organic compounds
(5S,6S)-4,5-Dimethyl-3-methylacryloyl-6-phenyl-1,3,4-oxadiazinan-2-one
aCB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA
*Correspondence e-mail: ferrence@illinoisstate.edu
The title compound, C15H18N2O3, is an example of an oxadiazinan-2-one with significant interaction between the N3-acyl and N4-methyl groups. These steric interactions result in a large torsion angle between the two carbonyl groups, not present with acyl substituents with less steric demand.
Related literature
For related literature, see: Bruno et al. 2004; Burgeson et al. (2004); Casper et al. (2002a,b); Ferrence et al. (2003); Hitchcock et al. (2001, 2004); Szczepura et al. (2004); Trepanier et al. (1968).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2003); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808013986/zl2116sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808013986/zl2116Isup2.hkl
The title compound was prepared by acylation of pseudoephedrine derived 1,3,4-oxadiazinan-2-one using sodium hexamethyldisilazane and methylacrylolyl chloride (Casper et al., 2002a).
All non-H atoms were refined anisotropically without disorder, except for the C19 methyl group which had H-atoms attached as rotationally disordered methyl groups using the AFIX 123 command. All H atoms were initially identified through difference Fourier synthesis then removed and included in the
in the riding-model approximation (C–H = 0.95, 0.98, 0.99 and 1.00 Å for Ar–H, CH3 and sp2 CH2 and CH; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)). In the absence of significant effects, Friedel pairs were merged.Data collection: SMART (Bruker, 2003); cell
SMART (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).C15H18N2O3 | F(000) = 584 |
Mr = 274.31 | Dx = 1.27 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 7730 reflections |
a = 8.7962 (6) Å | θ = 3.3–26.4° |
b = 9.7797 (6) Å | µ = 0.09 mm−1 |
c = 16.6782 (11) Å | T = 193 K |
V = 1434.73 (16) Å3 | Prism, colourless |
Z = 4 | 0.46 × 0.38 × 0.21 mm |
Bruker P4/R4/SMART 1000 CCD diffractometer | 1702 independent reflections |
Radiation source: sealed tube | 1593 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
/w scans | θmax = 26.4°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003) | h = −10→11 |
Tmin = 0.865, Tmax = 0.982 | k = −11→12 |
9610 measured reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.039P)2 + 0.2942P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.080 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.15 e Å−3 |
1702 reflections | Δρmin = −0.13 e Å−3 |
181 parameters |
C15H18N2O3 | V = 1434.73 (16) Å3 |
Mr = 274.31 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.7962 (6) Å | µ = 0.09 mm−1 |
b = 9.7797 (6) Å | T = 193 K |
c = 16.6782 (11) Å | 0.46 × 0.38 × 0.21 mm |
Bruker P4/R4/SMART 1000 CCD diffractometer | 1702 independent reflections |
Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003) | 1593 reflections with I > 2σ(I) |
Tmin = 0.865, Tmax = 0.982 | Rint = 0.032 |
9610 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.15 e Å−3 |
1702 reflections | Δρmin = −0.13 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.56811 (14) | 0.91142 (13) | 0.46559 (7) | 0.0296 (3) | |
C2 | 0.6459 (2) | 0.85642 (18) | 0.40478 (10) | 0.0255 (4) | |
N3 | 0.56076 (17) | 0.80251 (16) | 0.34127 (8) | 0.0270 (3) | |
N4 | 0.40508 (18) | 0.76608 (16) | 0.35333 (9) | 0.0281 (3) | |
C5 | 0.3312 (2) | 0.8846 (2) | 0.39098 (11) | 0.0275 (4) | |
H5 | 0.3518 | 0.9668 | 0.357 | 0.033* | |
C6 | 0.4005 (2) | 0.90915 (19) | 0.47323 (10) | 0.0266 (4) | |
H6 | 0.3726 | 0.8301 | 0.5083 | 0.032* | |
C7 | 0.3531 (2) | 1.0377 (2) | 0.51526 (11) | 0.0293 (4) | |
C8 | 0.2870 (2) | 1.0285 (2) | 0.59025 (12) | 0.0382 (5) | |
H8 | 0.2767 | 0.9415 | 0.615 | 0.046* | |
C9 | 0.2356 (3) | 1.1443 (3) | 0.63006 (14) | 0.0501 (6) | |
H9 | 0.1901 | 1.1364 | 0.6815 | 0.06* | |
C10 | 0.2509 (3) | 1.2699 (3) | 0.59454 (16) | 0.0548 (7) | |
H10 | 0.2146 | 1.3495 | 0.6211 | 0.066* | |
C11 | 0.3186 (3) | 1.2809 (3) | 0.52055 (17) | 0.0581 (7) | |
H11 | 0.3305 | 1.3685 | 0.4967 | 0.07* | |
C12 | 0.3698 (3) | 1.1662 (2) | 0.48046 (14) | 0.0432 (5) | |
H12 | 0.4163 | 1.1749 | 0.4293 | 0.052* | |
C13 | 0.1593 (2) | 0.8641 (2) | 0.39546 (12) | 0.0368 (5) | |
H13A | 0.119 | 0.8483 | 0.3415 | 0.055* | |
H13B | 0.1119 | 0.9459 | 0.4184 | 0.055* | |
H13C | 0.1366 | 0.7849 | 0.4294 | 0.055* | |
C14 | 0.3987 (2) | 0.63742 (19) | 0.39932 (11) | 0.0345 (4) | |
H14A | 0.4509 | 0.5651 | 0.3694 | 0.052* | |
H14B | 0.2923 | 0.6114 | 0.4078 | 0.052* | |
H14C | 0.4486 | 0.6503 | 0.4513 | 0.052* | |
C15 | 0.6276 (2) | 0.7502 (2) | 0.27061 (11) | 0.0302 (4) | |
O16 | 0.56288 (17) | 0.66036 (17) | 0.23419 (8) | 0.0436 (4) | |
C17 | 0.7710 (2) | 0.8135 (3) | 0.24081 (11) | 0.0395 (5) | |
C18 | 0.7866 (3) | 0.9514 (3) | 0.23698 (14) | 0.0552 (7) | |
H18A | 0.8742 | 0.9903 | 0.2127 | 0.066* | |
H18B | 0.7099 | 1.009 | 0.2586 | 0.066* | |
C19 | 0.8816 (3) | 0.7179 (3) | 0.20957 (19) | 0.0697 (9) | |
H19A | 0.8464 | 0.6242 | 0.2191 | 0.105* | 0.5 |
H19B | 0.9793 | 0.7319 | 0.2366 | 0.105* | 0.5 |
H19C | 0.8941 | 0.7327 | 0.1518 | 0.105* | 0.5 |
H19D | 0.9668 | 0.7684 | 0.1859 | 0.105* | 0.5 |
H19E | 0.8339 | 0.6606 | 0.1684 | 0.105* | 0.5 |
H19F | 0.9191 | 0.6599 | 0.2532 | 0.105* | 0.5 |
O20 | 0.78185 (15) | 0.85606 (15) | 0.40662 (8) | 0.0334 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0264 (7) | 0.0361 (7) | 0.0264 (6) | 0.0026 (6) | −0.0026 (5) | −0.0042 (5) |
C2 | 0.0276 (9) | 0.0240 (9) | 0.0249 (8) | 0.0016 (7) | −0.0016 (7) | 0.0032 (7) |
N3 | 0.0232 (8) | 0.0327 (8) | 0.0250 (7) | −0.0007 (7) | 0.0007 (6) | −0.0016 (6) |
N4 | 0.0239 (8) | 0.0330 (8) | 0.0273 (7) | −0.0043 (7) | 0.0012 (6) | −0.0013 (6) |
C5 | 0.0253 (9) | 0.0304 (10) | 0.0267 (8) | −0.0014 (8) | 0.0024 (7) | 0.0034 (7) |
C6 | 0.0255 (9) | 0.0277 (9) | 0.0266 (8) | −0.0010 (8) | 0.0024 (8) | 0.0026 (7) |
C7 | 0.0252 (9) | 0.0312 (10) | 0.0315 (9) | −0.0004 (8) | −0.0011 (8) | −0.0018 (8) |
C8 | 0.0376 (11) | 0.0409 (12) | 0.0360 (10) | −0.0041 (10) | 0.0027 (9) | −0.0055 (9) |
C9 | 0.0417 (12) | 0.0642 (16) | 0.0445 (11) | 0.0043 (12) | 0.0035 (10) | −0.0207 (12) |
C10 | 0.0533 (15) | 0.0482 (14) | 0.0628 (15) | 0.0179 (12) | −0.0107 (13) | −0.0232 (12) |
C11 | 0.0741 (18) | 0.0294 (12) | 0.0707 (17) | 0.0106 (12) | −0.0103 (15) | −0.0008 (12) |
C12 | 0.0514 (13) | 0.0342 (11) | 0.0442 (11) | 0.0028 (10) | 0.0044 (10) | 0.0044 (10) |
C13 | 0.0248 (9) | 0.0471 (12) | 0.0384 (10) | −0.0031 (9) | 0.0016 (8) | 0.0015 (10) |
C14 | 0.0386 (10) | 0.0299 (10) | 0.0349 (9) | −0.0052 (9) | 0.0028 (9) | −0.0033 (8) |
C15 | 0.0278 (10) | 0.0379 (11) | 0.0249 (8) | 0.0029 (8) | −0.0018 (7) | −0.0026 (8) |
O16 | 0.0390 (8) | 0.0533 (9) | 0.0385 (7) | −0.0053 (8) | 0.0051 (6) | −0.0169 (7) |
C17 | 0.0302 (10) | 0.0612 (14) | 0.0272 (9) | −0.0053 (10) | 0.0019 (8) | −0.0060 (9) |
C18 | 0.0665 (17) | 0.0539 (15) | 0.0453 (12) | −0.0102 (14) | 0.0131 (12) | 0.0109 (11) |
C19 | 0.0401 (14) | 0.089 (2) | 0.0800 (18) | −0.0012 (15) | 0.0159 (14) | −0.0317 (17) |
O20 | 0.0253 (7) | 0.0426 (8) | 0.0324 (6) | 0.0028 (6) | −0.0047 (5) | −0.0008 (6) |
O1—C2 | 1.336 (2) | C11—C12 | 1.382 (3) |
O1—C6 | 1.480 (2) | C11—H11 | 0.95 |
C2—O20 | 1.196 (2) | C12—H12 | 0.95 |
C2—N3 | 1.400 (2) | C13—H13A | 0.98 |
N3—C15 | 1.413 (2) | C13—H13B | 0.98 |
N3—N4 | 1.429 (2) | C13—H13C | 0.98 |
N4—C5 | 1.470 (2) | C14—H14A | 0.98 |
N4—C14 | 1.475 (2) | C14—H14B | 0.98 |
C5—C6 | 1.520 (2) | C14—H14C | 0.98 |
C5—C13 | 1.528 (3) | C15—O16 | 1.210 (2) |
C5—H5 | 1 | C15—C17 | 1.491 (3) |
C6—C7 | 1.499 (3) | C17—C18 | 1.357 (4) |
C6—H6 | 1 | C17—C19 | 1.447 (3) |
C7—C8 | 1.382 (3) | C18—H18A | 0.95 |
C7—C12 | 1.392 (3) | C18—H18B | 0.95 |
C8—C9 | 1.388 (3) | C19—H19A | 0.98 |
C8—H8 | 0.95 | C19—H19B | 0.98 |
C9—C10 | 1.371 (4) | C19—H19C | 0.98 |
C9—H9 | 0.95 | C19—H19D | 0.98 |
C10—C11 | 1.375 (4) | C19—H19E | 0.98 |
C10—H10 | 0.95 | C19—H19F | 0.98 |
C2—O1—C6 | 124.71 (14) | C5—C13—H13B | 109.5 |
O20—C2—O1 | 119.58 (17) | H13A—C13—H13B | 109.5 |
O20—C2—N3 | 123.57 (17) | C5—C13—H13C | 109.5 |
O1—C2—N3 | 116.85 (15) | H13A—C13—H13C | 109.5 |
C2—N3—C15 | 123.02 (15) | H13B—C13—H13C | 109.5 |
C2—N3—N4 | 119.99 (14) | N4—C14—H14A | 109.5 |
C15—N3—N4 | 115.19 (14) | N4—C14—H14B | 109.5 |
N3—N4—C5 | 106.68 (14) | H14A—C14—H14B | 109.5 |
N3—N4—C14 | 108.80 (14) | N4—C14—H14C | 109.5 |
C5—N4—C14 | 115.71 (14) | H14A—C14—H14C | 109.5 |
N4—C5—C6 | 109.45 (14) | H14B—C14—H14C | 109.5 |
N4—C5—C13 | 110.80 (16) | O16—C15—N3 | 119.08 (18) |
C6—C5—C13 | 111.93 (15) | O16—C15—C17 | 122.15 (18) |
N4—C5—H5 | 108.2 | N3—C15—C17 | 118.67 (17) |
C6—C5—H5 | 108.2 | C18—C17—C19 | 123.9 (3) |
C13—C5—H5 | 108.2 | C18—C17—C15 | 120.9 (2) |
O1—C6—C7 | 107.77 (14) | C19—C17—C15 | 114.9 (2) |
