inorganic compounds
Redetermination of tricalcium trilanthanum pentakis(orthoborate) from single-crystal data
aFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: nye@fjirsm.ac.cn
Single crystals of the title compound, Ca3La3(BO3)5, were obtained by spontaneous nucleation from a high-temperature melt. The of Ca3La3(BO3)5 has been determined previously from X-ray powder data [Zhang, Liang, Chen, He & Xu (2001). J. Alloys Compd, 327, 96–99]. The present shows a significant improvement in terms of the precision of the geometric parameters and the correct determination of the in P63mc with all atoms refined with anisotropic displacement parameters. The structure consists of isolated BO3 triangles and distorted [CaO8] and [LaO10] polyhedra. Except for one O atom, all other atoms are situated on special positions: La, all O and one B atom on mirror planes, and two B atoms with 3m.
Related literature
For phase equilibria in the system La2O3—CaO—B2O3, see: Zhang et al. (2001a). For a previous structure analysis of Ca3La3(BO3)5 based on X-ray powder diffraction data, see: Zhang et al. (2001b). For non-linear optical (NLO) applications of borate crystals containing triangular BO3 anions, see: Chen et al. (1999). For a review of the geometry of the BO3 group, see: Zobetz (1982). For the potential applications of Ca3La3(BO3)5 for see: Zhang et al. (2005); Han et al. (2007).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2000); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536808014785/wm2179sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808014785/wm2179Isup2.hkl
Single crystals of compound (I) were grown using a LiBO2-containing
The composition of the mixture for crystal growth was 1:1:4:3 of CaCO3 (Sinopharm Regent, AR), La2O3 (Materials, 99.8%), H3BO3 (Sinopharm Regent, 99.99%), and Li2CO3 (Sinopharm Reagent, AR). The mixture was heated in a platinum crucible to 1373 K, held at this temperature for several hours, and then cooled at a rate of 10 K/h from 1373 to 873 K. The remaining solified attached to the crystals was readily dissolved in water. Crystals with an average size of 0.5 mm and mostly rod shaped habit were obtained.The present study confirms the basic structural features determined from the previous investigation by Zhang et al. (2001b) with a much higher precesion and with all displacement parameters refined anisotropically.
Data collection: CrystalClear (Rigaku, 2000); cell
CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: enCIFer (Allen et al., 2004).Fig. 1. The structure of (I) in a projection approximatly along the [001] direction with displacement ellipsoids drawn at the 85% probability level. | |
Fig. 2. Packing diagram of the structure of (I). [CaO8] polyhedra are yellow, [LaO10] polyhedra are blue and [BO3] units are green. |
Ca3La3(BO3)5 | Dx = 4.492 Mg m−3 |
Mr = 831.02 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63mc | Cell parameters from 1909 reflections |
Hall symbol: P 6c -2c | θ = 2.2–27.5° |
a = 10.530 (3) Å | µ = 11.59 mm−1 |
c = 6.398 (2) Å | T = 293 K |
V = 614.4 (3) Å3 | Rod, colourless |
Z = 2 | 0.22 × 0.12 × 0.10 mm |
F(000) = 752 |
Rigaku Mercury CCD diffractometer | 534 independent reflections |
Radiation source: Sealed Tube | 534 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.035 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 27.5°, θmin = 2.2° |
CCD_Profile_fitting scans | h = −13→13 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | k = −13→13 |
Tmin = 0.206, Tmax = 0.304 | l = −8→7 |
4065 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.02P)2 + 1.5843P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.012 | (Δ/σ)max < 0.001 |
wR(F2) = 0.030 | Δρmax = 0.41 e Å−3 |
S = 0.89 | Δρmin = −0.59 e Å−3 |
534 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
53 parameters | Extinction coefficient: 0.0632 (12) |
1 restraint | Absolute structure: Flack (1983), 236 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.03 (3) |
Ca3La3(BO3)5 | Z = 2 |
Mr = 831.02 | Mo Kα radiation |
Hexagonal, P63mc | µ = 11.59 mm−1 |
a = 10.530 (3) Å | T = 293 K |
c = 6.398 (2) Å | 0.22 × 0.12 × 0.10 mm |
V = 614.4 (3) Å3 |
Rigaku Mercury CCD diffractometer | 534 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | 534 reflections with I > 2σ(I) |
Tmin = 0.206, Tmax = 0.304 | Rint = 0.035 |
4065 measured reflections |
R[F2 > 2σ(F2)] = 0.012 | 1 restraint |
wR(F2) = 0.030 | Δρmax = 0.41 e Å−3 |
S = 0.89 | Δρmin = −0.59 e Å−3 |
534 reflections | Absolute structure: Flack (1983), 236 Friedel pairs |
53 parameters | Absolute structure parameter: −0.03 (3) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ca1 | 0.47334 (5) | 0.52666 (5) | 0.76261 (15) | 0.00673 (19) | |
La1 | 0.156065 (12) | 0.843935 (12) | 0.08229 (8) | 0.00493 (11) | |
B1 | 0.1989 (3) | 0.8011 (3) | 0.5473 (8) | 0.0049 (10) | |
B2 | 0 | 0 | 0.2435 (15) | 0.0086 (17) | |
B3 | 0.6667 | 0.3333 | 0.598 (3) | 0.0092 (19) | |
O1 | 0.6272 (3) | 0.9278 (2) | 0.4462 (4) | 0.0067 (5) | |
O2 | 0.07534 (16) | 0.92466 (16) | 0.7399 (6) | 0.0097 (7) | |
O3 | 0.59052 (16) | 0.40948 (16) | 0.5984 (8) | 0.0083 (6) | |
O4 | 0.22657 (17) | 0.77343 (17) | 0.7443 (5) | 0.0066 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0060 (3) | 0.0060 (3) | 0.0073 (4) | 0.0023 (3) | −0.0001 (2) | 0.0001 (2) |
La1 | 0.00442 (12) | 0.00442 (12) | 0.00474 (14) | 0.00129 (9) | 0.00003 (8) | −0.00003 (8) |
B1 | 0.0052 (15) | 0.0052 (15) | 0.007 (3) | 0.0044 (18) | −0.0006 (10) | 0.0006 (10) |
B2 | 0.011 (3) | 0.011 (3) | 0.003 (4) | 0.0057 (13) | 0 | 0 |
B3 | 0.009 (2) | 0.009 (2) | 0.009 (6) | 0.0046 (11) | 0 | 0 |
O1 | 0.0069 (10) | 0.0056 (10) | 0.0073 (11) | 0.0029 (9) | −0.0014 (10) | 0.0016 (9) |
O2 | 0.0090 (12) | 0.0090 (12) | 0.0124 (16) | 0.0055 (14) | −0.0005 (7) | 0.0005 (7) |
O3 | 0.0101 (10) | 0.0101 (10) | 0.0067 (17) | 0.0065 (11) | 0.0005 (9) | −0.0005 (9) |
O4 | 0.0067 (11) | 0.0067 (11) | 0.0055 (16) | 0.0026 (13) | −0.0014 (7) | 0.0014 (7) |
Ca1—O4i | 2.3139 (13) | La1—O1i | 2.678 (3) |
Ca1—O4ii | 2.3139 (13) | La1—O3xiv | 2.8112 (8) |
Ca1—O1iii | 2.376 (3) | La1—O3xv | 2.8112 (8) |
Ca1—O1iv | 2.376 (3) | La1—B2xvi | 3.028 (3) |
Ca1—O3 | 2.382 (4) | La1—B1 | 3.076 (5) |
Ca1—O3v | 2.444 (5) | B1—O4 | 1.358 (6) |
Ca1—O1ii | 2.662 (3) | B1—O1i | 1.384 (3) |
Ca1—O1vi | 2.662 (3) | B1—O1xiii | 1.384 (3) |
Ca1—B1i | 2.858 (4) | B1—Ca1i | 2.858 (4) |
Ca1—B1ii | 2.858 (4) | B1—Ca1ii | 2.858 (4) |
Ca1—Ca1v | 3.3435 (11) | B2—O2xvii | 1.374 (3) |
Ca1—Ca1vii | 3.3435 (11) | B2—O2xviii | 1.374 (3) |
La1—O1viii | 2.501 (2) | B2—O2xix | 1.374 (3) |
La1—O1ix | 2.501 (2) | B2—La1xx | 3.028 (3) |
La1—O4x | 2.516 (4) | B2—La1i | 3.028 (3) |
La1—O2x | 2.639 (3) | B2—La1xxi | 3.028 (3) |
La1—O2xi | 2.6639 (15) | B3—O3xxii | 1.389 (3) |
La1—O2xii | 2.6639 (15) | B3—O3xxiii | 1.389 (3) |
La1—O1xiii | 2.678 (3) | B3—O3 | 1.389 (3) |
O4i—Ca1—O4ii | 93.58 (15) | O1ix—La1—O3xiv | 116.83 (10) |
O4i—Ca1—O1iii | 151.80 (11) | O4x—La1—O3xiv | 64.52 (12) |
O4ii—Ca1—O1iii | 80.01 (9) | O2x—La1—O3xiv | 122.29 (12) |
O4i—Ca1—O1iv | 80.01 (9) | O2xi—La1—O3xiv | 155.42 (13) |
O4ii—Ca1—O1iv | 151.80 (11) | O2xii—La1—O3xiv | 121.81 (10) |
O1iii—Ca1—O1iv | 92.72 (12) | O1xiii—La1—O3xiv | 88.50 (10) |
O4i—Ca1—O3 | 126.18 (10) | O1i—La1—O3xiv | 65.77 (12) |
O4ii—Ca1—O3 | 126.18 (10) | O1viii—La1—O3xv | 116.83 (9) |
O1iii—Ca1—O3 | 77.64 (10) | O1ix—La1—O3xv | 69.51 (8) |
O1iv—Ca1—O3 | 77.64 (10) | O4x—La1—O3xv | 64.52 (12) |
O4i—Ca1—O3v | 73.69 (10) | O2x—La1—O3xv | 122.29 (12) |
O4ii—Ca1—O3v | 73.69 (10) | O2xi—La1—O3xv | 121.81 (10) |
O1iii—Ca1—O3v | 78.17 (9) | O2xii—La1—O3xv | 155.42 (13) |
O1iv—Ca1—O3v | 78.17 (9) | O1xiii—La1—O3xv | 65.77 (12) |
O3—Ca1—O3v | 144.65 (19) | O1i—La1—O3xv | 88.50 (10) |
O4i—Ca1—O1ii | 56.39 (9) | O3xiv—La1—O3xv | 50.66 (12) |
O4ii—Ca1—O1ii | 112.85 (10) | O4—B1—O1i | 119.7 (2) |
O1iii—Ca1—O1ii | 151.00 (8) | O4—B1—O1xiii | 119.7 (2) |
O1iv—Ca1—O1ii | 86.53 (8) | O1i—B1—O1xiii | 120.6 (4) |
O3—Ca1—O1ii | 73.88 (10) | O2xvii—B2—O2xviii | 120.00 (1) |
O3v—Ca1—O1ii | 129.62 (7) | O2xvii—B2—O2xix | 120.00 (1) |
O4i—Ca1—O1vi | 112.85 (10) | O2xviii—B2—O2xix | 120.00 (1) |
O4ii—Ca1—O1vi | 56.39 (9) | O3xxii—B3—O3xxiii | 120.00 (1) |
O1iii—Ca1—O1vi | 86.53 (8) | O3xxii—B3—O3 | 120.00 (1) |
O1iv—Ca1—O1vi | 151.00 (8) | O3xxiii—B3—O3 | 120.00 (1) |
O3—Ca1—O1vi | 73.88 (10) | B1ii—O1—Ca1xv | 147.6 (3) |
O3v—Ca1—O1vi | 129.62 (7) | B1ii—O1—La1xxiv | 114.0 (3) |
O1ii—Ca1—O1vi | 80.50 (11) | Ca1xv—O1—La1xxiv | 94.81 (8) |
O1viii—La1—O1ix | 138.96 (12) | B1ii—O1—Ca1i | 83.5 (2) |
O1viii—La1—O4x | 73.88 (6) | Ca1xv—O1—Ca1i | 82.95 (8) |
O1ix—La1—O4x | 73.88 (6) | La1xxiv—O1—Ca1i | 87.75 (8) |
O1viii—La1—O2x | 71.80 (6) | B1ii—O1—La1ii | 92.9 (2) |
O1ix—La1—O2x | 71.80 (6) | Ca1xv—O1—La1ii | 89.98 (9) |
O4x—La1—O2x | 64.64 (11) | La1xxiv—O1—La1ii | 111.47 (9) |
O1viii—La1—O2xi | 121.07 (8) | Ca1i—O1—La1ii | 160.08 (10) |
O1ix—La1—O2xi | 71.30 (9) | B2xxv—O2—La1xxvi | 123.0 (5) |
O4x—La1—O2xi | 137.71 (9) | B2xxv—O2—La1xxvii | 91.42 (19) |
O2x—La1—O2xi | 82.07 (7) | La1xxvi—O2—La1xxvii | 107.69 (7) |
O1viii—La1—O2xii | 71.30 (9) | B2xxv—O2—La1xxviii | 91.42 (19) |
O1ix—La1—O2xii | 121.07 (8) | La1xxvi—O2—La1xxviii | 107.69 (7) |
O4x—La1—O2xii | 137.71 (9) | La1xxvii—O2—La1xxviii | 135.45 (14) |
O2x—La1—O2xii | 82.07 (7) | B3—O3—Ca1 | 154.0 (8) |
O2xi—La1—O2xii | 53.07 (13) | B3—O3—Ca1vii | 118.3 (8) |
O1viii—La1—O1xiii | 137.03 (9) | Ca1—O3—Ca1vii | 87.71 (10) |
O1ix—La1—O1xiii | 83.72 (6) | B3—O3—La1xxix | 94.64 (7) |
O4x—La1—O1xiii | 129.92 (8) | Ca1—O3—La1xxix | 86.76 (7) |
O2x—La1—O1xiii | 146.79 (6) | Ca1vii—O3—La1xxix | 85.94 (9) |
O2xi—La1—O1xiii | 68.76 (8) | B3—O3—La1iii | 94.64 (7) |
O2xii—La1—O1xiii | 92.23 (9) | Ca1—O3—La1iii | 86.76 (7) |
O1viii—La1—O1i | 83.72 (6) | Ca1vii—O3—La1iii | 85.94 (9) |
O1ix—La1—O1i | 137.03 (9) | La1xxix—O3—La1iii | 169.80 (13) |
O4x—La1—O1i | 129.92 (8) | B1—O4—Ca1ii | 98.91 (12) |
O2x—La1—O1i | 146.79 (6) | B1—O4—Ca1i | 98.91 (12) |
O2xi—La1—O1i | 92.23 (9) | Ca1ii—O4—Ca1i | 145.78 (15) |
O2xii—La1—O1i | 68.76 (8) | B1—O4—La1xxvi | 127.4 (3) |
O1xiii—La1—O1i | 53.37 (10) | Ca1ii—O4—La1xxvi | 96.00 (9) |
O1viii—La1—O3xiv | 69.51 (8) | Ca1i—O4—La1xxvi | 96.00 (9) |
Symmetry codes: (i) −y+1, x−y+1, z; (ii) −x+y, −x+1, z; (iii) x−y+1, x, z+1/2; (iv) −x+1, −x+y, z+1/2; (v) −x+1, −y+1, z+1/2; (vi) x, x−y+1, z; (vii) −x+1, −y+1, z−1/2; (viii) y−1, x, z−1/2; (ix) −x+1, −y+2, z−1/2; (x) x, y, z−1; (xi) x−y+1, x+1, z−1/2; (xii) y−1, −x+y, z−1/2; (xiii) −x+y, y, z; (xiv) x−y, x, z−1/2; (xv) y, −x+y+1, z−1/2; (xvi) x, y+1, z; (xvii) y−1, −x+y−1, z−1/2; (xviii) x−y+1, x, z−1/2; (xix) −x, −y+1, z−1/2; (xx) −x+y−1, −x, z; (xxi) x, y−1, z; (xxii) −x+y+1, −x+1, z; (xxiii) −y+1, x−y, z; (xxiv) −x+1, −y+2, z+1/2; (xxv) −x, −y+1, z+1/2; (xxvi) x, y, z+1; (xxvii) y−1, −x+y, z+1/2; (xxviii) x−y+1, x+1, z+1/2; (xxix) y, −x+y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | Ca3La3(BO3)5 |
Mr | 831.02 |
Crystal system, space group | Hexagonal, P63mc |
Temperature (K) | 293 |
a, c (Å) | 10.530 (3), 6.398 (2) |
V (Å3) | 614.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 11.59 |
Crystal size (mm) | 0.22 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Rigaku Mercury CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2000) |
Tmin, Tmax | 0.206, 0.304 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4065, 534, 534 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.012, 0.030, 0.89 |
No. of reflections | 534 |
No. of parameters | 53 |
No. of restraints | 1 |
Δρmax, Δρmin (e Å−3) | 0.41, −0.59 |
Absolute structure | Flack (1983), 236 Friedel pairs |
Absolute structure parameter | −0.03 (3) |
Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), enCIFer (Allen et al., 2004).
Ca1—O4i | 2.3139 (13) | La1—O3vii | 2.8112 (8) |
Ca1—O1ii | 2.376 (3) | B1—O4 | 1.358 (6) |
Ca1—O3 | 2.382 (4) | B1—O1i | 1.384 (3) |
Ca1—O1iii | 2.662 (3) | B2—O2viii | 1.374 (3) |
La1—O1iv | 2.501 (2) | B3—O3ix | 1.389 (3) |
La1—O4v | 2.516 (4) | B3—O3 | 1.389 (3) |
La1—O2vi | 2.6639 (15) | ||
O4—B1—O1i | 119.7 (2) | O2viii—B2—O2xi | 120.00 (1) |
O1i—B1—O1x | 120.6 (4) | O3ix—B3—O3 | 120.00 (1) |
Symmetry codes: (i) −y+1, x−y+1, z; (ii) x−y+1, x, z+1/2; (iii) −x+y, −x+1, z; (iv) y−1, x, z−1/2; (v) x, y, z−1; (vi) x−y+1, x+1, z−1/2; (vii) x−y, x, z−1/2; (viii) y−1, −x+y−1, z−1/2; (ix) −x+y+1, −x+1, z; (x) −x+y, y, z; (xi) x−y+1, x, z−1/2. |
Acknowledgements
This project was supported by the National Science Foundation of China (grant No. 60608018).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chen, C. T., Ye, N., Lin, J., Jiang, J., Zeng, W. R. & Wu, B. C. (1999). Adv. Mater. 11, 1071–1078. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Han, B., Liang, H. B. & Lin, H. H. (2007). Appl. Phys. A Matter. Sci. Process. 88, 705–709. Web of Science CrossRef CAS Google Scholar
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Y., Chen, X. L., Liang, J. K., Gao, Y. G. & Xu, T. (2001a). J. Alloys Compd, 315, 198–202. Web of Science CrossRef CAS Google Scholar
Zhang, Y., Li, Y. D. & Yin, Y. S. (2005). J. Alloys Compd, 400, 222–226. Web of Science CrossRef CAS Google Scholar
Zhang, Y., Liang, J. K., Chen, X. L., He, M. & Xu, T. (2001b). J. Alloys Compd, 327, 96–99. Web of Science CrossRef CAS Google Scholar
Zobetz, E. (1982). Z. Kristallogr. 160, 81–92. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Borate crystals containing parallel aligned BO3 anions are predicted to have large nonlinear optical (NLO) coefficients, moderate birefringence and wide transparency in the UV-region. Therefore they are considered to be good candidates for NLO applications (Chen, 1999). The title compound Ca3La3(BO3)5, (I), has been investigated previously by Zhang et al. (2001a) during analysis of phase equilibria in the system La2O3—CaO—B2O3, and NLO and luminescent properties of this material have also been reported (Zhang, 2005; Han, 2007). The crystal structure of Ca3La3 (BO3)5 was originally determined from X-ray powder diffraction data in conjunction with IR spectroscopy (Zhang et al., 2001b).
The structure of compound (I) can be described in terms of BO3 triangles and complex irregular [CaO8] and [LaO10] polyhedra. Each of the three crystallographically different B atoms is coordinated to three O atoms to form planar BO3 triangles. The B—O bond lengths range from 1.384 (3) to 1.389 (3) Å, which is in good agreement with the results of geometric studies of the BO3 unit (Zobetz, 1982). Two of the three BO3 groups exhibit 3m symmetry, and the third BO3 group has m symmetry with O–B–O angles very close to 120°. The La3+ cations are 10-fold coordinated by oxygen atoms with La—O bond lengths ranging from 2.501 (2) to 2.812 (2) Å. The [LaO10] polyhedra are connected to each other and to the borate groups by sharing corners and edges forming a three-dimensional network with channels running parallel to [001]. In these channels the Ca2+ cations are situated and are surrounded by eight oxygen atoms with Ca—O bond lengths ranging from 2.3139 (13) to 2.662 (3) Å (Table 1).