organic compounds
(E)-1-(3-Bromophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my
The title compound, C17H15BrO2, adopts an E configuration. The dihedral angle between the two benzene rings is 10.09 (11)°. The enone plane makes dihedral angles of 12.05 (11) and 9.87 (11)°, respectively, with the bromophenyl and ethoxyphenyl rings. The ethoxy group is nearly coplanar with the attached benzene ring. In the the molecules are linked by C—H⋯O hydrogen bonds, forming a zigzag ribbon-like structure along the b-axis direction.
Related literature
For bond-length data, see: Allen et al. (1987). For related structures, see: Patil, Fun et al. (2007); Patil, Ng et al. (2007); Sathiya Moorthi et al. (2005a,b). For background to see: Chopra et al. (2007); DiCesare et al. (2000); Gu et al. (2008a,b); Jiang et al. (1994); Lokaj et al. (2001); Low et al. (2002); Nel et al. (1998); Patil & Dharmaprakash (2007); Patil et al. (2006); Schmalle et al. (1990); Wang et al. (2004).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808018850/ci2619sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808018850/ci2619Isup2.hkl
The title compound was synthesized by the condensation of 4-ethoxybenzaldehyde (0.01mol, 1.39 ml) with 3-bromoacetophenone (0.01 mol, 1.99 g)) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 20%). After stirring for 3 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 4 h. The resulting crude solid was filtered and dried. Single crystals were obtained by recrystallization from acetone.
All H atoms were placed in calculated positions, with C-H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and CH, C-H = 0.97 Å, Uiso = 1.2Ueq(C) for CH2 and C-H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.81 Å from Br1 and the deepest hole is located at 0.76 Å from Br1.
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).C17H15BrO2 | F(000) = 336 |
Mr = 331.19 | Dx = 1.572 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 5989 reflections |
a = 4.0516 (1) Å | θ = 1.1–35.0° |
b = 9.6501 (2) Å | µ = 2.94 mm−1 |
c = 17.9120 (4) Å | T = 100 K |
β = 92.396 (1)° | Block, colourless |
V = 699.72 (3) Å3 | 0.53 × 0.31 × 0.17 mm |
Z = 2 |
Bruker SMART APEXII CCD area-detector diffractometer | 5989 independent reflections |
Radiation source: fine-focus sealed tube | 4682 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 8.33 pixels mm-1 | θmax = 35.0°, θmin = 1.1° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −15→15 |
Tmin = 0.305, Tmax = 0.642 | l = −28→23 |
14837 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0372P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
5989 reflections | Δρmax = 0.69 e Å−3 |
182 parameters | Δρmin = −0.65 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2764 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.021 (8) |
C17H15BrO2 | V = 699.72 (3) Å3 |
Mr = 331.19 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 4.0516 (1) Å | µ = 2.94 mm−1 |
b = 9.6501 (2) Å | T = 100 K |
c = 17.9120 (4) Å | 0.53 × 0.31 × 0.17 mm |
β = 92.396 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 5989 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 4682 reflections with I > 2σ(I) |
Tmin = 0.305, Tmax = 0.642 | Rint = 0.033 |
14837 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.093 | Δρmax = 0.69 e Å−3 |
S = 1.04 | Δρmin = −0.65 e Å−3 |
5989 reflections | Absolute structure: Flack (1983), 2764 Friedel pairs |
182 parameters | Absolute structure parameter: 0.021 (8) |
1 restraint |
Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.44099 (5) | 0.22151 (3) | 0.509606 (11) | 0.02359 (7) | |
O1 | 0.6257 (5) | 0.16393 (19) | 0.80200 (10) | 0.0229 (4) | |
O2 | 0.0554 (4) | 0.29630 (17) | 1.23694 (9) | 0.0191 (3) | |
C1 | 0.4078 (6) | 0.2599 (2) | 0.66571 (13) | 0.0179 (4) | |
H1A | 0.5320 | 0.1789 | 0.6686 | 0.021* | |
C2 | 0.3124 (6) | 0.3148 (2) | 0.59698 (13) | 0.0174 (4) | |
C3 | 0.1291 (6) | 0.4369 (2) | 0.59085 (14) | 0.0194 (4) | |
H3A | 0.0668 | 0.4731 | 0.5443 | 0.023* | |
C4 | 0.0418 (6) | 0.5031 (2) | 0.65597 (14) | 0.0194 (4) | |
H4A | −0.0799 | 0.5848 | 0.6528 | 0.023* | |
C5 | 0.1332 (6) | 0.4494 (2) | 0.72574 (14) | 0.0173 (4) | |
H5A | 0.0725 | 0.4948 | 0.7689 | 0.021* | |
C6 | 0.3170 (6) | 0.3266 (2) | 0.73090 (13) | 0.0155 (4) | |
C7 | 0.4277 (6) | 0.2592 (2) | 0.80334 (13) | 0.0163 (4) | |
C8 | 0.2936 (6) | 0.3067 (2) | 0.87445 (13) | 0.0170 (4) | |
H8A | 0.1488 | 0.3814 | 0.8756 | 0.020* | |
C9 | 0.3862 (5) | 0.2391 (3) | 0.93731 (12) | 0.0162 (4) | |
H9A | 0.5380 | 0.1681 | 0.9313 | 0.019* | |
C10 | 0.2857 (6) | 0.2599 (2) | 1.01363 (13) | 0.0161 (4) | |
C11 | 0.0989 (6) | 0.3739 (2) | 1.03642 (13) | 0.0165 (4) | |
H11A | 0.0263 | 0.4389 | 1.0011 | 0.020* | |
C12 | 0.0207 (6) | 0.3914 (2) | 1.11050 (13) | 0.0171 (4) | |
H12A | −0.0990 | 0.4684 | 1.1249 | 0.020* | |
C13 | 0.1238 (6) | 0.2920 (2) | 1.16333 (13) | 0.0156 (4) | |
C14 | 0.3094 (6) | 0.1789 (2) | 1.14161 (13) | 0.0169 (4) | |
H14A | 0.3792 | 0.1131 | 1.1768 | 0.020* | |
C15 | 0.3906 (6) | 0.1639 (2) | 1.06790 (13) | 0.0166 (4) | |
H15A | 0.5173 | 0.0884 | 1.0542 | 0.020* | |
C16 | −0.1265 (6) | 0.4130 (3) | 1.26362 (14) | 0.0194 (5) | |
H16A | −0.3355 | 0.4225 | 1.2356 | 0.023* | |
H16B | −0.0010 | 0.4978 | 1.2584 | 0.023* | |
C17 | −0.1832 (9) | 0.3845 (3) | 1.34460 (16) | 0.0323 (7) | |
H17C | −0.3014 | 0.4605 | 1.3654 | 0.048* | |
H17A | 0.0256 | 0.3736 | 1.3713 | 0.048* | |
H17B | −0.3101 | 0.3010 | 1.3488 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02512 (11) | 0.03165 (12) | 0.01422 (9) | −0.00028 (13) | 0.00341 (7) | −0.00396 (12) |
O1 | 0.0289 (10) | 0.0226 (8) | 0.0170 (8) | 0.0094 (7) | 0.0001 (7) | 0.0002 (7) |
O2 | 0.0236 (9) | 0.0196 (8) | 0.0144 (8) | 0.0049 (7) | 0.0052 (6) | 0.0037 (6) |
C1 | 0.0184 (10) | 0.0188 (10) | 0.0165 (10) | −0.0003 (7) | 0.0022 (8) | 0.0009 (7) |
C2 | 0.0153 (10) | 0.0197 (10) | 0.0173 (11) | −0.0035 (8) | 0.0026 (8) | −0.0029 (8) |
C3 | 0.0210 (11) | 0.0199 (10) | 0.0175 (11) | −0.0043 (9) | 0.0006 (8) | 0.0042 (9) |
C4 | 0.0200 (12) | 0.0149 (10) | 0.0231 (12) | −0.0007 (9) | −0.0016 (9) | 0.0017 (9) |
C5 | 0.0201 (11) | 0.0150 (10) | 0.0166 (11) | −0.0017 (8) | 0.0004 (8) | −0.0012 (8) |
C6 | 0.0186 (10) | 0.0132 (9) | 0.0147 (10) | −0.0024 (8) | 0.0011 (8) | −0.0004 (7) |
C7 | 0.0179 (10) | 0.0145 (9) | 0.0164 (10) | −0.0011 (7) | 0.0004 (8) | −0.0020 (7) |
C8 | 0.0190 (11) | 0.0168 (10) | 0.0151 (10) | 0.0003 (8) | 0.0006 (8) | −0.0025 (8) |
C9 | 0.0176 (9) | 0.0141 (12) | 0.0168 (9) | −0.0005 (8) | 0.0007 (7) | −0.0023 (8) |
C10 | 0.0172 (10) | 0.0142 (9) | 0.0170 (10) | −0.0027 (7) | 0.0009 (8) | −0.0001 (7) |
C11 | 0.0179 (10) | 0.0150 (9) | 0.0165 (10) | −0.0013 (8) | −0.0008 (8) | 0.0028 (8) |
C12 | 0.0189 (11) | 0.0147 (9) | 0.0176 (11) | −0.0013 (8) | 0.0013 (8) | 0.0003 (8) |
C13 | 0.0144 (10) | 0.0161 (10) | 0.0166 (10) | −0.0015 (8) | 0.0036 (8) | 0.0004 (8) |
C14 | 0.0184 (11) | 0.0136 (8) | 0.0186 (11) | 0.0009 (7) | 0.0005 (8) | 0.0043 (7) |
C15 | 0.0161 (10) | 0.0150 (9) | 0.0188 (11) | 0.0007 (8) | 0.0011 (8) | 0.0004 (8) |
C16 | 0.0232 (12) | 0.0161 (10) | 0.0194 (11) | −0.0015 (8) | 0.0060 (9) | −0.0003 (8) |
C17 | 0.0467 (19) | 0.0282 (13) | 0.0230 (14) | 0.0146 (13) | 0.0146 (12) | 0.0044 (11) |
Br1—C2 | 1.897 (2) | C9—C10 | 1.457 (3) |
O1—C7 | 1.221 (3) | C9—H9A | 0.93 |
O2—C13 | 1.359 (3) | C10—C15 | 1.397 (3) |
O2—C16 | 1.439 (3) | C10—C11 | 1.405 (3) |
C1—C2 | 1.381 (3) | C11—C12 | 1.387 (3) |
C1—C6 | 1.396 (3) | C11—H11A | 0.93 |
C1—H1A | 0.93 | C12—C13 | 1.399 (3) |
C2—C3 | 1.394 (3) | C12—H12A | 0.93 |
C3—C4 | 1.389 (3) | C13—C14 | 1.390 (3) |
C3—H3A | 0.93 | C14—C15 | 1.381 (3) |
C4—C5 | 1.389 (4) | C14—H14A | 0.93 |
C4—H4A | 0.93 | C15—H15A | 0.93 |
C5—C6 | 1.401 (3) | C16—C17 | 1.504 (4) |
C5—H5A | 0.93 | C16—H16A | 0.97 |
C6—C7 | 1.503 (3) | C16—H16B | 0.97 |
C7—C8 | 1.478 (3) | C17—H17C | 0.96 |
C8—C9 | 1.341 (3) | C17—H17A | 0.96 |
C8—H8A | 0.93 | C17—H17B | 0.96 |
C13—O2—C16 | 118.31 (18) | C15—C10—C9 | 118.2 (2) |
C2—C1—C6 | 119.7 (2) | C11—C10—C9 | 123.8 (2) |
C2—C1—H1A | 120.2 | C12—C11—C10 | 121.4 (2) |
C6—C1—H1A | 120.2 | C12—C11—H11A | 119.3 |
C1—C2—C3 | 121.5 (2) | C10—C11—H11A | 119.3 |
C1—C2—Br1 | 118.50 (18) | C11—C12—C13 | 119.3 (2) |
C3—C2—Br1 | 119.98 (18) | C11—C12—H12A | 120.3 |
C4—C3—C2 | 118.4 (2) | C13—C12—H12A | 120.3 |
C4—C3—H3A | 120.8 | O2—C13—C14 | 115.5 (2) |
C2—C3—H3A | 120.8 | O2—C13—C12 | 124.6 (2) |
C3—C4—C5 | 121.1 (2) | C14—C13—C12 | 119.9 (2) |
C3—C4—H4A | 119.5 | C15—C14—C13 | 120.2 (2) |
C5—C4—H4A | 119.5 | C15—C14—H14A | 119.9 |
C4—C5—C6 | 119.7 (2) | C13—C14—H14A | 119.9 |
C4—C5—H5A | 120.1 | C14—C15—C10 | 121.2 (2) |
C6—C5—H5A | 120.1 | C14—C15—H15A | 119.4 |
C1—C6—C5 | 119.5 (2) | C10—C15—H15A | 119.4 |
C1—C6—C7 | 116.3 (2) | O2—C16—C17 | 106.1 (2) |
C5—C6—C7 | 124.2 (2) | O2—C16—H16A | 110.5 |
O1—C7—C8 | 121.0 (2) | C17—C16—H16A | 110.5 |
O1—C7—C6 | 118.8 (2) | O2—C16—H16B | 110.5 |
C8—C7—C6 | 120.19 (19) | C17—C16—H16B | 110.5 |
C9—C8—C7 | 118.2 (2) | H16A—C16—H16B | 108.7 |
C9—C8—H8A | 120.9 | C16—C17—H17C | 109.5 |
C7—C8—H8A | 120.9 | C16—C17—H17A | 109.5 |
C8—C9—C10 | 129.9 (2) | H17C—C17—H17A | 109.5 |
C8—C9—H9A | 115.0 | C16—C17—H17B | 109.5 |
C10—C9—H9A | 115.0 | H17C—C17—H17B | 109.5 |
C15—C10—C11 | 118.0 (2) | H17A—C17—H17B | 109.5 |
C6—C1—C2—C3 | 0.7 (4) | C7—C8—C9—C10 | −177.6 (2) |
C6—C1—C2—Br1 | 179.90 (17) | C8—C9—C10—C15 | 172.5 (3) |
C1—C2—C3—C4 | −0.2 (4) | C8—C9—C10—C11 | −9.9 (4) |
Br1—C2—C3—C4 | −179.42 (18) | C15—C10—C11—C12 | 0.2 (3) |
C2—C3—C4—C5 | −0.2 (4) | C9—C10—C11—C12 | −177.5 (2) |
C3—C4—C5—C6 | 0.1 (4) | C10—C11—C12—C13 | −1.4 (4) |
C2—C1—C6—C5 | −0.7 (3) | C16—O2—C13—C14 | 178.0 (2) |
C2—C1—C6—C7 | 179.4 (2) | C16—O2—C13—C12 | −2.1 (3) |
C4—C5—C6—C1 | 0.3 (3) | C11—C12—C13—O2 | −178.4 (2) |
C4—C5—C6—C7 | −179.8 (2) | C11—C12—C13—C14 | 1.5 (3) |
C1—C6—C7—O1 | 10.3 (3) | O2—C13—C14—C15 | 179.5 (2) |
C5—C6—C7—O1 | −169.6 (2) | C12—C13—C14—C15 | −0.4 (3) |
C1—C6—C7—C8 | −168.7 (2) | C13—C14—C15—C10 | −0.8 (4) |
C5—C6—C7—C8 | 11.4 (3) | C11—C10—C15—C14 | 1.0 (3) |
O1—C7—C8—C9 | −2.3 (3) | C9—C10—C15—C14 | 178.7 (2) |
C6—C7—C8—C9 | 176.7 (2) | C13—O2—C16—C17 | 176.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O1 | 0.93 | 2.36 | 2.746 (3) | 105 |
C16—H16B···O1i | 0.97 | 2.49 | 3.400 (3) | 157 |
Symmetry code: (i) −x+1, y+1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C17H15BrO2 |
Mr | 331.19 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 4.0516 (1), 9.6501 (2), 17.9120 (4) |
β (°) | 92.396 (1) |
V (Å3) | 699.72 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.94 |
Crystal size (mm) | 0.53 × 0.31 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.305, 0.642 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14837, 5989, 4682 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.807 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.093, 1.04 |
No. of reflections | 5989 |
No. of parameters | 182 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.69, −0.65 |
Absolute structure | Flack (1983), 2764 Friedel pairs |
Absolute structure parameter | 0.021 (8) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O1 | 0.93 | 2.36 | 2.746 (3) | 105 |
C16—H16B···O1i | 0.97 | 2.49 | 3.400 (3) | 157 |
Symmetry code: (i) −x+1, y+1/2, −z+2. |
Footnotes
‡Additional correspondence author, e-mail: suchada.c@psu.ac.th.
Acknowledgements
This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. SC thanks Prince of Songkla University for generous support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704–o710. Web of Science CSD CrossRef IUCr Journals Google Scholar
DiCesare, N. & Lakowicz, J. R. (2000). Tetrahedron Lett. 43, 2615–2618. Web of Science CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008a). J. Appl. Phys. 103, 103511-1–103511-6. Google Scholar
Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008b). Appl. Phys. Lett. 92, 091118-1–091118-3. Google Scholar
Jiang, Y. B., Wang, X. J. & Lin, L. (1994). J. Phys. Chem. 98, 12367–12372. CrossRef CAS Web of Science Google Scholar
Lokaj, J., Kettmann, V., Marchalin, S. & Sikoraiova, J. (2001). Acta Cryst. C57, 735–736. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42–o45. CSD CrossRef CAS IUCr Journals Google Scholar
Nel, R. J. J., Van Heerden, P. S., Van Rensburg, H. & Ferreira, D. (1998). Tetrahedron Lett. 39, 5623–5626. Web of Science CrossRef CAS Google Scholar
Patil, P. S. & Dharmaprakash, S. M. (2007). J. Cryst. Growth, 3053, 218–221. Web of Science CrossRef Google Scholar
Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498. Web of Science CSD CrossRef IUCr Journals Google Scholar
Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o59–o60. Web of Science CSD CrossRef IUCr Journals Google Scholar
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005a). Acta Cryst. E61, o480–o482. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005b). Acta Cryst. E61, o743–o745. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schmalle, H. W., Adiwidjaja, G., Jarchow, O. H., Hausen, B. M. & Wollenweber, E. (1990). Acta Cryst. C46, 1712–1715. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696–o698. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Extensive research in recent years suggests organic materials to be the ideal candidates for tailoring the material properties. As an interesting type of organic materials, chalcone and its derivatives have received much attention from physicists, chemists and material scientists who have been extensively investigating their optical, physical and chemical properties for fundamental understanding and technological applications (Chopra et al., 2007; Lokaj et al., 2001; Low et al., 2002; Sathiya Moorthi et al., 2005a,b; Schmalle et al., 1990; Wang et al., 2004). Earlier studies have indicated that chalcone and its derivatives are potential candidates for optical limiting applications (Gu et al., 2008a,b). Owing to their electronic structures, chalcones also find unique applications in fluorescent probes for the sensing of metal ions (DiCesare et al., 2000; Jiang et al., 1994), and in biological use (Nel et al., 1998). The chalcone derivatives with typical D-π-A mode have been reported to crystallize in a noncentrosymmetric crystal structure and possess second harmonic generation properties (Patil et al., 2006; Patil & Dharmaprakash, 2007; Patil et al., 2007b). In our previous investigation, the crystal structure of 1-(4-chlorophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one has been reported (Patil et al., 2007a). To further understand the structure-property relationship, the title chalcone derivative was synthesized with ethoxy as an electron-donor group. The title compound crystallized in the non-centrosymmetric monoclinic P21 space group and therefore it should exhibit second-order nonlinear optical properties.
The title molecule (Fig.1) is nearly planar and exists in an E configuration with respect to the C8═C9 double bond [1.341 (3) Å]; the C7–C8–C9–C10 torsion angle is -177.6 (2)°. The dihedral angle between rings A and B is 10.09 (11)°. The enone unit (C7–C9/O1) is essentially planar, with a maximum deviation of 0.040 (2) Å for atom C8. The mean plane through the enone unit makes dihedral angles of 12.05 (11)° and 9.87 (11)° with the planes of rings A and B, respectively. The planar ethoxy group [C13—O2—C16—C17 = 176.3 (2)°] is almost coplanar with the ring B [C16—O2—C13—C12 of -2.1 (3)°]. The deviations of atoms O2, C16 and C17 from ring B are 0.007 (2), 0.052 (3) and -0.056 (3) Å, respectively. A weak C9–H9A···O1 interaction generates an S(5) ring motif. The bond distances and angles have normal values (Allen et al., 1987) and are comparable with those observed in related structures (Patil et al., 2007a,b).
In the crystal structure, the molecules are linked by C—H···O hydrogen bonds (Table 1) to form a zigzag ribbon-like structure along the b direction (Fig.2 and Fig.3).