metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[penta-μ-aqua-μ6-methyl­ene­di­sulfonato-μ5-methyl­enedi­sulfonato-tetra­sodium(I)]

aDepartment of Chemistry, Huaiyin Teachers College, 111 West Changjiang Road, Huaian 223300, Jiangsu, People's Republic of China
*Correspondence e-mail: overloadzz@hotmail.com

(Received 1 May 2008; accepted 10 May 2008; online 17 May 2008)

The title compound, [Na4(CH2O6S2)2(H2O)5]n, was crystallized from an aqueous solution. The sodium ions are surrounded and bridged by O atoms from coordinated water mol­ecules and sulfonate ions in a three-dimensional neutral network. The crystal structure is also stabilized by an intricate system of hydrogen bonds.

Related literature

The supra­molecular chemistry of the sulfonate group in extended solids constructed by cooperative coordination and other weak inter­molecular inter­actions, as well as the structural and functional properties of Ba2+ and Ag+ sulfonates, has been reviewed by Côté & Shimizu (2003[Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49-60.]). For a review of the structural chemistry and properties of metal arenesulfonates, see: Cai (2004[Cai, J.-W. (2004). Coord. Chem. Rev. 248, 1061-1083.]). For related literature, see: Li et al. (2008[Li, M., Xiang, J.-F., Chen, S.-P., Wu, S.-M., Yuan, L.-J., Li, H., He, H.-J. & Sun, J.-T. (2008). J. Coord. Chem. 61, 372-383.]); Mi et al. (2007[Mi, L.-W., Hou, H.-W., Song, Z.-Y., Han, H.-Y., Xu, H., Fan, Y.-T. & Ng, S.-W. (2007). J. Cryst. Growth Des. 7, 2553-2561.]); Videnova-Adrabinska (2007[Videnova-Adrabinska, V. (2007). Coord. Chem. Rev. 251, 1987-2016.]).

[Scheme 1]

Experimental

Crystal data
  • [Na4(CH2O6S2)2(H2O)5]

  • Mr = 530.33

  • Triclinic, [P \overline 1]

  • a = 8.7758 (7) Å

  • b = 9.5339 (7) Å

  • c = 10.7878 (8) Å

  • α = 81.425 (2)°

  • β = 74.545 (2)°

  • γ = 87.227 (2)°

  • V = 860.19 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 296 (2) K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART APEX2 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.81, Tmax = 0.84

  • 10702 measured reflections

  • 3321 independent reflections

  • 3050 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.093

  • S = 1.00

  • 3321 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O8i 0.97 1.93 2.868 (2) 163
O13—H13B⋯O5ii 0.97 1.87 2.824 (2) 166
O14—H14A⋯O9iii 0.97 2.00 2.871 (2) 148
O15—H15B⋯O3iv 0.97 1.97 2.877 (2) 155
O16—H16A⋯O9iii 0.97 1.87 2.794 (2) 158
O16—H16B⋯O12 0.97 2.18 3.034 (3) 147
O17—H17A⋯O4v 0.97 2.17 2.879 (3) 129
O17—H17B⋯O12vi 0.97 2.10 2.918 (3) 141
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) -x+2, -y+1, -z+1; (iv) x+1, y, z; (v) -x, -y+2, -z+2; (vi) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Due to the weak coordination strength of monosulfonate ions, most metal complexes of these ligands obtained from aqueous solution are water-coordinated metal sulfonate salts, and the coordination chemistry of the sulfonate ion has been less well investigated in comparison with other organic acidato anions such as carbonates and phosfonates (Côté & Shimizu, 2003). However, by employing disulfonates, which can provide multiple potentially chelating coordination sites, stable networks sustained by sulfonate-metal interactions can be obtained with various dimensionalities (Cai, 2004; Li et al., 2008; Mi et al., 2007; Videnova-Adrabinska, 2007).

The present structral study of the title compound {Na4(mds)2(H2O) 5}n (I) reveals the existence of sulfonate-sodium interactions. The asymmetric unit consists of four sodium ions, five coordinated µ2-H2O molecules and two CH3(SO3)22- ligands (Fig. 1). Of the four sodium ions, Na1, Na2 and Na4 are six-coordinated. Na3 is coordinated by five oxygen atoms (O2vi, O13, O14, O16 and O16iv). The Na—O bond lengths fall in the range of 2.334 (2) to 2.5609 (18) Å. All sulfonate oxygens are deprotonated. Three sulfonate oxygen atoms (O5, O9 and O12) are not coordinated to sodium atoms and do instead act as hydrogen bonding acceptors towards coordinated water molecules. All other hydrogen bonds are from water molecules towards Na coordinated sulfonate oxygen atoms (Table 1).

Each sodium atom is bridged to an equivalent neighbour, forming {Na2O2} dimers with inversion centers in the middle. O1 and O7 connect the dimers of Na1 and Na2 into an infinite chain. Na1-Na2 chains are joined to dimers of Na3 and Na4 through intricate bridges of oxygens from sulfonate groups and coordinated waters, and O—S—O connectivities, thus generating a three-dimensional network (Fig. 2).

Related literature top

The supramolecular chemistry of the sulfonate group in extended solids constructed by cooperative coordination and other weak intermolecular interactions, as well as the structural and functional properties of Ba2+ and Ag+ sulfonates, has been reviewed by Côté & Shimizu (2003). For a review of the structural chemistry and properties of metal arenesulfonates, see: Cai (2004).

For related literature, see: Bruker (1999); Li et al. (2008); Mi et al. (2007); Videnova-Adrabinska (2007).

Experimental top

An 1 mol L-1 NaOH aqueous solution was droped into one of mdsH2 (0.14 g, 1 mmol in 20 ml H2O) until the pH value of the solution reached 7 to 9. Slow evaporation for several days yieled colorless prismlike crystals of the title compound. Anal. Calcd for C2H14O17Na4S4 (530.34): C 4.51, H 2.69%; Found: C 4.53, H 2.66%.

