metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(methanol-κO)[2-(2-pyridyl­meth­­oxy)-1,10-phenanthroline-κ3N,N′,N′′]manganese(II)

aDepartment of Chemistry, Dezhou University, Dezhou Shandong, Dezhou 253023, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: hongliangl1968@yahoo.com.cn

(Received 7 June 2008; accepted 19 June 2008; online 25 June 2008)

In the title mononuclear complex, [MnCl2(C18H13N3O)(CH4O)], the MnII ion assumes a distorted octa­hedral geometry. There is a ππ stacking inter­action between the phenanthroline ligand and the pyridine ring of a neighboring complex [centroid-to-centroid distance 3.5518 (13) Å]. The crystal structure also contains weak inter­molecular O—H⋯Cl hydrogen bonds that link neighboring complex mol­ecules into a one-dimensional chain along the b axis.

Related literature

For related structures, see: Liu et al. (2008[Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58-m60.]); Li et al. (2008[Li, H. L. & Liu, Q. S. (2008). Acta Cryst. E64, m847.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C18H13N3O)(CH4O)]

  • Mr = 445.20

  • Monoclinic, P 21 /n

  • a = 10.0390 (16) Å

  • b = 13.667 (2) Å

  • c = 13.583 (2) Å

  • β = 92.874 (2)°

  • V = 1861.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 298 (2) K

  • 0.38 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.699, Tmax = 0.879

  • 10717 measured reflections

  • 4048 independent reflections

  • 3278 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.01

  • 4048 reflections

  • 245 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H10⋯Cl1i 0.80 2.39 3.1581 (16) 161
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and many complexes have been reported with different subsitituent groups (Li et al. 2008; Liu et al. 2008), but no complex with (pyridyl-2-yl)methoxy as substituent has been published. We report here the crystal structure of the title complex, Fig1.

Compound (I) is a monomer, in which the Mn atom adopts a distorted octahedral geometry completed by two N-atom donors from 1,10-phenanthroline, one N atom from pyridine ring, two Cl atom and one O atom from methanol molecule. In neighboring monomers, there is a strong π-π interaction between 1,10-phenanthroline ligand and pyridine ring with a centroid-to-centroid distance of 3.5518 (13) Å . In addition, the crystal structure contains O—H···Cl hydrogen bonds that made the neighboring complexes connect into a one-dimensional chain along b axis as shown in Fig. 2.

Related literature top

For related structures, see: Liu et al. (2008); Li et al. (2008).

Experimental top

10 ml methanol solution of (2-((pyridin-2-yl)methoxy)-1,10-phenanthroline (0.1200 g, 0.418 mmol) was added into 15 ml methanol solution of MnCl2.4H2O (0.0827 g, 0.418 mmol) and the mixture was stirred for a few minutes. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for a week.

Refinement top

H atoms from the hydroxyl group of methanol was located in a difference Fourier map with O—H = 0.80 Å and refined as riding with Uiso(H) = 1.5Ueq(O); Other H atoms were placed in calculated positions with C—H = 0.96 Å for methyl group, C—H = 0.97 Å for methylene group and C—H = 0.93 Å for other H atoms, and refined as riding with Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Structure of the title complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing in the crystal structure. Intermolecular Hydrogen bonds as dashed lines.
Dichlorido(methanol-κO)[2-(2-pyridylmethoxy)-1,10-phenanthroline- κ3N,N',N'']manganese(II) top
Crystal data top
[MnCl2(C18H13N3O)(CH4O)]F(000) = 908
Mr = 445.20Dx = 1.589 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3203 reflections
a = 10.0390 (16) Åθ = 2.5–25.7°
b = 13.667 (2) ŵ = 1.02 mm1
c = 13.583 (2) ÅT = 298 K
β = 92.874 (2)°Block, colorless
V = 1861.2 (5) Å30.38 × 0.18 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4048 independent reflections
Radiation source: fine-focus sealed tube3278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1212
Tmin = 0.699, Tmax = 0.879k = 1317
10717 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0466P)2]
where P = (Fo2 + 2Fc2)/3
4048 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
[MnCl2(C18H13N3O)(CH4O)]V = 1861.2 (5) Å3
Mr = 445.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0390 (16) ŵ = 1.02 mm1
b = 13.667 (2) ÅT = 298 K
c = 13.583 (2) Å0.38 × 0.18 × 0.13 mm
β = 92.874 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4048 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3278 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.879Rint = 0.033
10717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.090H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
4048 reflectionsΔρmin = 0.26 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1526 (2)0.79472 (15)0.58696 (17)0.0372 (5)
H10.09450.77460.63420.045*
C20.2736 (2)0.83666 (16)0.61481 (17)0.0409 (6)
H20.29880.84490.68110.049*
C30.3567 (2)0.86618 (16)0.54275 (17)0.0399 (5)
H30.43900.89440.55960.048*
C40.3163 (2)0.85338 (16)0.44621 (17)0.0373 (5)
H40.37260.87430.39810.045*
C50.1191 (2)0.78311 (14)0.48767 (16)0.0308 (5)
C60.01179 (19)0.73705 (16)0.45422 (16)0.0355 (5)
H6A0.00340.70670.39030.043*
H6B0.03490.68650.50050.043*
C70.1580 (2)0.84967 (15)0.36073 (17)0.0331 (5)
C80.2826 (2)0.89726 (17)0.36516 (18)0.0409 (6)
H80.32570.90100.42410.049*
C90.3375 (2)0.93711 (16)0.28180 (19)0.0420 (6)
H90.41950.96870.28290.050*
C100.2712 (2)0.93111 (14)0.19319 (18)0.0361 (5)
C110.14608 (19)0.88455 (14)0.19628 (16)0.0293 (5)
C120.3287 (2)0.96695 (16)0.1018 (2)0.0461 (6)
H120.41000.99960.10100.055*
C130.2673 (2)0.95437 (17)0.0167 (2)0.0476 (6)
H130.30790.97640.04220.057*
C140.1406 (2)0.90753 (15)0.01644 (17)0.0375 (5)
C150.0780 (2)0.87583 (14)0.10597 (16)0.0309 (5)
C160.0753 (3)0.88884 (18)0.07041 (18)0.0499 (7)
H160.11470.90700.13110.060*
C170.0457 (3)0.84415 (18)0.06574 (18)0.0474 (6)
H170.08910.83030.12300.057*
C180.1037 (2)0.81939 (16)0.02599 (17)0.0395 (5)
H180.18780.79070.02860.047*
C190.0884 (3)1.03698 (18)0.3451 (2)0.0593 (7)
H19A0.00561.03890.32830.089*
H19B0.12451.10190.34190.089*
H19C0.10311.01170.41060.089*
Cl10.10996 (5)0.62442 (4)0.24263 (4)0.03925 (15)
Cl20.36834 (5)0.82286 (5)0.19848 (5)0.04570 (17)
Mn10.14453 (3)0.80494 (2)0.25537 (2)0.02795 (11)
N10.08860 (16)0.84415 (12)0.28120 (13)0.0288 (4)
N20.19883 (16)0.81198 (12)0.41697 (13)0.0314 (4)
N30.04509 (16)0.83459 (12)0.10973 (13)0.0304 (4)
O10.11631 (14)0.81011 (12)0.44771 (12)0.0424 (4)
O20.15254 (14)0.97535 (10)0.27729 (11)0.0372 (4)
H100.22271.00120.26760.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (13)0.0372 (13)0.0317 (12)0.0068 (10)0.0055 (10)0.0042 (9)
C20.0529 (15)0.0374 (13)0.0315 (13)0.0060 (11)0.0074 (11)0.0010 (10)
C30.0361 (12)0.0417 (14)0.0408 (14)0.0015 (10)0.0076 (10)0.0019 (10)
C40.0295 (11)0.0426 (13)0.0397 (14)0.0022 (9)0.0004 (10)0.0040 (10)
C50.0294 (11)0.0290 (11)0.0340 (12)0.0056 (8)0.0021 (9)0.0025 (9)
C60.0322 (11)0.0375 (12)0.0372 (13)0.0016 (9)0.0063 (9)0.0059 (10)
C70.0260 (10)0.0348 (12)0.0386 (13)0.0033 (9)0.0006 (9)0.0047 (9)
C80.0259 (11)0.0466 (14)0.0508 (15)0.0023 (10)0.0083 (10)0.0090 (11)
C90.0253 (11)0.0357 (13)0.0647 (17)0.0054 (9)0.0015 (11)0.0082 (11)
C100.0283 (11)0.0253 (11)0.0539 (15)0.0003 (9)0.0058 (10)0.0022 (10)
C110.0261 (10)0.0225 (10)0.0389 (13)0.0022 (8)0.0037 (9)0.0016 (8)
C120.0345 (12)0.0364 (13)0.0657 (18)0.0071 (10)0.0153 (12)0.0040 (12)
C130.0455 (14)0.0414 (14)0.0538 (17)0.0008 (11)0.0184 (12)0.0109 (11)
C140.0389 (12)0.0306 (11)0.0420 (14)0.0058 (10)0.0092 (10)0.0066 (10)
C150.0290 (11)0.0253 (11)0.0376 (13)0.0056 (8)0.0043 (9)0.0005 (9)
C160.0564 (16)0.0565 (16)0.0355 (15)0.0093 (13)0.0107 (12)0.0141 (11)
C170.0545 (16)0.0569 (16)0.0309 (13)0.0074 (13)0.0024 (11)0.0023 (11)
C180.0364 (12)0.0465 (14)0.0356 (13)0.0016 (10)0.0030 (10)0.0020 (10)
C190.0622 (17)0.0401 (15)0.078 (2)0.0018 (12)0.0270 (15)0.0142 (13)
Cl10.0355 (3)0.0310 (3)0.0508 (4)0.0014 (2)0.0029 (2)0.0018 (2)
Cl20.0283 (3)0.0637 (4)0.0460 (4)0.0058 (3)0.0106 (2)0.0148 (3)
Mn10.02338 (17)0.03248 (19)0.02796 (19)0.00096 (12)0.00103 (13)0.00058 (13)
N10.0243 (9)0.0298 (9)0.0322 (10)0.0001 (7)0.0003 (7)0.0021 (7)
N20.0266 (9)0.0361 (10)0.0313 (10)0.0010 (7)0.0000 (8)0.0022 (7)
N30.0273 (9)0.0324 (10)0.0312 (10)0.0013 (7)0.0004 (7)0.0011 (7)
O10.0303 (8)0.0628 (11)0.0345 (9)0.0104 (7)0.0074 (7)0.0018 (7)
O20.0357 (8)0.0323 (8)0.0443 (9)0.0042 (6)0.0076 (7)0.0018 (7)
Geometric parameters (Å, º) top
C1—C21.379 (3)C12—C131.347 (3)
C1—C51.382 (3)C12—H120.9300
C1—H10.9300C13—C141.424 (3)
C2—C31.377 (3)C13—H130.9300
C2—H20.9300C14—C161.402 (3)
C3—C41.364 (3)C14—C151.409 (3)
C3—H30.9300C15—N31.357 (3)
C4—N21.350 (3)C16—C171.358 (3)
C4—H40.9300C16—H160.9300
C5—N21.340 (3)C17—C181.390 (3)
C5—C61.507 (3)C17—H170.9300
C6—O11.448 (2)C18—N31.323 (3)
C6—H6A0.9700C18—H180.9300
C6—H6B0.9700C19—O21.425 (3)
C7—N11.316 (3)C19—H19A0.9600
C7—O11.347 (3)C19—H19B0.9600
C7—C81.414 (3)C19—H19C0.9600
C8—C91.349 (3)Cl1—Mn12.4961 (7)
C8—H80.9300Cl2—Mn12.4248 (7)
C9—C101.407 (3)Mn1—N32.2082 (18)
C9—H90.9300Mn1—N22.2370 (18)
C10—C111.407 (3)Mn1—O22.3487 (14)
C10—C121.430 (3)Mn1—N12.4434 (17)
C11—N11.379 (3)O2—H100.8048
C11—C151.439 (3)
C2—C1—C5118.9 (2)N3—C15—C11118.23 (18)
C2—C1—H1120.6C14—C15—C11119.99 (19)
C5—C1—H1120.6C17—C16—C14119.8 (2)
C3—C2—C1118.9 (2)C17—C16—H16120.1
C3—C2—H2120.6C14—C16—H16120.1
C1—C2—H2120.6C16—C17—C18119.0 (2)
C4—C3—C2119.0 (2)C16—C17—H17120.5
C4—C3—H3120.5C18—C17—H17120.5
C2—C3—H3120.5N3—C18—C17123.2 (2)
N2—C4—C3123.3 (2)N3—C18—H18118.4
N2—C4—H4118.3C17—C18—H18118.4
C3—C4—H4118.3O2—C19—H19A109.5
N2—C5—C1122.74 (19)O2—C19—H19B109.5
N2—C5—C6116.75 (19)H19A—C19—H19B109.5
C1—C5—C6120.5 (2)O2—C19—H19C109.5
O1—C6—C5110.41 (17)H19A—C19—H19C109.5
O1—C6—H6A109.6H19B—C19—H19C109.5
C5—C6—H6A109.6N3—Mn1—N2161.46 (6)
O1—C6—H6B109.6N3—Mn1—O286.71 (6)
C5—C6—H6B109.6N2—Mn1—O280.09 (6)
H6A—C6—H6B108.1N3—Mn1—Cl294.62 (5)
N1—C7—O1122.89 (18)N2—Mn1—Cl297.14 (5)
N1—C7—C8124.5 (2)O2—Mn1—Cl285.06 (4)
O1—C7—C8112.6 (2)N3—Mn1—N172.25 (6)
C9—C8—C7118.4 (2)N2—Mn1—N192.16 (6)
C9—C8—H8120.8O2—Mn1—N177.95 (5)
C7—C8—H8120.8Cl2—Mn1—N1158.93 (5)
C8—C9—C10120.2 (2)N3—Mn1—Cl193.68 (5)
C8—C9—H9119.9N2—Mn1—Cl197.86 (5)
C10—C9—H9119.9O2—Mn1—Cl1173.00 (4)
C11—C10—C9117.5 (2)Cl2—Mn1—Cl1101.86 (2)
C11—C10—C12120.1 (2)N1—Mn1—Cl195.50 (4)
C9—C10—C12122.4 (2)C7—N1—C11116.55 (17)
N1—C11—C10122.8 (2)C7—N1—Mn1132.87 (14)
N1—C11—C15118.89 (17)C11—N1—Mn1109.35 (13)
C10—C11—C15118.28 (19)C5—N2—C4117.19 (19)
C13—C12—C10121.3 (2)C5—N2—Mn1124.45 (13)
C13—C12—H12119.4C4—N2—Mn1118.23 (14)
C10—C12—H12119.4C18—N3—C15118.45 (19)
C12—C13—C14120.5 (2)C18—N3—Mn1122.74 (14)
C12—C13—H13119.8C15—N3—Mn1118.68 (14)
C14—C13—H13119.8C7—O1—C6121.52 (17)
C16—C14—C15117.6 (2)C19—O2—Mn1130.86 (14)
C16—C14—C13122.7 (2)C19—O2—H10105.9
C15—C14—C13119.7 (2)Mn1—O2—H10116.0
N3—C15—C14121.8 (2)
C5—C1—C2—C30.5 (3)Cl1—Mn1—N1—C787.71 (18)
C1—C2—C3—C40.3 (3)N3—Mn1—N1—C1113.64 (12)
C2—C3—C4—N20.8 (3)N2—Mn1—N1—C11156.13 (12)
C2—C1—C5—N20.8 (3)O2—Mn1—N1—C1176.75 (12)
C2—C1—C5—C6179.61 (19)Cl2—Mn1—N1—C1139.8 (2)
N2—C5—C6—O193.6 (2)Cl1—Mn1—N1—C11105.76 (12)
C1—C5—C6—O186.0 (2)C1—C5—N2—C40.4 (3)
N1—C7—C8—C92.4 (3)C6—C5—N2—C4179.96 (18)
O1—C7—C8—C9177.8 (2)C1—C5—N2—Mn1175.49 (14)
C7—C8—C9—C100.1 (3)C6—C5—N2—Mn14.1 (2)
C8—C9—C10—C111.4 (3)C3—C4—N2—C50.4 (3)
C8—C9—C10—C12176.2 (2)C3—C4—N2—Mn1176.55 (17)
C9—C10—C11—N11.0 (3)N3—Mn1—N2—C567.7 (3)
C12—C10—C11—N1176.65 (18)O2—Mn1—N2—C5112.92 (16)
C9—C10—C11—C15178.68 (18)Cl2—Mn1—N2—C5163.39 (15)
C12—C10—C11—C151.0 (3)N1—Mn1—N2—C535.55 (16)
C11—C10—C12—C132.2 (3)Cl1—Mn1—N2—C560.30 (16)
C9—C10—C12—C13175.4 (2)N3—Mn1—N2—C4108.1 (2)
C10—C12—C13—C142.1 (3)O2—Mn1—N2—C462.89 (15)
C12—C13—C14—C16177.1 (2)Cl2—Mn1—N2—C420.79 (15)
C12—C13—C14—C151.2 (3)N1—Mn1—N2—C4140.26 (15)
C16—C14—C15—N34.4 (3)Cl1—Mn1—N2—C4123.88 (15)
C13—C14—C15—N3177.20 (19)C17—C18—N3—C150.4 (3)
C16—C14—C15—C11174.03 (19)C17—C18—N3—Mn1175.35 (17)
C13—C14—C15—C114.4 (3)C14—C15—N3—C183.7 (3)
N1—C11—C15—N34.9 (3)C11—C15—N3—C18174.77 (18)
C10—C11—C15—N3177.29 (17)C14—C15—N3—Mn1172.26 (14)
N1—C11—C15—C14173.53 (17)C11—C15—N3—Mn19.3 (2)
C10—C11—C15—C144.2 (3)N2—Mn1—N3—C18154.10 (19)
C15—C14—C16—C171.8 (3)O2—Mn1—N3—C18109.61 (17)
C13—C14—C16—C17179.8 (2)Cl2—Mn1—N3—C1824.84 (16)
C14—C16—C17—C181.2 (4)N1—Mn1—N3—C18172.00 (18)
C16—C17—C18—N32.0 (4)Cl1—Mn1—N3—C1877.39 (16)
O1—C7—N1—C11177.43 (18)N2—Mn1—N3—C1521.6 (3)
C8—C7—N1—C112.8 (3)O2—Mn1—N3—C1566.13 (14)
O1—C7—N1—Mn116.8 (3)Cl2—Mn1—N3—C15150.90 (14)
C8—C7—N1—Mn1162.96 (16)N1—Mn1—N3—C1512.26 (13)
C10—C11—N1—C71.1 (3)Cl1—Mn1—N3—C15106.87 (14)
C15—C11—N1—C7176.61 (17)N1—C7—O1—C616.9 (3)
C10—C11—N1—Mn1167.94 (15)C8—C7—O1—C6163.28 (18)
C15—C11—N1—Mn114.4 (2)C5—C6—O1—C7100.3 (2)
N3—Mn1—N1—C7179.82 (19)N3—Mn1—O2—C19114.2 (2)
N2—Mn1—N1—C710.41 (18)N2—Mn1—O2—C1952.8 (2)
O2—Mn1—N1—C789.79 (18)Cl2—Mn1—O2—C19150.9 (2)
Cl2—Mn1—N1—C7126.75 (17)N1—Mn1—O2—C1941.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H10···Cl1i0.802.393.1581 (16)161
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[MnCl2(C18H13N3O)(CH4O)]
Mr445.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.0390 (16), 13.667 (2), 13.583 (2)
β (°) 92.874 (2)
V3)1861.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.38 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.699, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
10717, 4048, 3278
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.01
No. of reflections4048
No. of parameters245
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H10···Cl1i0.802.393.1581 (16)160.6
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H. L. & Liu, Q. S. (2008). Acta Cryst. E64, m847.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds