organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,6-Di­chloro­pyridin-2-yl)(3,5-di­methyl-1H-pyrazol-1-yl)methanone

aDepartment of Chemistry, Guangxi University for Nationalities, Nanning 530004, People's Republic of China, bDepartment of Chemistry, Guangxi University, Nanning 530006, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530006, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 10 April 2008; accepted 18 May 2008; online 7 June 2008)

In the crystal structure of the title compound, C11H9Cl2N3O, mol­ecules are held together by short inter­molecular Cl⋯Cl contacts [3.319 (1) Å] and C—H⋯N hydrogen bonds, forming two-dimensional networks parallel to (01[\overline{1}]).

Related literature

For related literature, see: Mann et al. (1992[Mann, F., Chiment, F., Balasco, A., Cenicola, M. L., Amico, M. D., Parrilo, C., Rossi, F. & Marmo, E. (1992). Eur. J. Med. Chem. 27, 633-639.]); Perevalov et al. (2001[Perevalov, S. G., Burgart, Y. V., Saloutin, V. I. & Chupakhin, O. N. (2001). Russ. Chem. Rev. 70, 921-925.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9Cl2N3O

  • Mr = 270.11

  • Triclinic, [P \overline 1]

  • a = 7.3440 (10) Å

  • b = 8.7981 (12) Å

  • c = 9.6490 (14) Å

  • α = 75.554 (2)°

  • β = 89.627 (3)°

  • γ = 86.819 (2)°

  • V = 602.79 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 298 (2) K

  • 0.50 × 0.49 × 0.48 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.780, Tmax = 0.787

  • 3145 measured reflections

  • 2102 independent reflections

  • 1543 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.04

  • 2101 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯N1i 0.96 2.56 3.514 (4) 174
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemical and pharmacological properties of pyrazoles have been investigated extensively, owing to their chelating ability with metal ions and their potentially beneficial chemical and biological activities (Mann et al., 1992, Perevalov et al., 2001). As part of our studies on the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of (3,6-dichloropyridin-2-yl)(3,5-dimethyl-1H-pyrazol-1-yl)methanone.

The crystal structure of the monomeric title compound is built up by C11H9Cl2N3O molecules (Fig.1), linked by intermolecular C—H···N hydrogen bonds along [100] (Table 1) and by Cl···Cl short contacts along the [011] direction (Cl1···Cl1ii: 3.319 (1)Å, (ii): 2-x, 1-y, 1-z) , forming a two-dimensional network parallel to (011).

The short C=O bond length (1.199 (3)Å) indicates that the molecule is in a keto form (Fig.1). The two rings are nearly perpendicular to each other (dihedral angle: 82.319 (84) °), and this fact helps in minimizing steric effects between them. Finally, there is an intermolecular ππ contact between pyridine groups with and intercentroid distance of 3.40 (1) Å, which contributes to the stability of the crystal packing.

Related literature top

For related literature, see: Mann et al. (1992); Perevalov et al. (2001).

Experimental top

A solution of 3,6-dichloropicolinoyl chloride (10 mmol) in 50 ml toluene was added to a solution of 3,5-dimethyl-1H-pyrazole (10 mmol) in 10 ml toluene. The reaction mixture was refluxed for 1 h with stirring then the resulting white precipitate was obtained by filtration, washed several times with ethanol and dried in vacuo (yield 90%). Elemental analysis calculate: Elemental analysis: found: C, 48.89; H, 3.33; N, 15.56; calc. for C11H9Cl2N3O: C, 48.99; H, 3.23; N, 15.46.

Refinement top

Data collection: 2102 independent reflections but 2101 in Refinement. H atoms on C atoms were positoned geometrically and refined using a riding model with C—H = 0.96Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of (I) showing the short contacts interactions as dashed lines.
(3,6-Dichloropyridin-2-yl)(3,5-dimethyl-1H-pyrazol-1-yl)methanone top
Crystal data top
C11H9Cl2N3OZ = 2
Mr = 270.11F(000) = 276
Triclinic, P1Dx = 1.488 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.344 (1) ÅCell parameters from 1363 reflections
b = 8.7981 (12) Åθ = 2.2–27.4°
c = 9.6490 (14) ŵ = 0.52 mm1
α = 75.554 (2)°T = 298 K
β = 89.627 (3)°Block, colourless
γ = 86.819 (2)°0.50 × 0.49 × 0.48 mm
V = 602.79 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2102 independent reflections
Radiation source: fine-focus sealed tube1543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.780, Tmax = 0.787k = 910
3145 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.2168P]
where P = (Fo2 + 2Fc2)/3
2101 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H9Cl2N3Oγ = 86.819 (2)°
Mr = 270.11V = 602.79 (15) Å3
Triclinic, P1Z = 2
a = 7.344 (1) ÅMo Kα radiation
b = 8.7981 (12) ŵ = 0.52 mm1
c = 9.6490 (14) ÅT = 298 K
α = 75.554 (2)°0.50 × 0.49 × 0.48 mm
β = 89.627 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2102 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1543 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.787Rint = 0.038
3145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2101 reflectionsΔρmin = 0.27 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60627 (11)0.85128 (9)0.94981 (8)0.0634 (3)
Cl20.90422 (12)0.19393 (9)0.92556 (10)0.0712 (3)
N10.8160 (3)0.4899 (3)0.8173 (2)0.0434 (5)
N20.6305 (3)0.7559 (2)0.5846 (2)0.0415 (5)
N30.4844 (3)0.6627 (2)0.6266 (2)0.0421 (5)
O10.8838 (3)0.8463 (3)0.6636 (2)0.0712 (7)
C10.7630 (4)0.7572 (3)0.6853 (3)0.0440 (6)
C20.7517 (3)0.6330 (3)0.8231 (2)0.0368 (6)
C30.6925 (3)0.6653 (3)0.9493 (3)0.0407 (6)
C40.6996 (4)0.5468 (3)1.0739 (3)0.0469 (7)
H40.65960.56621.15980.056*
C50.7666 (4)0.4004 (3)1.0686 (3)0.0488 (7)
H50.77460.31811.15080.059*
C60.8220 (4)0.3782 (3)0.9384 (3)0.0445 (7)
C70.7566 (5)0.9440 (4)0.3653 (3)0.0670 (9)
H7A0.75931.03320.40560.101*
H7B0.72590.97890.26540.101*
H7C0.87430.88900.37640.101*
C80.6167 (4)0.8362 (3)0.4409 (3)0.0483 (7)
C90.4615 (4)0.7924 (3)0.3939 (3)0.0548 (8)
H90.41450.82540.30130.066*
C100.3819 (4)0.6865 (3)0.5110 (3)0.0444 (6)
C110.2080 (4)0.6066 (4)0.5140 (3)0.0622 (8)
H11A0.10740.67820.52230.093*
H11B0.20910.51660.59440.093*
H11C0.19530.57330.42720.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0743 (6)0.0459 (4)0.0697 (5)0.0120 (4)0.0039 (4)0.0172 (4)
Cl20.0775 (6)0.0408 (4)0.0948 (7)0.0118 (4)0.0144 (5)0.0188 (4)
N10.0444 (13)0.0417 (13)0.0441 (13)0.0003 (10)0.0022 (10)0.0110 (10)
N20.0448 (13)0.0369 (12)0.0379 (12)0.0010 (10)0.0017 (10)0.0006 (9)
N30.0440 (13)0.0414 (12)0.0388 (12)0.0010 (10)0.0006 (10)0.0062 (9)
O10.0706 (15)0.0756 (16)0.0611 (14)0.0326 (13)0.0013 (11)0.0012 (11)
C10.0466 (16)0.0413 (15)0.0422 (15)0.0033 (13)0.0020 (12)0.0066 (12)
C20.0338 (13)0.0387 (14)0.0360 (13)0.0027 (11)0.0032 (10)0.0058 (11)
C30.0382 (14)0.0390 (14)0.0438 (15)0.0000 (12)0.0031 (11)0.0084 (12)
C40.0507 (17)0.0510 (17)0.0380 (15)0.0034 (13)0.0011 (12)0.0088 (12)
C50.0527 (18)0.0462 (17)0.0406 (15)0.0082 (13)0.0079 (13)0.0036 (12)
C60.0415 (15)0.0343 (14)0.0559 (17)0.0001 (11)0.0102 (12)0.0083 (12)
C70.079 (2)0.062 (2)0.0488 (18)0.0075 (18)0.0099 (16)0.0091 (15)