Refinement top

All the non-hydrogen atoms were located from the Fourier maps, and were refined anisotropically. H atoms from µ2-H2O can be suitably placed in calculated positions, so all the H atoms, including those attached to carbon atoms and from water molecules, were positioned geometrically, and the isotropic vibration parameters related to the atoms which they are bonded to with Uiso = 1.2 Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of I with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms attached to carbon atoms are omitted for clarity. Symmetry codes: (i) -1+x, y, z; (ii) 1+x, y, z; (iii) -x, 2-y, 2-z. (iv) 1-x, 1-y, 1-z; (v) 1-x, 1-y, 2-z; (vi) 1-x, 2-y, 1-z; (vii) 1-x, 2-y, 2-z; (viii) 2-x, 2-y, 1-z;
[Figure 2] Fig. 2. Packing diagram of compound I. Na—O bond is showed by black line, H atoms are omitted for clarity.
Poly[penta-µ-aqua-µ6-methylenedisulfonato-µ5-methylenedisulfonato- tetrasodium(I)] top
Crystal data top
[Na4(CH2O6S2)2(H2O)5]Z = 2
Mr = 530.33F(000) = 540
Triclinic, P1Dx = 2.048 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7758 (7) ÅCell parameters from 202 reflections
b = 9.5339 (7) Åθ = 2.6–21.1°
c = 10.7878 (8) ŵ = 0.74 mm1
α = 81.425 (2)°T = 296 K
β = 74.545 (2)°Prismlike, colourless
γ = 87.227 (2)°0.30 × 0.25 × 0.25 mm
V = 860.19 (11) Å3
Data collection top
Bruker SMART APEX2
diffractometer
3321 independent reflections
Radiation source: fine-focus sealed tube3050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.81, Tmax = 0.84k = 1111
10702 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.7023P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3321 reflectionsΔρmax = 0.47 e Å3
244 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), F*=F(1+0.002xF2(sin(2θ))-0.25
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00025 (5)
Crystal data top
[Na4(CH2O6S2)2(H2O)5]γ = 87.227 (2)°
Mr = 530.33V = 860.19 (11) Å3
Triclinic, P1Z = 2
a = 8.7758 (7) ÅMo Kα radiation
b = 9.5339 (7) ŵ = 0.74 mm1
c = 10.7878 (8) ÅT = 296 K
α = 81.425 (2)°0.30 × 0.25 × 0.25 mm
β = 74.545 (2)°
Data collection top
Bruker SMART APEX2
diffractometer
3321 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3050 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.84Rint = 0.022
10702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.00Δρmax = 0.47 e Å3
3321 reflectionsΔρmin = 0.56 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4436 (2)1.0561 (2)0.8451 (2)0.0189 (4)
H1A0.42970.97430.91210.023*
H1B0.54401.09830.83940.023*
C20.9094 (3)0.4391 (2)0.8842 (2)0.0217 (4)
H2A1.00100.37860.88630.026*
H2B0.87980.47960.96470.026*
Na10.55562 (10)0.66480 (9)0.86815 (9)0.0253 (2)
Na20.85901 (11)0.87496 (9)0.59357 (9)0.0268 (2)
Na30.54875 (13)0.67712 (11)0.52620 (12)0.0421 (3)
Na40.08149 (10)0.88263 (9)0.88189 (8)0.0240 (2)
O10.57149 (19)0.87897 (16)0.69116 (15)0.0261 (4)
O20.5103 (2)1.11297 (17)0.59433 (15)0.0278 (4)
O30.29960 (18)0.94639 (19)0.70181 (15)0.0287 (4)
O40.3169 (2)1.21026 (19)1.01825 (16)0.0334 (4)
O50.3122 (2)1.30241 (17)0.79628 (18)0.0353 (4)
O60.13991 (19)1.11171 (17)0.91904 (17)0.0290 (4)
O70.82527 (18)0.65404 (17)0.73482 (15)0.0259 (4)
O81.06688 (19)0.66657 (17)0.80084 (17)0.0286 (4)
O91.0542 (2)0.51641 (18)0.64174 (16)0.0325 (4)
O100.6110 (2)0.41828 (18)0.9018 (2)0.0366 (4)
O110.7435 (2)0.21996 (18)0.99171 (18)0.0352 (4)
O120.7916 (2)0.27615 (19)0.75861 (17)0.0367 (4)
O130.3962 (2)0.59164 (17)0.74448 (17)0.0316 (4)
H13A0.29210.63560.76420.038*
H13B0.38540.48930.75810.038*
O140.8268 (2)0.7545 (2)0.42866 (17)0.0361 (4)
H14A0.89930.67460.41590.043*
H14B0.83880.81700.34700.043*
O151.1401 (2)0.88559 (19)0.51526 (17)0.0338 (4)
H15A1.18320.81770.45600.041*
H15B1.19270.87590.58460.041*
O160.6570 (2)0.43211 (19)0.54436 (17)0.0355 (4)
H16A0.76140.42430.48600.043*
H16B0.65870.39450.63260.043*
O170.1158 (2)0.97729 (18)0.77543 (16)0.0308 (4)
H17A0.21730.96970.83960.037*
H17B0.09511.07760.74710.037*
S10.45658 (6)0.99467 (5)0.69417 (5)0.01723 (13)
S20.29091 (6)1.18145 (5)0.89699 (5)0.02035 (14)
S30.96766 (6)0.58056 (5)0.75349 (5)0.01822 (14)
S40.75141 (6)0.33016 (5)0.88177 (5)0.01945 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0163 (10)0.0213 (10)0.0196 (9)0.0008 (8)0.0062 (8)0.0015 (8)
C20.0201 (11)0.0206 (10)0.0249 (10)0.0059 (8)0.0097 (9)0.0031 (8)
Na10.0236 (5)0.0240 (5)0.0298 (5)0.0020 (3)0.0086 (4)0.0049 (4)
Na20.0269 (5)0.0246 (5)0.0278 (5)0.0050 (4)0.0061 (4)0.0010 (4)
Na30.0352 (6)0.0290 (5)0.0592 (7)0.0041 (4)0.0151 (5)0.0090 (5)
Na40.0222 (5)0.0225 (4)0.0275 (4)0.0026 (3)0.0064 (4)0.0035 (3)
O10.0236 (8)0.0227 (8)0.0298 (8)0.0048 (6)0.0047 (6)0.0026 (6)
O20.0333 (9)0.0226 (8)0.0217 (8)0.0005 (7)0.0009 (7)0.0034 (6)
O30.0179 (8)0.0449 (10)0.0253 (8)0.0059 (7)0.0055 (6)0.0102 (7)
O40.0336 (10)0.0408 (10)0.0289 (9)0.0089 (8)0.0056 (7)0.0161 (8)
O50.0451 (11)0.0193 (8)0.0410 (10)0.0027 (7)0.0139 (8)0.0013 (7)
O60.0177 (8)0.0302 (9)0.0412 (9)0.0024 (7)0.0055 (7)0.0149 (7)
O70.0199 (8)0.0258 (8)0.0296 (8)0.0012 (6)0.0064 (6)0.0031 (6)
O80.0241 (8)0.0224 (8)0.0401 (9)0.0078 (6)0.0080 (7)0.0050 (7)
O90.0320 (9)0.0296 (9)0.0299 (9)0.0016 (7)0.0049 (7)0.0088 (7)
O100.0195 (8)0.0249 (9)0.0626 (12)0.0013 (7)0.0085 (8)0.0010 (8)
O110.0371 (10)0.0292 (9)0.0376 (9)0.0137 (8)0.0151 (8)0.0151 (7)
O120.0471 (11)0.0332 (10)0.0309 (9)0.0113 (8)0.0073 (8)0.0097 (7)
O130.0273 (9)0.0237 (8)0.0458 (10)0.0008 (7)0.0128 (8)0.0051 (7)
O140.0411 (11)0.0366 (10)0.0339 (9)0.0084 (8)0.0144 (8)0.0096 (8)
O150.0280 (9)0.0371 (10)0.0331 (9)0.0018 (7)0.0063 (7)0.0011 (7)
O160.0296 (9)0.0405 (10)0.0330 (9)0.0025 (8)0.0060 (7)0.0020 (8)
O170.0318 (9)0.0290 (9)0.0328 (9)0.0004 (7)0.0097 (7)0.0061 (7)
S10.0149 (3)0.0180 (3)0.0175 (2)0.00013 (19)0.00291 (19)0.00080 (19)
S20.0192 (3)0.0183 (3)0.0247 (3)0.0022 (2)0.0057 (2)0.0062 (2)
S30.0165 (3)0.0157 (3)0.0210 (3)0.00201 (19)0.00272 (19)0.00110 (19)
S40.0192 (3)0.0153 (3)0.0240 (3)0.00369 (19)0.0073 (2)0.00080 (19)
Geometric parameters (Å, º) top
C1—S21.783 (2)Na4—O172.3942 (19)
C1—S11.785 (2)Na4—O11ii2.3972 (19)
C1—H1A0.9700Na4—O6viii2.4881 (18)
C1—H1B0.9700Na4—Na4viii3.6050 (17)
C2—S41.780 (2)Na4—Na2vii4.1000 (13)
C2—S31.785 (2)O1—S11.4562 (16)
C2—H2A0.9700O2—S11.4398 (16)
C2—H2B0.9700O2—Na3v2.3339 (18)
Na1—O4i2.3382 (19)O3—S11.4512 (16)
Na1—O132.3644 (19)O4—S21.4528 (17)
Na1—O102.3709 (19)O4—Na1i2.3382 (19)
Na1—O72.4260 (18)O5—S21.4437 (18)
Na1—O10ii2.552 (2)O6—S21.4577 (17)
Na1—O12.5607 (18)O6—Na4viii2.4881 (18)
Na1—O11ii2.913 (2)O7—S31.4492 (16)
Na1—S4ii3.2699 (10)O8—S31.4569 (16)
Na1—Na33.6898 (15)O8—Na4iii2.3763 (18)
Na1—Na23.7975 (13)O9—S31.4460 (16)
Na1—Na1ii3.8822 (18)O10—S41.4432 (17)
Na2—O142.3389 (19)O10—Na1ii2.552 (2)
Na2—O17iii2.3816 (19)O11—S41.4515 (17)
Na2—O152.3866 (19)O11—Na4ii2.3972 (19)
Na2—O72.3893 (18)O11—Na1ii2.913 (2)
Na2—O15iv2.4057 (19)O12—S41.4462 (17)
Na2—O12.4623 (18)O13—H13A0.9700
Na2—Na2iv3.5152 (18)O13—H13B0.9700
Na2—Na33.6688 (15)O14—H14A0.9700
Na2—Na4iii4.1000 (13)O14—H14B0.9700
Na3—O2v2.3339 (18)O15—Na2iv2.4057 (19)
Na3—O132.420 (2)O15—H15A0.9700
Na3—O16vi2.465 (2)O15—H15B0.9700
Na3—O162.479 (2)O16—Na3vi2.465 (2)
Na3—O142.486 (2)O16—H16A0.9700
Na3—O12.856 (2)O16—H16B0.9700
Na3—Na3vi3.683 (2)O17—Na2vii2.3816 (19)
Na4—O32.3635 (18)O17—H17A0.9700
Na4—O8vii2.3763 (18)O17—H17B0.9700
Na4—O62.3816 (18)S4—Na1ii3.2699 (10)
S2—C1—S1117.32 (11)O13—Na3—Na2100.89 (6)
S2—C1—H1A108.0O16vi—Na3—Na2172.47 (6)
S1—C1—H1A108.0O16—Na3—Na2101.22 (6)
S2—C1—H1B108.0O14—Na3—Na239.03 (5)
S1—C1—H1B108.0O1—Na3—Na242.08 (4)
H1A—C1—H1B107.2O2v—Na3—Na3vi123.29 (7)
S4—C2—S3117.32 (12)O13—Na3—Na3vi81.18 (5)
S4—C2—H2A108.0O16vi—Na3—Na3vi41.99 (5)
S3—C2—H2A108.0O16—Na3—Na3vi41.70 (5)
S4—C2—H2B108.0O14—Na3—Na3vi116.43 (7)
S3—C2—H2B108.0O1—Na3—Na3vi151.94 (6)
H2A—C2—H2B107.2Na2—Na3—Na3vi142.60 (5)
O4i—Na1—O13166.18 (8)O2v—Na3—Na1121.20 (6)
O4i—Na1—O10111.23 (8)O13—Na3—Na138.99 (5)
O13—Na1—O1082.42 (7)O16vi—Na3—Na1124.37 (6)
O4i—Na1—O780.23 (6)O16—Na3—Na185.67 (5)
O13—Na1—O7105.45 (7)O14—Na3—Na196.42 (5)
O10—Na1—O778.58 (6)O1—Na3—Na143.79 (4)
O4i—Na1—O10ii81.40 (7)Na2—Na3—Na162.14 (3)
O13—Na1—O10ii100.65 (7)Na3vi—Na3—Na1109.09 (4)
O10—Na1—O10ii75.97 (7)O3—Na4—O8vii88.53 (6)
O7—Na1—O10ii140.45 (7)O3—Na4—O678.83 (6)
O4i—Na1—O191.18 (7)O8vii—Na4—O6167.28 (7)
O13—Na1—O178.18 (6)O3—Na4—O1795.65 (7)
O10—Na1—O1142.97 (7)O8vii—Na4—O1787.86 (6)
O7—Na1—O176.66 (6)O6—Na4—O1792.01 (6)
O10ii—Na1—O1138.45 (6)O3—Na4—O11ii90.43 (7)
O4i—Na1—O11ii88.36 (6)O8vii—Na4—O11ii92.18 (7)
O13—Na1—O11ii82.51 (6)O6—Na4—O11ii89.29 (7)
O10—Na1—O11ii120.57 (6)O17—Na4—O11ii173.92 (7)
O7—Na1—O11ii160.46 (6)O3—Na4—O6viii163.22 (7)
O10ii—Na1—O11ii51.33 (5)O8vii—Na4—O6viii108.07 (6)
O1—Na1—O11ii87.86 (5)O6—Na4—O6viii84.51 (6)
O4i—Na1—S4ii85.44 (5)O17—Na4—O6viii82.85 (6)
O13—Na1—S4ii90.84 (5)O11ii—Na4—O6viii91.36 (7)
O10—Na1—S4ii97.33 (5)O3—Na4—Na4viii122.20 (6)
O7—Na1—S4ii162.36 (5)O8vii—Na4—Na4viii149.15 (6)
O10ii—Na1—S4ii25.03 (4)O6—Na4—Na4viii43.39 (4)
O1—Na1—S4ii114.07 (5)O17—Na4—Na4viii86.40 (5)
O11ii—Na1—S4ii26.35 (3)O11ii—Na4—Na4viii90.47 (6)
O4i—Na1—Na3135.93 (6)O6viii—Na4—Na4viii41.12 (4)
O13—Na1—Na340.08 (5)O3—Na4—Na2vii81.93 (5)
O10—Na1—Na395.38 (6)O8vii—Na4—Na2vii60.20 (5)
O7—Na1—Na371.14 (5)O6—Na4—Na2vii115.90 (5)
O10ii—Na1—Na3140.70 (6)O17—Na4—Na2vii30.76 (4)
O1—Na1—Na350.52 (4)O11ii—Na4—Na2vii151.34 (6)
O11ii—Na1—Na3108.04 (5)O6viii—Na4—Na2vii103.86 (5)
S4ii—Na1—Na3126.48 (3)Na4viii—Na4—Na2vii117.00 (4)
O4i—Na1—Na278.15 (5)S1—O1—Na2131.01 (10)
O13—Na1—Na298.51 (5)S1—O1—Na1125.55 (9)
O10—Na1—Na2114.45 (6)Na2—O1—Na198.21 (6)
O7—Na1—Na237.60 (4)S1—O1—Na3114.45 (9)
O10ii—Na1—Na2159.32 (5)Na2—O1—Na386.90 (5)
O1—Na1—Na239.92 (4)Na1—O1—Na385.68 (5)
O11ii—Na1—Na2124.52 (4)S1—O2—Na3v148.85 (11)
S4ii—Na1—Na2147.72 (3)S1—O3—Na4131.30 (9)
Na3—Na1—Na258.66 (3)S2—O4—Na1i150.62 (11)
O4i—Na1—Na1ii97.06 (6)S2—O6—Na4130.70 (10)
O13—Na1—Na1ii92.35 (5)S2—O6—Na4viii123.77 (9)
O10—Na1—Na1ii39.63 (5)Na4—O6—Na4viii95.49 (6)
O7—Na1—Na1ii112.71 (5)S3—O7—Na2116.86 (9)
O10ii—Na1—Na1ii36.33 (4)S3—O7—Na1134.13 (9)
O1—Na1—Na1ii168.41 (6)Na2—O7—Na1104.11 (6)
O11ii—Na1—Na1ii84.25 (4)S3—O8—Na4iii144.64 (11)
S4ii—Na1—Na1ii58.81 (2)S4—O10—Na1135.88 (11)
Na3—Na1—Na1ii124.47 (4)S4—O10—Na1ii106.52 (10)
Na2—Na1—Na1ii150.21 (4)Na1—O10—Na1ii104.03 (7)
O14—Na2—O17iii174.53 (8)S4—O11—Na4ii136.83 (11)
O14—Na2—O1594.48 (7)S4—O11—Na1ii90.67 (9)
O17iii—Na2—O1587.48 (7)Na4ii—O11—Na1ii117.01 (7)
O14—Na2—O788.36 (7)Na1—O13—Na3100.93 (7)
O17iii—Na2—O786.24 (6)Na1—O13—H13A111.6
O15—Na2—O7101.40 (7)Na3—O13—H13A111.6
O14—Na2—O15iv99.06 (7)Na1—O13—H13B111.6
O17iii—Na2—O15iv86.17 (7)Na3—O13—H13B111.6
O15—Na2—O15iv85.64 (7)H13A—O13—H13B109.4
O7—Na2—O15iv169.40 (7)Na2—O14—Na398.94 (7)
O14—Na2—O191.38 (7)Na2—O14—H14A112.0
O17iii—Na2—O186.73 (6)Na3—O14—H14A112.0
O15—Na2—O1174.12 (7)Na2—O14—H14B112.0
O7—Na2—O179.24 (6)Na3—O14—H14B112.0
O15iv—Na2—O192.95 (6)H14A—O14—H14B109.7
O14—Na2—Na2iv99.26 (6)Na2—O15—Na2iv94.36 (7)
O17iii—Na2—Na2iv85.67 (6)Na2—O15—H15A112.9
O15—Na2—Na2iv43.03 (5)Na2iv—O15—H15A112.9
O7—Na2—Na2iv143.79 (6)Na2—O15—H15B112.9
O15iv—Na2—Na2iv42.61 (5)Na2iv—O15—H15B112.9
O1—Na2—Na2iv135.28 (6)H15A—O15—H15B110.3
O14—Na2—Na342.03 (5)Na3vi—O16—Na396.30 (7)
O17iii—Na2—Na3134.64 (6)Na3vi—O16—H16A112.5
O15—Na2—Na3134.80 (6)Na3—O16—H16A112.5
O7—Na2—Na371.87 (5)Na3vi—O16—H16B112.5
O15iv—Na2—Na3108.79 (6)Na3—O16—H16B112.5
O1—Na2—Na351.02 (5)H16A—O16—H16B110.0
Na2iv—Na2—Na3134.34 (4)Na2vii—O17—Na4118.30 (8)
O14—Na2—Na196.33 (6)Na2vii—O17—H17A107.7
O17iii—Na2—Na178.85 (5)Na4—O17—H17A107.7
O15—Na2—Na1137.49 (5)Na2vii—O17—H17B107.7
O7—Na2—Na138.29 (4)Na4—O17—H17B107.7
O15iv—Na2—Na1132.48 (5)H17A—O17—H17B107.1
O1—Na2—Na141.87 (4)O2—S1—O3113.99 (10)
Na2iv—Na2—Na1164.30 (4)O2—S1—O1113.19 (9)
Na3—Na2—Na159.20 (3)O3—S1—O1112.55 (10)
O14—Na2—Na4iii146.42 (6)O2—S1—C1106.32 (10)
O17iii—Na2—Na4iii30.94 (5)O3—S1—C1106.12 (9)
O15—Na2—Na4iii66.79 (5)O1—S1—C1103.62 (10)
O7—Na2—Na4iii69.72 (5)O5—S2—O4114.42 (11)
O15iv—Na2—Na4iii106.56 (5)O5—S2—O6112.59 (11)
O1—Na2—Na4iii108.29 (5)O4—S2—O6111.20 (10)
Na2iv—Na2—Na4iii85.84 (3)O5—S2—C1107.49 (10)
Na3—Na2—Na4iii139.39 (3)O4—S2—C1102.79 (10)
Na1—Na2—Na4iii82.22 (3)O6—S2—C1107.57 (10)
O2v—Na3—O13123.40 (7)O9—S3—O7113.00 (10)
O2v—Na3—O16vi86.03 (7)O9—S3—O8112.97 (10)
O13—Na3—O16vi85.41 (7)O7—S3—O8112.99 (10)
O2v—Na3—O16152.16 (8)O9—S3—C2106.55 (10)
O13—Na3—O1681.48 (6)O7—S3—C2107.55 (10)
O16vi—Na3—O1683.70 (7)O8—S3—C2102.91 (10)
O2v—Na3—O1483.66 (7)O10—S4—O12113.60 (12)
O13—Na3—O14134.23 (8)O10—S4—O11111.27 (11)
O16vi—Na3—O14136.85 (8)O12—S4—O11113.07 (11)
O16—Na3—O1486.32 (7)O10—S4—C2106.45 (10)
O2v—Na3—O179.21 (6)O12—S4—C2107.98 (11)
O13—Na3—O171.68 (6)O11—S4—C2103.70 (10)
O16vi—Na3—O1138.69 (7)O10—S4—Na1ii48.45 (8)
O16—Na3—O1124.33 (7)O12—S4—Na1ii137.74 (8)
O14—Na3—O179.74 (6)O11—S4—Na1ii62.98 (8)
O2v—Na3—Na287.04 (5)C2—S4—Na1ii113.81 (8)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y, z; (iv) x+2, y+2, z+1; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1; (vii) x1, y, z; (viii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O8vii0.971.932.868 (2)163
O13—H13B···O5ix0.971.872.824 (2)166
O14—H14A···O9x0.972.002.871 (2)148
O15—H15B···O3iii0.971.972.877 (2)155
O16—H16A···O9x0.971.872.794 (2)158
O16—H16B···O120.972.183.034 (3)147
O17—H17A···O4viii0.972.172.879 (3)129
O17—H17B···O12xi0.972.102.918 (3)141
Symmetry codes: (iii) x+1, y, z; (vii) x1, y, z; (viii) x, y+2, z+2; (ix) x, y1, z; (x) x+2, y+1, z+1; (xi) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Na4(CH2O6S2)2(H2O)5]
Mr530.33
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.7758 (7), 9.5339 (7), 10.7878 (8)
α, β, γ (°)81.425 (2), 74.545 (2), 87.227 (2)
V3)860.19 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART APEX2
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.81, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
10702, 3321, 3050
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.093, 1.00
No. of reflections3321
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.56

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O8i0.971.932.868 (2)162.8
O13—H13B···O5ii0.971.872.824 (2)166.1
O14—H14A···O9iii0.972.002.871 (2)148.2
O15—H15B···O3iv0.971.972.877 (2)154.8
O16—H16A···O9iii0.971.872.794 (2)157.8
O16—H16B···O120.972.183.034 (3)146.6
O17—H17A···O4v0.972.172.879 (3)128.9
O17—H17B···O12vi0.972.102.918 (3)140.9
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x, y+2, z+2; (vi) x1, y+1, z.
 

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J.-W. (2004). Coord. Chem. Rev. 248, 1061–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationCôté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49–60.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, M., Xiang, J.-F., Chen, S.-P., Wu, S.-M., Yuan, L.-J., Li, H., He, H.-J. & Sun, J.-T. (2008). J. Coord. Chem. 61, 372–383.  Web of Science CSD CrossRef CAS Google Scholar
First citationMi, L.-W., Hou, H.-W., Song, Z.-Y., Han, H.-Y., Xu, H., Fan, Y.-T. & Ng, S.-W. (2007). J. Cryst. Growth Des. 7, 2553–2561.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVidenova-Adrabinska, V. (2007). Coord. Chem. Rev. 251, 1987–2016.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds