 (5) | 0.0259 (5) | |
H11A | 0.3502 | 0.5416 | 0.7670 | 0.031* | |
H11B | 0.3199 | 0.6399 | 0.8413 | 0.031* | |
C12 | 0.36339 (16) | 0.63946 (18) | 0.5035 (5) | 0.0258 (5) | |
C13 | 0.4870 (2) | 0.6604 (3) | 0.3638 (8) | 0.0546 (10) | |
H13A | 0.4710 | 0.6295 | 0.2058 | 0.082* | |
H13B | 0.5425 | 0.6489 | 0.4141 | 0.082* | |
H13C | 0.4782 | 0.7262 | 0.3438 | 0.082* | |
C21 | 0.16031 (19) | 0.66841 (19) | 0.8973 (6) | 0.0315 (6) | |
H21A | 0.1419 | 0.6362 | 1.0380 | 0.047* | |
H21B | 0.1209 | 0.7129 | 0.8313 | 0.047* | |
H21C | 0.2093 | 0.7001 | 0.9526 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br5 | 0.0624 (3) | 0.0341 (2) | 0.02918 (18) | −0.01456 (14) | −0.00759 (14) | −0.00306 (11) |
O3 | 0.0299 (10) | 0.0309 (10) | 0.0251 (9) | −0.0050 (8) | 0.0054 (7) | −0.0038 (8) |
O12 | 0.0351 (11) | 0.0337 (11) | 0.0268 (10) | 0.0006 (8) | 0.0003 (8) | 0.0070 (8) |
O13 | 0.0265 (10) | 0.0498 (13) | 0.0375 (12) | 0.0037 (9) | 0.0032 (9) | 0.0119 (10) |
C1 | 0.0328 (14) | 0.0211 (11) | 0.0183 (11) | −0.0022 (10) | 0.0018 (9) | 0.0015 (9) |
C2 | 0.0310 (13) | 0.0232 (12) | 0.0231 (12) | −0.0028 (10) | 0.0025 (10) | 0.0012 (9) |
C3A | 0.0322 (14) | 0.0246 (12) | 0.0221 (11) | −0.0042 (10) | 0.0047 (10) | 0.0012 (10) |
C4 | 0.0345 (15) | 0.0304 (14) | 0.0267 (13) | −0.0095 (11) | 0.0005 (11) | 0.0013 (11) |
C5 | 0.0427 (16) | 0.0240 (12) | 0.0238 (12) | −0.0093 (11) | −0.0036 (11) | 0.0019 (10) |
C5A | 0.0463 (16) | 0.0208 (12) | 0.0206 (12) | −0.0010 (11) | 0.0035 (11) | 0.0027 (9) |
C6 | 0.064 (2) | 0.0249 (14) | 0.0262 (14) | 0.0001 (13) | 0.0036 (13) | −0.0017 (11) |
C7 | 0.069 (2) | 0.0293 (15) | 0.0304 (15) | 0.0110 (15) | 0.0131 (15) | −0.0013 (12) |
C8 | 0.0463 (17) | 0.0279 (14) | 0.0382 (16) | 0.0105 (13) | 0.0101 (13) | 0.0048 (12) |
C9 | 0.0400 (15) | 0.0239 (13) | 0.0283 (13) | 0.0031 (11) | 0.0058 (11) | 0.0036 (10) |
C9A | 0.0383 (15) | 0.0198 (12) | 0.0227 (12) | 0.0002 (10) | 0.0052 (10) | 0.0030 (9) |
C9B | 0.0333 (14) | 0.0191 (11) | 0.0198 (11) | −0.0032 (10) | 0.0010 (10) | 0.0022 (9) |
C11 | 0.0298 (13) | 0.0262 (13) | 0.0207 (11) | −0.0016 (10) | −0.0020 (10) | 0.0021 (9) |
C12 | 0.0294 (13) | 0.0232 (12) | 0.0239 (12) | 0.0003 (10) | −0.0009 (10) | −0.0032 (9) |
C13 | 0.0363 (18) | 0.079 (3) | 0.051 (2) | −0.0019 (17) | 0.0130 (16) | 0.0162 (19) |
C21 | 0.0381 (15) | 0.0305 (14) | 0.0265 (13) | −0.0039 (12) | 0.0068 (11) | −0.0034 (11) |
Br5—C5 | 1.887 (3) | C6—H6 | 0.9400 |
O3—C3A | 1.355 (3) | C7—C8 | 1.390 (5) |
O3—C2 | 1.377 (3) | C7—H7 | 0.9400 |
O12—C12 | 1.184 (3) | C8—C9 | 1.362 (4) |
O13—C12 | 1.343 (3) | C8—H8 | 0.9400 |
O13—C13 | 1.429 (4) | C9—C9A | 1.402 (4) |
C1—C2 | 1.345 (4) | C9—H9 | 0.9400 |
C1—C9B | 1.439 (3) | C9A—C9B | 1.413 (4) |
C1—C11 | 1.479 (4) | C11—C12 | 1.492 (4) |
C2—C21 | 1.468 (4) | C11—H11A | 0.9800 |
C3A—C9B | 1.369 (4) | C11—H11B | 0.9800 |
C3A—C4 | 1.382 (4) | C13—H13A | 0.9700 |
C4—C5 | 1.357 (4) | C13—H13B | 0.9700 |
C4—H4 | 0.9400 | C13—H13C | 0.9700 |
C5—C5A | 1.417 (4) | C21—H21A | 0.9700 |
C5A—C6 | 1.403 (4) | C21—H21B | 0.9700 |
C5A—C9A | 1.417 (4) | C21—H21C | 0.9700 |
C6—C7 | 1.354 (6) | ||
C3A—O3—C2 | 106.0 (2) | C8—C9—H9 | 119.5 |
C12—O13—C13 | 114.7 (2) | C9A—C9—H9 | 119.5 |
C2—C1—C9B | 106.1 (2) | C9—C9A—C9B | 123.1 (3) |
C2—C1—C11 | 125.3 (2) | C9—C9A—C5A | 118.6 (3) |
C9B—C1—C11 | 128.6 (2) | C9B—C9A—C5A | 118.3 (3) |
C1—C2—O3 | 111.2 (2) | C3A—C9B—C9A | 118.6 (2) |
C1—C2—C21 | 133.6 (3) | C3A—C9B—C1 | 105.7 (2) |
O3—C2—C21 | 115.2 (2) | C9A—C9B—C1 | 135.7 (3) |
O3—C3A—C9B | 111.0 (2) | C1—C11—C12 | 113.1 (2) |
O3—C3A—C4 | 123.8 (3) | C1—C11—H11A | 109.0 |
C9B—C3A—C4 | 125.2 (3) | C12—C11—H11A | 109.0 |
C5—C4—C3A | 115.9 (3) | C1—C11—H11B | 109.0 |
C5—C4—H4 | 122.1 | C12—C11—H11B | 109.0 |
C3A—C4—H4 | 122.1 | H11A—C11—H11B | 107.8 |
C4—C5—C5A | 123.4 (3) | O12—C12—O13 | 122.9 (3) |
C4—C5—Br5 | 117.2 (2) | O12—C12—C11 | 126.6 (3) |
C5A—C5—Br5 | 119.4 (2) | O13—C12—C11 | 110.6 (2) |
C6—C5A—C9A | 118.7 (3) | O13—C13—H13A | 109.5 |
C6—C5A—C5 | 122.7 (3) | O13—C13—H13B | 109.5 |
C9A—C5A—C5 | 118.6 (3) | H13A—C13—H13B | 109.5 |
C7—C6—C5A | 121.1 (3) | O13—C13—H13C | 109.5 |
C7—C6—H6 | 119.5 | H13A—C13—H13C | 109.5 |
C5A—C6—H6 | 119.5 | H13B—C13—H13C | 109.5 |
C6—C7—C8 | 120.4 (3) | C2—C21—H21A | 109.5 |
C6—C7—H7 | 119.8 | C2—C21—H21B | 109.5 |
C8—C7—H7 | 119.8 | H21A—C21—H21B | 109.5 |
C9—C8—C7 | 120.2 (3) | C2—C21—H21C | 109.5 |
C9—C8—H8 | 119.9 | H21A—C21—H21C | 109.5 |
C7—C8—H8 | 119.9 | H21B—C21—H21C | 109.5 |
C8—C9—C9A | 121.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O3i | 0.94 | 2.58 | 3.468 (4) | 157 |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H13BrO3 |
Mr | 333.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 223 |
a, b, c (Å) | 17.050 (2), 14.5064 (17), 5.3660 (7) |
β (°) | 96.443 (3) |
V (Å3) | 1318.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.12 |
Crystal size (mm) | 0.68 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.492, 1.0 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10676, 3817, 2967 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.136, 1.13 |
No. of reflections | 3817 |
No. of parameters | 183 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.77 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O3i | 0.94 | 2.58 | 3.468 (4) | 157 |
Symmetry code: (i) −x, −y+1, −z+1. |
Footnotes
‡Additional correspondence e-mail: dennis.taylor@adelaide.edu.au.
Acknowledgements
We are grateful to the Australian Research Council for financial support.
References
Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435. CrossRef Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A. Google Scholar
Chatterjea, J. N., Lal, S., Jha, U., Rycroft, D. S. & Carnduff, J. (1979). J. Chem. Res. Synop. pp. 356–356. Google Scholar
Einhorn, J., Demerseman, P., Royer, R. & Cavier, R. (1983). Eur. J. Med. Chem. 18, 175–180. CAS Google Scholar
Jevric, M., Taylor, D. K. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o1167. Web of Science CSD CrossRef IUCr Journals Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Monte, A. P., Marona-Lewicka, D., Parker, M. A., Wainscott, D. B., Nelson, D. L. & Nichols, D. E. (1996). J. Med. Chem. 39, 2953–2961. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Little has been done on observing aromatic electrophillic substitutions on polycyclic aromatic systems related to 1 shown in Fig. 3 (Chatterjea et al., 1979). Previous work showed that substitution should proceed at position five in the ring system of 1 (Chatterjea et al., 1979). Treatment of 1 with bromine in acetic acid according to a literature procedure (Einhorn et al., 1983 & Monte et al., 1996) gave the title compound (I) as the sole isolatable product. 1H NMR analysis of (I) showed five aromatic proton signals, two of which experienced two large ortho couplings and one a singlet (δ 7.81). This coupling pattern indicated that an aromatic electrophilic substitution had occurred on the ring adjoining the furan. However, although all signals were unobscured it was not possible to assign the peri proton as no detectable cross-peak in the ROESY spectrum was observed. X-ray crystallography showed that the position of the bromine substitution was in accordance with previous literature (Chatterjea et al., 1979).
Compound (I), Fig. 1, is comprised of three fused rings; two six-membered rings (A & B) and one five-membered ring (C). The respective A/B, A/C & B/C dihedral angles between their least-squares planes are 1.88 (13), 4.16 (15) & 2.48 (14)°. The CH2C(=O)OCH3 residue is twisted out of the tricyclic system, as seen in the value of the C1/C11/C12/O12 torsion angle of -26.9 (4)°. The crystal packing features centrosymmetric dimers consolidated by C—H···O contacts involving the furan-O atom; Table 1 and Fig. 2.
The structure ofthe related compound 2-(2-methylnaphtho[2,1-b]furan-1-yl)acetic acid has been reported in the preceding paper (Jevric et al., 2008).