O1—C6—C5 | 108.91 (14) | C17—C18—H18A | 120 |
C7—C6—C5 | 116.28 (15) | C17—C18—H18B | 120 |
O1—C6—H6 | 107.9 | H18A—C18—H18B | 120 |
C7—C6—H6 | 107.9 | C17—C19—H19A | 109.5 |
C5—C6—H6 | 107.9 | C17—C19—H19B | 109.5 |
C8—C7—C12 | 118.74 (19) | H19A—C19—H19B | 109.5 |
C8—C7—C6 | 119.06 (18) | C17—C19—H19C | 109.5 |
C12—C7—C6 | 122.18 (17) | H19A—C19—H19C | 109.5 |
C7—C8—C9 | 121.1 (2) | H19B—C19—H19C | 109.5 |
C7—C8—H8 | 119.4 | C17—C19—H19D | 109.5 |
C9—C8—H8 | 119.4 | H19A—C19—H19D | 141.1 |
C10—C9—C8 | 119.5 (2) | H19B—C19—H19D | 56.3 |
C10—C9—H9 | 120.3 | H19C—C19—H19D | 56.3 |
C8—C9—H9 | 120.3 | C17—C19—H19E | 109.5 |
C9—C10—C11 | 120.0 (2) | H19A—C19—H19E | 56.3 |
C9—C10—H10 | 120 | H19B—C19—H19E | 141.1 |
C11—C10—H10 | 120 | H19C—C19—H19E | 56.3 |
C10—C11—C12 | 120.8 (2) | H19D—C19—H19E | 109.5 |
C10—C11—H11 | 119.6 | C17—C19—H19F | 109.5 |
C12—C11—H11 | 119.6 | H19A—C19—H19F | 56.3 |
C11—C12—C7 | 119.8 (2) | H19B—C19—H19F | 56.3 |
C11—C12—H12 | 120.1 | H19C—C19—H19F | 141.1 |
C7—C12—H12 | 120.1 | H19D—C19—H19F | 109.5 |
C5—C13—H13A | 109.5 | H19E—C19—H19F | 109.5 |
C6—O1—C2—O20 | −175.30 (16) | C5—C6—C7—C8 | 122.65 (19) |
C6—O1—C2—N3 | 5.1 (3) | O1—C6—C7—C12 | 66.8 (2) |
O20—C2—N3—C15 | −4.2 (3) | C5—C6—C7—C12 | −55.7 (2) |
O1—C2—N3—C15 | 175.31 (16) | C12—C7—C8—C9 | 1.1 (3) |
O20—C2—N3—N4 | 159.76 (17) | C6—C7—C8—C9 | −177.33 (19) |
O1—C2—N3—N4 | −20.7 (2) | C7—C8—C9—C10 | −0.2 (3) |
C2—N3—N4—C5 | 50.5 (2) | C8—C9—C10—C11 | −0.9 (4) |
C15—N3—N4—C5 | −144.27 (15) | C9—C10—C11—C12 | 1.1 (4) |
C2—N3—N4—C14 | −74.94 (19) | C10—C11—C12—C7 | −0.2 (4) |
C15—N3—N4—C14 | 90.25 (17) | C8—C7—C12—C11 | −0.9 (3) |
N3—N4—C5—C6 | −64.27 (17) | C6—C7—C12—C11 | 177.5 (2) |
C14—N4—C5—C6 | 56.91 (19) | C2—N3—C15—O16 | 150.77 (18) |
N3—N4—C5—C13 | 171.82 (15) | N4—N3—C15—O16 | −13.9 (3) |
C14—N4—C5—C13 | −67.0 (2) | C2—N3—C15—C17 | −32.8 (3) |
C2—O1—C6—C7 | −147.65 (16) | N4—N3—C15—C17 | 162.50 (16) |
C2—O1—C6—C5 | −20.7 (2) | O16—C15—C17—C18 | 130.5 (2) |
N4—C5—C6—O1 | 50.02 (18) | N3—C15—C17—C18 | −45.8 (3) |
C13—C5—C6—O1 | 173.25 (16) | O16—C15—C17—C19 | −43.4 (3) |
N4—C5—C6—C7 | 171.95 (15) | N3—C15—C17—C19 | 140.3 (2) |
C13—C5—C6—C7 | −64.8 (2) | O20—C2—C15—O16 | 132.4 (3) |
O1—C6—C7—C8 | −114.81 (19) |
Experimental details
Crystal data | |
Chemical formula | C15H18N2O3 |
Mr | 274.31 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 193 |
a, b, c (Å) | 8.7962 (6), 9.7797 (6), 16.6782 (11) |
V (Å3) | 1434.73 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.46 × 0.38 × 0.21 |
Data collection | |
Diffractometer | Bruker P4/R4/SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS in SAINT-Plus; Bruker, 2003) |
Tmin, Tmax | 0.865, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9610, 1702, 1593 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.080, 1.07 |
No. of reflections | 1702 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.13 |
Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).
Acknowledgements
This material is based upon work supported by the US National Science Foundation (CHE-0348158) (to GMF) and the American Chemical Society Petroleum Research Fund (to SRH & GMF). GMF thanks Robert McDonald and Michael Ferguson, X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta for the data collection.
References
Bruker (2003). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CrossRef PubMed CAS Google Scholar
Burgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem. 69, 727–734. Web of Science CSD CrossRef PubMed CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002a). J. Org. Chem. 67, 8871–8876. Web of Science CSD CrossRef PubMed CAS Google Scholar
Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002b). Org. Lett. 4, 3739–3742. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ferrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212–o214. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem. 69, 714–718. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hitchcock, S. R., Nora, G. P., Casper, D. M., Squire, M. D., Maroules, C. D., Ferrence, G. M., Szczepura, L. F. & Standard, J. M. (2001). Tetrahedron, 57, 9789–9798. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467–o1469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Trepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem. 11, 357–361. CrossRef CAS PubMed Web of Science Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, the synthesis of varying oxadiazinanones has led to chiral auxiliaries used in aldol addition reactions. The fundamental heterocyclic structure of related 1,3,4-oxadiazinan-2-one compounds has been known for nearly forty years (Trepanier et al., 1968); however, it has not been until recent years that more detailed conformational studies have been performed on species containing an N3-acyl substituent (Hitchcock et al., 2001; Casper et al., 2002a). The influence of the N3-acyl substituent is of significant importance in these studies. When the N3-acyl substituent is of low steric demand the two carbonyls found in the molecule are co-planar and point at one another. However, when the N3-substituent is of high steric demand, repulsive steric interactions between the N3-acyl substituent and the N4-methyl group cause the two carbonyls to twist out of planarity. The molecule represented herein is an example of a structure in which the acyl substituent at the N3 position has a high steric demand.
Herein we report the single-crystal X-ray structure of a vinyl-acylated pseudoephedrine-derived 1,3,4-oxadiazinan-2-one (I). Several structures for various N3 substituted oxadiazananones have been published (Burgeson et al., 2004; Casper et al., 2002b; Ferrence et al., 2003; Hitchcock et al., 2001, 2004). Also, a compound unsubstituted at the N3 position has been synthesized (Szczepura et al., 2004). A Mogul (Bruno et al. 2004) geometry check showed all non-H bond angles, distances and torsions to be within typical ranges. The structures of previously reported acetyl, propionyl, and t-butylacetyl substituents at the N3 position exhibit syn-parallel carbonyls. In contrast, in the title compound the 150.8 (2)° O16—C15—N3—C2 and 132.4 (3)° O20—C2—C15—O16 torsion angles are indicative of anti-parallel arrangement of the imide carbonyl groups. It appears likely that this arrangement helps to relieve steric congestion between the O16 carbonyl and the vinyl moiety while at the same time avoiding steric interactions between the N4 methyl group and the vinyl CH2 group. The O16—C15—C17—C18 torsion angle is 130.5 (2)°. The potential for steric interactions is further illustrated in the Jmol enhanced figure (Fig. 2).