C80.0604 (19)0.0408 (15)0.0373 (15)0.0049 (13)0.0037 (13)0.0009 (12)
C90.064 (2)0.0595 (19)0.0359 (15)0.0079 (16)0.0081 (14)0.0047 (13)
C100.0488 (16)0.0445 (15)0.0382 (14)0.0057 (12)0.0024 (12)0.0090 (12)
C110.0570 (19)0.076 (2)0.0561 (19)0.0005 (17)0.0078 (15)0.0219 (16)
Geometric parameters (Å, º) top
Cl1—C31.722 (3)C5—C61.375 (4)
Cl2—C61.732 (3)C5—H50.9300
N1—C61.325 (3)C7—C81.496 (4)
N1—C21.334 (3)C7—H7A0.9600
N2—C11.382 (3)C7—H7B0.9600
N2—N31.383 (3)C7—H7C0.9600
N2—C81.392 (3)C8—C91.340 (4)
N3—C101.316 (3)C9—C101.419 (4)
O1—C11.199 (3)C9—H90.9300
C1—C21.502 (3)C10—C111.488 (4)
C2—C31.380 (3)C11—H11A0.9600
C3—C41.380 (4)C11—H11B0.9600
C4—C51.366 (4)C11—H11C0.9600
C4—H40.9300
C6—N1—C2117.4 (2)C5—C6—Cl2119.8 (2)
C1—N2—N3118.3 (2)C8—C7—H7A109.5
C1—N2—C8130.2 (2)C8—C7—H7B109.5
N3—N2—C8111.5 (2)H7A—C7—H7B109.5
C10—N3—N2104.7 (2)C8—C7—H7C109.5
O1—C1—N2123.1 (2)H7A—C7—H7C109.5
O1—C1—C2121.5 (2)H7B—C7—H7C109.5
N2—C1—C2115.3 (2)C9—C8—N2105.3 (2)
N1—C2—C3122.1 (2)C9—C8—C7131.3 (3)
N1—C2—C1114.8 (2)N2—C8—C7123.4 (3)
C3—C2—C1123.0 (2)C8—C9—C10107.6 (2)
C4—C3—C2119.4 (3)C8—C9—H9126.2
C4—C3—Cl1120.5 (2)C10—C9—H9126.2
C2—C3—Cl1120.03 (19)N3—C10—C9110.9 (2)
C5—C4—C3118.7 (3)N3—C10—C11120.8 (2)
C5—C4—H4120.6C9—C10—C11128.3 (2)
C3—C4—H4120.6C10—C11—H11A109.5
C4—C5—C6118.1 (2)C10—C11—H11B109.5
C4—C5—H5121.0H11A—C11—H11B109.5
C6—C5—H5121.0C10—C11—H11C109.5
N1—C6—C5124.3 (3)H11A—C11—H11C109.5
N1—C6—Cl2115.9 (2)H11B—C11—H11C109.5
C1—N2—N3—C10179.3 (2)Cl1—C3—C4—C5179.1 (2)
C8—N2—N3—C100.6 (3)C3—C4—C5—C60.7 (4)
N3—N2—C1—O1171.8 (3)C2—N1—C6—C50.0 (4)
C8—N2—C1—O18.1 (5)C2—N1—C6—Cl2179.37 (18)
N3—N2—C1—C211.2 (3)C4—C5—C6—N10.5 (4)
C8—N2—C1—C2169.0 (2)C4—C5—C6—Cl2178.9 (2)
C6—N1—C2—C30.2 (4)C1—N2—C8—C9179.9 (3)
C6—N1—C2—C1175.1 (2)N3—N2—C8—C90.0 (3)
O1—C1—C2—N198.9 (3)C1—N2—C8—C71.1 (5)
N2—C1—C2—N178.2 (3)N3—N2—C8—C7179.1 (3)
O1—C1—C2—C376.4 (4)N2—C8—C9—C100.5 (3)
N2—C1—C2—C3106.5 (3)C7—C8—C9—C10179.5 (3)
N1—C2—C3—C40.0 (4)N2—N3—C10—C90.9 (3)
C1—C2—C3—C4174.9 (2)N2—N3—C10—C11179.3 (2)
N1—C2—C3—Cl1178.62 (19)C8—C9—C10—N30.9 (3)
C1—C2—C3—Cl16.4 (3)C8—C9—C10—C11179.3 (3)
C2—C3—C4—C50.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···N1i0.962.563.514 (4)174
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H9Cl2N3O
Mr270.11
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.344 (1), 8.7981 (12), 9.6490 (14)
α, β, γ (°)75.554 (2), 89.627 (3), 86.819 (2)
V3)602.79 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.50 × 0.49 × 0.48
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.780, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
3145, 2102, 1543
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.04
No. of reflections2101
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···N1i0.962.563.514 (4)174
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20761002). This research was sponsored by the Fund of the Talent Highland Research Program of Guangxi University (205121), the Science Foundation of the State Ethnic Affairs Commission (07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry and the Science Foundation of Guangxi University for Nationalities (0409032, 0409012, 0509ZD047).

References

First citationMann, F., Chiment, F., Balasco, A., Cenicola, M. L., Amico, M. D., Parrilo, C., Rossi, F. & Marmo, E. (1992). Eur. J. Med. Chem. 27, 633–639.  Google Scholar
First citationPerevalov, S. G., Burgart, Y. V., Saloutin, V. I. & Chupakhin, O. N. (2001). Russ. Chem. Rev. 70, 921–925.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds