organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­meth­oxy­benzo­phenone: a triclinic polymorph

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620 015, India
*Correspondence e-mail: hkfun@usm.my

(Received 31 May 2008; accepted 9 June 2008; online 13 June 2008)

The title compound, C15H14O3, has been found to crystallize as a new triclinic polymorph. The asymmetric unit of the present structure, as in the previously reported monoclinic structure [Norment & Karle (1962[Norment, H. G. & Karle, I. L. (1962). Acta Cryst. 15, 873-878.]). Acta Cryst. 15, 873–878], contains two independent mol­ecules, which differ slightly in the orientations of the two benzene rings. The crystal packing of the triclinic polymorph is stabilized by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the monoclinic polymorph of 4,4′-dimethoxy­benzo­phenone, see: Norment & Karle (1962[Norment, H. G. & Karle, I. L. (1962). Acta Cryst. 15, 873-878.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O3

  • Mr = 242.26

  • Triclinic, [P \overline 1]

  • a = 9.4296 (2) Å

  • b = 9.4569 (2) Å

  • c = 14.7963 (3) Å

  • α = 76.945 (1)°

  • β = 78.813 (1)°

  • γ = 70.670 (1)°

  • V = 1202.65 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.50 × 0.19 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.985

  • 26162 measured reflections

  • 6478 independent reflections

  • 4651 reflections with I > 2σ(I))

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.170

  • S = 1.09

  • 6478 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14B—H14E⋯O1Bi 0.96 2.59 3.446 (2) 149
C9B—H9BCg1ii 0.93 2.84 3.5252 (17) 132
C12B—H12BCg1iii 0.93 2.78 3.5223 (16) 137
C4B—H4BCg2iv 0.93 2.88 3.6301 (18) 138
C9A—H9ACg3iii 0.93 2.92 3.5723 (16) 128
C12A—H12ACg3ii 0.93 2.88 3.5651 (16) 132
C4A—H4ACg4v 0.93 2.90 3.6376 (17) 138
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) x+1, y, z; (v) x, y, z-1. Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1A–C6A, C8A–C13A, C1B–C13B and C8B–C13B rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The crystal structure of the title compound has previously been reported in the monoclinic space group P21/a (Norment & Karle, 1962). We report here the structure of a second polymorph which crystallizes in the triclinic space group P1.

The asymmetric unit of the triclinic polymporph contains two crystallographically independent molecules (Fig.1), similar to the monoclinic form. Bond lengths and angles of the molecules agree with each other and show normal values (Allen et al., 1987). The two independent molecules differ slightly in the orientations of the two benzene rings. The dihedral angle formed by C1A-C6A and C8A-C13A rings is 52.12 (8)° and that between C1B-C6B and C8B-C13B planes is 55.73 (7)°. These dihedral angles are comparable to those observed in the monoclinic polymorph.

The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds (Fig.2) and C—H···π interactions.

Related literature top

For the monoclinic polymorph of 4,4'-dimethoxybenzophenone, see: Norment & Karle (1962). For bond-length data, see: Allen et al. (1987). Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1A–C6A, C8A–C13A, C1B–C13B and C8B–C13B rings, respectively.

Experimental top

The title compound was purchased from Merck and single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically [C-H = 0.93 Å (aromatic) and 0.96 Å (methyl)] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
bis(4-methoxyphenyl) ketone bis(4-methoxyphenyl)methanone top
Crystal data top
C15H14O3Z = 4
Mr = 242.26F(000) = 512
Triclinic, P1Dx = 1.338 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4296 (2) ÅCell parameters from 5758 reflections
b = 9.4569 (2) Åθ = 2.3–28.8°
c = 14.7963 (3) ŵ = 0.09 mm1
α = 76.945 (1)°T = 100 K
β = 78.813 (1)°Needle, colourless
γ = 70.670 (1)°0.50 × 0.19 × 0.16 mm
V = 1202.65 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6478 independent reflections
Radiation source: fine-focus sealed tube4651 reflections with I > 2σ(I))
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 29.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1211
Tmin = 0.955, Tmax = 0.985k = 1212
26162 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0952P)2 + 0.106P]
where P = (Fo2 + 2Fc2)/3
6478 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H14O3γ = 70.670 (1)°
Mr = 242.26V = 1202.65 (4) Å3
Triclinic, P1Z = 4
a = 9.4296 (2) ÅMo Kα radiation
b = 9.4569 (2) ŵ = 0.09 mm1
c = 14.7963 (3) ÅT = 100 K
α = 76.945 (1)°0.50 × 0.19 × 0.16 mm
β = 78.813 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6478 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4651 reflections with I > 2σ(I))
Tmin = 0.955, Tmax = 0.985Rint = 0.035
26162 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.09Δρmax = 0.67 e Å3
6478 reflectionsΔρmin = 0.24 e Å3
329 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.28278 (12)0.49910 (12)0.23294 (8)0.0249 (3)
O2A0.34179 (12)0.13120 (12)0.02987 (7)0.0214 (3)
O3A0.28335 (13)0.14327 (12)0.64984 (7)0.0229 (3)
C1A0.08731 (17)0.22148 (16)0.23864 (10)0.0184 (3)
H1A0.09090.19870.30280.022*
C2A0.21523 (18)0.16537 (16)0.17906 (11)0.0194 (3)
H2A0.30480.10640.20300.023*
C3A0.21106 (17)0.19668 (15)0.08281 (10)0.0178 (3)
C4A0.07749 (17)0.28874 (16)0.04661 (10)0.0191 (3)
H4A0.07420.31130.01760.023*
C5A0.04971 (18)0.34589 (16)0.10750 (10)0.0193 (3)
H5A0.13820.40800.08340.023*
C6A0.04823 (17)0.31234 (15)0.20434 (10)0.0174 (3)
C7A0.18690 (17)0.38447 (16)0.26527 (10)0.0183 (3)
C8A0.20800 (16)0.31981 (16)0.36677 (10)0.0173 (3)
C9A0.28139 (17)0.41828 (16)0.43012 (11)0.0191 (3)
H9A0.31350.52250.40810.023*
C10A0.30776 (17)0.36486 (16)0.52506 (10)0.0196 (3)
H10A0.35460.43280.56630.024*
C11A0.26370 (17)0.20849 (16)0.55851 (10)0.0176 (3)
C12A0.19281 (17)0.10750 (16)0.49558 (11)0.0193 (3)
H12A0.16540.00310.51720.023*
C13A0.16374 (17)0.16278 (16)0.40171 (10)0.0182 (3)
H13A0.11400.09500.36070.022*
C14A0.3446 (2)0.1650 (2)0.07020 (11)0.0283 (4)
H14A0.44200.11140.09910.042*
H14B0.32610.27250.09140.042*
H14C0.26750.13380.08690.042*
C15A0.3511 (2)0.24333 (18)0.71693 (11)0.0272 (4)
H15A0.35310.18430.77890.041*
H15B0.45280.30080.70510.041*
H15C0.29280.31170.71150.041*
O1B0.29024 (13)0.00749 (12)0.75911 (8)0.0274 (3)
O2B0.28485 (12)0.35935 (12)0.34377 (7)0.0210 (3)
O3B0.31914 (13)0.37626 (12)0.96641 (7)0.0235 (3)
C1B0.09869 (17)0.26402 (16)0.57589 (11)0.0186 (3)
H1B0.00010.28270.60620.022*
C2B0.12419 (17)0.32062 (16)0.48158 (10)0.0182 (3)
H2B0.04260.37590.44870.022*
C3B0.27200 (17)0.29506 (15)0.43542 (10)0.0167 (3)
C4B0.39422 (17)0.20963 (16)0.48461 (10)0.0189 (3)
H4B0.49300.19200.45440.023*
C5B0.36678 (17)0.15134 (16)0.57903 (10)0.0189 (3)
H5B0.44810.09270.61130.023*
C6B0.21978 (17)0.17880 (15)0.62655 (10)0.0177 (3)
C7B0.19627 (17)0.10850 (16)0.72667 (10)0.0189 (3)
C8B0.05613 (17)0.17899 (16)0.78730 (10)0.0182 (3)
C9B0.00698 (18)0.08532 (16)0.85877 (10)0.0199 (3)
H9B0.03610.01970.86570.024*
C10B0.13333 (18)0.14621 (17)0.92001 (11)0.0205 (3)
H10B0.17570.08240.96670.025*
C11B0.19608 (17)0.30392 (16)0.91082 (10)0.0184 (3)
C12B0.13197 (18)0.39894 (16)0.84036 (10)0.0192 (3)
H12B0.17230.50400.83510.023*
C13B0.00913 (17)0.33727 (16)0.77866 (10)0.0183 (3)
H13B0.03100.40120.73080.022*
C14B0.43412 (18)0.33423 (19)0.29271 (11)0.0255 (4)
H14D0.42770.38750.22950.038*
H14E0.48040.22730.29260.038*
H14F0.49420.37110.32190.038*
C15B0.3891 (2)0.28448 (19)1.04042 (12)0.0302 (4)
H15D0.47870.34871.07090.045*
H15E0.31950.22991.08500.045*
H15F0.41590.21341.01490.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0211 (6)0.0212 (5)0.0269 (6)0.0024 (4)0.0026 (5)0.0003 (5)
O2A0.0190 (6)0.0234 (5)0.0185 (5)0.0032 (4)0.0011 (4)0.0030 (4)
O3A0.0277 (6)0.0198 (5)0.0190 (5)0.0045 (4)0.0032 (5)0.0024 (4)
C1A0.0218 (8)0.0164 (7)0.0184 (7)0.0070 (6)0.0060 (6)0.0011 (5)
C2A0.0189 (8)0.0160 (7)0.0230 (8)0.0052 (6)0.0072 (6)0.0007 (6)
C3A0.0181 (8)0.0146 (6)0.0219 (7)0.0067 (6)0.0022 (6)0.0029 (6)
C4A0.0224 (8)0.0178 (7)0.0175 (7)0.0070 (6)0.0042 (6)0.0009 (5)
C5A0.0205 (8)0.0171 (7)0.0213 (7)0.0072 (6)0.0054 (6)0.0007 (6)
C6A0.0190 (8)0.0135 (6)0.0208 (7)0.0067 (5)0.0033 (6)0.0021 (5)
C7A0.0180 (8)0.0159 (7)0.0224 (7)0.0071 (6)0.0038 (6)0.0023 (6)
C8A0.0139 (7)0.0188 (7)0.0206 (7)0.0066 (5)0.0031 (6)0.0030 (6)
C9A0.0162 (7)0.0159 (7)0.0246 (8)0.0044 (5)0.0030 (6)0.0030 (6)
C10A0.0188 (8)0.0187 (7)0.0217 (7)0.0048 (6)0.0016 (6)0.0064 (6)
C11A0.0159 (7)0.0198 (7)0.0183 (7)0.0061 (6)0.0049 (6)0.0021 (6)
C12A0.0200 (8)0.0132 (6)0.0240 (8)0.0047 (6)0.0034 (6)0.0014 (6)
C13A0.0158 (7)0.0157 (7)0.0241 (8)0.0048 (5)0.0021 (6)0.0058 (6)
C14A0.0262 (9)0.0313 (9)0.0202 (8)0.0025 (7)0.0004 (7)0.0024 (6)
C15A0.0318 (9)0.0270 (8)0.0204 (8)0.0048 (7)0.0011 (7)0.0072 (6)
O1B0.0300 (7)0.0210 (5)0.0235 (6)0.0013 (5)0.0042 (5)0.0016 (4)
O2B0.0181 (6)0.0246 (5)0.0178 (5)0.0045 (4)0.0018 (4)0.0023 (4)
O3B0.0216 (6)0.0232 (5)0.0215 (6)0.0039 (4)0.0014 (4)0.0033 (4)
C1B0.0170 (7)0.0168 (7)0.0238 (8)0.0065 (6)0.0018 (6)0.0058 (6)
C2B0.0158 (7)0.0174 (7)0.0216 (7)0.0019 (6)0.0072 (6)0.0044 (6)
C3B0.0189 (8)0.0139 (6)0.0191 (7)0.0056 (5)0.0036 (6)0.0041 (5)
C4B0.0162 (7)0.0192 (7)0.0220 (7)0.0056 (6)0.0008 (6)0.0059 (6)
C5B0.0187 (8)0.0154 (7)0.0223 (7)0.0032 (6)0.0058 (6)0.0029 (6)
C6B0.0197 (8)0.0136 (6)0.0202 (7)0.0046 (5)0.0029 (6)0.0038 (5)
C7B0.0213 (8)0.0153 (7)0.0208 (7)0.0056 (6)0.0038 (6)0.0033 (6)
C8B0.0198 (8)0.0181 (7)0.0172 (7)0.0061 (6)0.0036 (6)0.0025 (5)
C9B0.0234 (8)0.0150 (7)0.0215 (7)0.0063 (6)0.0051 (6)0.0013 (6)
C10B0.0235 (8)0.0196 (7)0.0198 (7)0.0101 (6)0.0040 (6)0.0006 (6)
C11B0.0175 (8)0.0205 (7)0.0177 (7)0.0044 (6)0.0060 (6)0.0033 (6)
C12B0.0233 (8)0.0146 (6)0.0200 (7)0.0049 (6)0.0064 (6)0.0020 (5)
C13B0.0221 (8)0.0162 (7)0.0179 (7)0.0075 (6)0.0060 (6)0.0002 (5)
C14B0.0215 (8)0.0314 (8)0.0200 (8)0.0050 (7)0.0012 (6)0.0050 (6)
C15B0.0244 (9)0.0311 (9)0.0293 (9)0.0089 (7)0.0048 (7)0.0002 (7)
Geometric parameters (Å, º) top
O1A—C7A1.2272 (17)O1B—C7B1.2257 (17)
O2A—C3A1.3623 (17)O2B—C3B1.3550 (17)
O2A—C14A1.4394 (18)O2B—C14B1.4336 (18)
O3A—C11A1.3576 (17)O3B—C11B1.3599 (17)
O3A—C15A1.4377 (17)O3B—C15B1.4343 (19)
C1A—C2A1.374 (2)C1B—C2B1.382 (2)
C1A—C6A1.399 (2)C1B—C6B1.402 (2)
C1A—H1A0.93C1B—H1B0.93
C2A—C3A1.393 (2)C2B—C3B1.396 (2)
C2A—H2A0.93C2B—H2B0.93
C3A—C4A1.399 (2)C3B—C4B1.398 (2)
C4A—C5A1.383 (2)C4B—C5B1.389 (2)
C4A—H4A0.93C4B—H4B0.93
C5A—C6A1.398 (2)C5B—C6B1.396 (2)
C5A—H5A0.93C5B—H5B0.93
C6A—C7A1.4893 (19)C6B—C7B1.487 (2)
C7A—C8A1.490 (2)C7B—C8B1.491 (2)
C8A—C9A1.3930 (19)C8B—C9B1.392 (2)
C8A—C13A1.405 (2)C8B—C13B1.4035 (19)
C9A—C10A1.385 (2)C9B—C10B1.391 (2)
C9A—H9A0.93C9B—H9B0.93
C10A—C11A1.395 (2)C10B—C11B1.396 (2)
C10A—H10A0.93C10B—H10B0.93
C11A—C12A1.4012 (19)C11B—C12B1.397 (2)
C12A—C13A1.377 (2)C12B—C13B1.378 (2)
C12A—H12A0.93C12B—H12B0.93
C13A—H13A0.93C13B—H13B0.93
C14A—H14A0.96C14B—H14D0.96
C14A—H14B0.96C14B—H14E0.96
C14A—H14C0.96C14B—H14F0.96
C15A—H15A0.96C15B—H15D0.96
C15A—H15B0.96C15B—H15E0.96
C15A—H15C0.96C15B—H15F0.96
C3A—O2A—C14A117.70 (12)C3B—O2B—C14B117.78 (12)
C11A—O3A—C15A117.33 (11)C11B—O3B—C15B117.90 (12)
C2A—C1A—C6A121.10 (14)C2B—C1B—C6B120.88 (14)
C2A—C1A—H1A119.5C2B—C1B—H1B119.6
C6A—C1A—H1A119.5C6B—C1B—H1B119.6
C1A—C2A—C3A120.14 (14)C1B—C2B—C3B120.21 (14)
C1A—C2A—H2A119.9C1B—C2B—H2B119.9
C3A—C2A—H2A119.9C3B—C2B—H2B119.9
O2A—C3A—C2A115.76 (13)O2B—C3B—C2B115.56 (13)
O2A—C3A—C4A124.33 (13)O2B—C3B—C4B124.67 (13)
C2A—C3A—C4A119.90 (13)C2B—C3B—C4B119.76 (14)
C5A—C4A—C3A119.20 (14)C5B—C4B—C3B119.40 (14)
C5A—C4A—H4A120.4C5B—C4B—H4B120.3
C3A—C4A—H4A120.4C3B—C4B—H4B120.3
C4A—C5A—C6A121.50 (14)C4B—C5B—C6B121.46 (14)
C4A—C5A—H5A119.2C4B—C5B—H5B119.3
C6A—C5A—H5A119.2C6B—C5B—H5B119.3
C5A—C6A—C1A118.13 (13)C5B—C6B—C1B118.27 (14)
C5A—C6A—C7A118.48 (13)C5B—C6B—C7B119.27 (13)
C1A—C6A—C7A123.22 (13)C1B—C6B—C7B122.33 (13)
O1A—C7A—C6A120.49 (13)O1B—C7B—C6B120.47 (13)
O1A—C7A—C8A119.53 (13)O1B—C7B—C8B120.05 (13)
C6A—C7A—C8A119.96 (12)C6B—C7B—C8B119.47 (12)
C9A—C8A—C13A117.96 (14)C9B—C8B—C13B118.68 (13)
C9A—C8A—C7A118.92 (12)C9B—C8B—C7B118.98 (13)
C13A—C8A—C7A123.05 (12)C13B—C8B—C7B122.22 (14)
C10A—C9A—C8A121.65 (13)C10B—C9B—C8B121.10 (13)
C10A—C9A—H9A119.2C10B—C9B—H9B119.5
C8A—C9A—H9A119.2C8B—C9B—H9B119.5
C9A—C10A—C11A119.62 (13)C9B—C10B—C11B119.45 (14)
C9A—C10A—H10A120.2C9B—C10B—H10B120.3
C11A—C10A—H10A120.2C11B—C10B—H10B120.3
O3A—C11A—C10A124.78 (13)O3B—C11B—C10B124.69 (14)
O3A—C11A—C12A115.67 (12)O3B—C11B—C12B115.42 (12)
C10A—C11A—C12A119.55 (14)C10B—C11B—C12B119.88 (13)
C13A—C12A—C11A120.05 (13)C13B—C12B—C11B120.14 (13)
C13A—C12A—H12A120.0C13B—C12B—H12B119.9
C11A—C12A—H12A120.0C11B—C12B—H12B119.9
C12A—C13A—C8A121.14 (13)C12B—C13B—C8B120.72 (14)
C12A—C13A—H13A119.4C12B—C13B—H13B119.6
C8A—C13A—H13A119.4C8B—C13B—H13B119.6
O2A—C14A—H14A109.5O2B—C14B—H14D109.5
O2A—C14A—H14B109.5O2B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
O2A—C14A—H14C109.5O2B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
O3A—C15A—H15A109.5O3B—C15B—H15D109.5
O3A—C15A—H15B109.5O3B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
O3A—C15A—H15C109.5O3B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C6A—C1A—C2A—C3A0.9 (2)C6B—C1B—C2B—C3B0.8 (2)
C14A—O2A—C3A—C2A177.69 (14)C14B—O2B—C3B—C2B178.89 (13)
C14A—O2A—C3A—C4A3.1 (2)C14B—O2B—C3B—C4B2.0 (2)
C1A—C2A—C3A—O2A177.55 (13)C1B—C2B—C3B—O2B178.01 (12)
C1A—C2A—C3A—C4A1.7 (2)C1B—C2B—C3B—C4B1.1 (2)
O2A—C3A—C4A—C5A178.31 (13)O2B—C3B—C4B—C5B178.98 (13)
C2A—C3A—C4A—C5A0.9 (2)C2B—C3B—C4B—C5B0.1 (2)
C3A—C4A—C5A—C6A0.7 (2)C3B—C4B—C5B—C6B1.4 (2)
C4A—C5A—C6A—C1A1.5 (2)C4B—C5B—C6B—C1B1.7 (2)
C4A—C5A—C6A—C7A176.83 (14)C4B—C5B—C6B—C7B177.53 (13)
C2A—C1A—C6A—C5A0.6 (2)C2B—C1B—C6B—C5B0.6 (2)
C2A—C1A—C6A—C7A175.76 (14)C2B—C1B—C6B—C7B176.32 (13)
C5A—C6A—C7A—O1A19.5 (2)C5B—C6B—C7B—O1B24.1 (2)
C1A—C6A—C7A—O1A155.62 (15)C1B—C6B—C7B—O1B151.59 (15)
C5A—C6A—C7A—C8A162.10 (14)C5B—C6B—C7B—C8B156.77 (14)
C1A—C6A—C7A—C8A22.8 (2)C1B—C6B—C7B—C8B27.6 (2)
O1A—C7A—C8A—C9A32.7 (2)O1B—C7B—C8B—C9B32.4 (2)
C6A—C7A—C8A—C9A145.72 (15)C6B—C7B—C8B—C9B146.71 (15)
O1A—C7A—C8A—C13A144.16 (16)O1B—C7B—C8B—C13B143.46 (16)
C6A—C7A—C8A—C13A37.4 (2)C6B—C7B—C8B—C13B37.4 (2)
C13A—C8A—C9A—C10A1.4 (2)C13B—C8B—C9B—C10B0.8 (2)
C7A—C8A—C9A—C10A178.38 (14)C7B—C8B—C9B—C10B176.84 (15)
C8A—C9A—C10A—C11A1.7 (2)C8B—C9B—C10B—C11B1.3 (2)
C15A—O3A—C11A—C10A1.6 (2)C15B—O3B—C11B—C10B0.6 (2)
C15A—O3A—C11A—C12A177.99 (14)C15B—O3B—C11B—C12B179.56 (14)
C9A—C10A—C11A—O3A179.83 (14)C9B—C10B—C11B—O3B180.00 (15)
C9A—C10A—C11A—C12A0.2 (2)C9B—C10B—C11B—C12B0.1 (2)
O3A—C11A—C12A—C13A178.09 (14)O3B—C11B—C12B—C13B178.39 (14)
C10A—C11A—C12A—C13A1.6 (2)C10B—C11B—C12B—C13B1.5 (2)
C11A—C12A—C13A—C8A1.9 (2)C11B—C12B—C13B—C8B2.0 (2)
C9A—C8A—C13A—C12A0.4 (2)C9B—C8B—C13B—C12B0.8 (2)
C7A—C8A—C13A—C12A176.43 (15)C7B—C8B—C13B—C12B175.07 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14B—H14E···O1Bi0.962.593.446 (2)149
C9B—H9B···Cg1ii0.932.843.5252 (17)132
C12B—H12B···Cg1iii0.932.783.5223 (16)137
C4B—H4B···Cg2iv0.932.883.6301 (18)138
C9A—H9A···Cg3iii0.932.923.5723 (16)128
C12A—H12A···Cg3ii0.932.883.5651 (16)132
C4A—H4A···Cg4v0.932.903.6376 (17)138
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x, y, z1.

Experimental details

Crystal data
Chemical formulaC15H14O3
Mr242.26
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.4296 (2), 9.4569 (2), 14.7963 (3)
α, β, γ (°)76.945 (1), 78.813 (1), 70.670 (1)
V3)1202.65 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.955, 0.985
No. of measured, independent and
observed [I > 2σ(I))] reflections
26162, 6478, 4651
Rint0.035
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.170, 1.09
No. of reflections6478
No. of parameters329
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14B—H14E···O1Bi0.962.593.446 (2)149
C9B—H9B···Cg1ii0.932.843.5252 (17)132
C12B—H12B···Cg1iii0.932.783.5223 (16)137
C4B—H4B···Cg2iv0.932.883.6301 (18)138
C9A—H9A···Cg3iii0.932.923.5723 (16)128
C12A—H12A···Cg3ii0.932.883.5651 (16)132
C4A—H4A···Cg4v0.932.903.6376 (17)138
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x, y, z1.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNorment, H. G. & Karle, I. L. (1962). Acta Cryst. 15, 873–878.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds