inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trilithium scandium bis­­(orthoborate)

aFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: nye@fjirsm.ac.cn

(Received 8 May 2008; accepted 15 May 2008; online 21 May 2008)

Single crystals of the title compound, Li3Sc(BO3)2, have been obtained by spontaneous nucleation from a high-temperature melt. The title compound adopts a framework structure and is composed of distorted [ScO6] octa­hedra, [LiO4] tetra­hedra, [LiO4] recta­ngles and isolated [BO3] triangles. Except for the Sc and one Li atom (both on inversion centres), all atoms are in general positions.

Related literature

For a review of structural data of BO3 groups, see: Zobetz (1982[Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.]). For sodium scandium borates, see: Becker & Held (2001[Becker, P. & Held, P. (2001). Z. Krist. New Cryst. Struct. 216, 35..]); Zhang et al. (2006[Zhang, Y., Ye, N. & Keszler, D. A. (2006). Acta Cryst. E62, i266-i268.]).

Experimental

Crystal data
  • Li3Sc(BO3)2

  • Mr = 183.4

  • Monoclinic, P 21 /n

  • a = 4.7831 (17) Å

  • b = 5.954 (2) Å

  • c = 8.163 (3) Å

  • β = 90.702 (9)°

  • V = 232.44 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 (2) K

  • 0.12 × 0.10 × 0.10 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.833, Tmax = 0.858

  • 1734 measured reflections

  • 534 independent reflections

  • 518 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.058

  • S = 1.10

  • 534 reflections

  • 58 parameters

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sc—O1 2.0854 (12)
Sc—O2i 2.1101 (12)
Sc—O3i 2.1197 (13)
Li1—O2 2.0107 (12)
Li1—O1ii 2.1173 (12)
Li2—O1iii 1.896 (3)
Li2—O2 1.946 (3)
Li2—O3iv 1.983 (3)
Li2—O3i 2.137 (3)
B—O2 1.376 (2)
B—O3v 1.384 (2)
B—O1vi 1.385 (2)
O2—B—O3v 122.09 (14)
O2—B—O1vi 119.13 (14)
O3v—B—O1vi 118.72 (14)
Symmetry codes: (i) -x, -y, -z; (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x+1, -y, -z.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Li3Sc(BO3)2, (I), was found from analysis of phase equilibria in the system Li2O—Sc2O3—B2O3, in which it is the first characterized pseudo-ternary phase. For the heavier Na homologue, two phases are already known, viz. Na3Sc2(BO3)3 (Zhang et al., 2006) and NaScB2O5 (Becker & Held, 2001).

The framework structure of (I) is made up of distorted [ScO6] octahedra, [LiO4] tetrahedra, [LiO4] rectangles and [BO3] triangles as single building units. The [ScO6] octahedra are linked via [LiO4] rectangles by sharing edges to form columns parallel to [010]. The columns are linked to each other through [LiO4] tetrahedra and [BO3] triangles by sharing edges and corners (Figs 1 and 2).

The B atom is coordinated to three oxygen atoms forming nearly trigonal planar [BO3]3- anions. The B—O bond lengths range from 1.376 (2) to 1.385 (2) Å, and the O—B—O angles are close to 120° (Table 1), values that are typical for BO3 groups (Zobetz, 1982). The Sc3+ cation is coordinated by six oxygen atoms to form a distorted [ScO6] ocahedron with Sc—O bond lengths ranging from 2.0854 (12) to 2.1197 (13) Å. There are two crystallographically different Li atoms. One is situated on an inversion centre (1 symmetry) and is coordinated to four oxygen atoms forming a nearly planar [LiO4] rectangle with Li1—O bond lengths ranging from 2.0107 (12) to 2.1173 (12) Å. The other Li atom is also coordinated to four O atoms, but is in the centre of a distorted tetrahedron with Li2—O bond lengths from 1.896 (3) to 2.137 (3) Å (Table 1). The average Li—O bond length of the [Li1O4] rectangle (2.064 Å) is slightly longer than that of the [Li2O4] tetrahedron (1.991 Å).

Related literature top

For a review of structural data of BO3 groups, see: Zobetz (1982). For sodium scandium borates, see: Becker & Held (2001); Zhang et al. (2006).

Experimental top

Single crystals of compound (I) were grown using a LiBO2-containing flux. The composition of the mixture for crystal growth was 4:1:4 of Li2CO3 (Sinopharm Reagents, 99.99%), Sc2O3 (Sinopharm Reagents, 4 N), and B2O3 (Sinopharm Reagents, 99%). This mixture was heated in a platinum crucible to 1373 K, held at this temperature for several hours, and then cooled at a rate of 10 K/h from 1373 to 873 K. The remaining flux attached to the crystals was readily dissolved in water. Crystals with an average size of 0.5 mm and mostly block shaped habit were obtained.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The structure of (I) in a projection approximatly along the [001] direction with displacement ellipsoids drawn at the 85% probability level.
[Figure 2] Fig. 2. The structure of (I) given in the polyhedral description. [ScO6] octahedra are blue, [LiO4] tetrahedra are green, [LiO4] rectangles are purple, and [BO3] units are yellow.
trilithium scandium bis(orthoborate) top
Crystal data top
Li3Sc(BO3)2F(000) = 176
Mr = 183.4Dx = 2.62 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 623 reflections
a = 4.7831 (17) Åθ = 4.2–23.6°
b = 5.954 (2) ŵ = 1.53 mm1
c = 8.163 (3) ÅT = 293 K
β = 90.702 (9)°Block, colourless
V = 232.44 (15) Å30.12 × 0.10 × 0.10 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
534 independent reflections
Radiation source: Sealed Tube518 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.015
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 4.2°
CCD_Profile_fitting scansh = 64
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 77
Tmin = 0.833, Tmax = 0.858l = 1010
1734 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.216P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.28 e Å3
534 reflectionsΔρmin = 0.23 e Å3
58 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
Crystal data top
Li3Sc(BO3)2V = 232.44 (15) Å3
Mr = 183.4Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.7831 (17) ŵ = 1.53 mm1
b = 5.954 (2) ÅT = 293 K
c = 8.163 (3) Å0.12 × 0.10 × 0.10 mm
β = 90.702 (9)°
Data collection top
Rigaku Mercury CCD
diffractometer
534 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
518 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.858Rint = 0.015
1734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01758 parameters
wR(F2) = 0.0580 restraints
S = 1.10Δρmax = 0.28 e Å3
534 reflectionsΔρmin = 0.23 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sc0000.00510 (15)
Li100.500.0209 (10)
Li20.0144 (6)0.2513 (5)0.2977 (4)0.0133 (6)
B0.5149 (4)0.3045 (3)0.1254 (2)0.0061 (3)
O10.3101 (2)0.24622 (18)0.00179 (14)0.0077 (2)
O20.2330 (2)0.26155 (19)0.11029 (14)0.0086 (3)
O30.1280 (2)0.08686 (19)0.23947 (13)0.0086 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sc0.0050 (2)0.0054 (2)0.0049 (2)0.00002 (13)0.00011 (14)0.00009 (12)
Li10.015 (2)0.012 (2)0.035 (3)0.0000 (15)0.008 (2)0.0062 (17)
Li20.0119 (13)0.0182 (15)0.0098 (13)0.0025 (11)0.0018 (10)0.0015 (10)
B0.0074 (7)0.0042 (7)0.0067 (7)0.0009 (6)0.0000 (6)0.0014 (6)
O10.0065 (5)0.0095 (5)0.0070 (5)0.0013 (4)0.0004 (4)0.0005 (4)
O20.0060 (5)0.0099 (5)0.0099 (6)0.0013 (4)0.0000 (4)0.0012 (4)
O30.0084 (5)0.0102 (6)0.0071 (5)0.0006 (4)0.0009 (4)0.0023 (4)
Geometric parameters (Å, º) top
Sc—O12.0854 (12)Li2—O1x1.896 (3)
Sc—O1i2.0854 (12)Li2—O21.946 (3)
Sc—O2i2.1101 (12)Li2—O3xi1.983 (3)
Sc—O22.1101 (12)Li2—O3i2.137 (3)
Sc—O3i2.1197 (13)Li2—Bviii2.659 (3)
Sc—O32.1197 (13)Li2—Bxi2.697 (3)
Sc—Li2i2.855 (3)Li2—Bxii2.733 (4)
Sc—Li22.855 (3)Li2—Scix3.226 (3)
Sc—Li1ii2.9768 (11)Li2—Li1iii3.234 (3)
Sc—Li12.9768 (11)Li2—Scx3.297 (3)
Sc—Li2iii3.226 (3)B—O21.376 (2)
Sc—Li2iv3.226 (3)B—O3xiii1.384 (2)
Li1—O22.0107 (12)B—O1xiv1.385 (2)
Li1—O2v2.0107 (12)B—Li2xv2.659 (3)
Li1—O1vi2.1173 (12)B—Li2iv2.697 (3)
Li1—O1i2.1173 (12)B—Li2x2.733 (4)
Li1—Bvii2.8008 (18)B—Li1xv2.8008 (18)
Li1—Bviii2.8008 (18)O1—Bxiv1.385 (2)
Li1—Li2v2.847 (3)O1—Li2xii1.896 (3)
Li1—Li22.847 (3)O1—Li1ii2.1173 (12)
Li1—Scvi2.9768 (11)O3—Bxvi1.384 (2)
Li1—Li2ix3.234 (3)O3—Li2iv1.983 (3)
Li1—Li2iv3.234 (3)O3—Li2i2.137 (3)
O1—Sc—O1i180.00 (4)O1x—Li2—O3i109.04 (14)
O1—Sc—O2i81.73 (5)O2—Li2—O3i90.58 (12)
O1i—Sc—O2i98.27 (5)O3xi—Li2—O3i101.95 (13)
O1—Sc—O298.27 (5)O2—B—O3xiii122.09 (14)
O1i—Sc—O281.73 (5)O2—B—O1xiv119.13 (14)
O2i—Sc—O2180.00 (8)O3xiii—B—O1xiv118.72 (14)
O1—Sc—O3i92.04 (4)Bxiv—O1—Li2xii109.58 (13)
O1i—Sc—O3i87.96 (4)Bxiv—O1—Sc127.37 (10)
O2i—Sc—O3i93.23 (5)Li2xii—O1—Sc111.74 (11)
O2—Sc—O3i86.77 (5)Bxiv—O1—Li1ii104.23 (9)
O1—Sc—O387.96 (4)Li2xii—O1—Li1ii110.73 (10)
O1i—Sc—O392.04 (4)Sc—O1—Li1ii90.19 (5)
O2i—Sc—O386.77 (5)B—O2—Li2122.67 (13)
O2—Sc—O393.23 (5)B—O2—Li1116.47 (10)
O3i—Sc—O3180.00 (5)Li2—O2—Li192.02 (10)
O2—Li1—O2v180.00 (6)B—O2—Sc133.37 (10)
O2—Li1—O1vi96.68 (5)Li2—O2—Sc89.39 (10)
O2v—Li1—O1vi83.32 (5)Li1—O2—Sc92.47 (5)
O2—Li1—O1i83.32 (5)Bxvi—O3—Li2iv102.89 (13)
O2v—Li1—O1i96.68 (5)Bxvi—O3—Sc137.30 (10)
O1vi—Li1—O1i180Li2iv—O3—Sc103.64 (10)
O1x—Li2—O2111.51 (16)Bxvi—O3—Li2i99.62 (12)
O1x—Li2—O3xi124.23 (16)Li2iv—O3—Li2i135.08 (11)
O2—Li2—O3xi113.33 (15)Sc—O3—Li2i84.24 (9)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z1/2; (v) x, y1, z; (vi) x, y1, z; (vii) x+1, y1, z; (viii) x1, y, z; (ix) x1/2, y1/2, z+1/2; (x) x+1/2, y1/2, z+1/2; (xi) x1/2, y1/2, z+1/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y1/2, z+1/2; (xiv) x+1, y, z; (xv) x+1, y, z; (xvi) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaLi3Sc(BO3)2
Mr183.4
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.7831 (17), 5.954 (2), 8.163 (3)
β (°) 90.702 (9)
V3)232.44 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.833, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
1734, 534, 518
Rint0.015
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.058, 1.10
No. of reflections534
No. of parameters58
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Sc—O12.0854 (12)Li2—O21.946 (3)
Sc—O2i2.1101 (12)Li2—O3iv1.983 (3)
Sc—O3i2.1197 (13)Li2—O3i2.137 (3)
Li1—O22.0107 (12)B—O21.376 (2)
Li1—O1ii2.1173 (12)B—O3v1.384 (2)
Li2—O1iii1.896 (3)B—O1vi1.385 (2)
O2—B—O3v122.09 (14)O3v—B—O1vi118.72 (14)
O2—B—O1vi119.13 (14)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y1/2, z+1/2; (v) x+1/2, y1/2, z+1/2; (vi) x+1, y, z.
 

Acknowledgements

This project was supported by the National Science Found­ation of China (grant No. 60608018).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBecker, P. & Held, P. (2001). Z. Krist. New Cryst. Struct. 216, 35..  Google Scholar
First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Ye, N. & Keszler, D. A. (2006). Acta Cryst. E62, i266–i268.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZobetz, E. (1982). Z. Kristallogr. 160, 81–92.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds