organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1356-o1357

(E)-1-(3-Bromo­phen­yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 June 2008; accepted 22 June 2008; online 28 June 2008)

The title compound, C17H15BrO2, adopts an E configuration. The dihedral angle between the two benzene rings is 10.09 (11)°. The enone plane makes dihedral angles of 12.05 (11) and 9.87 (11)°, respectively, with the bromo­phenyl and ethoxy­phenyl rings. The eth­oxy group is nearly coplanar with the attached benzene ring. In the crystal structure, the mol­ecules are linked by C—H⋯O hydrogen bonds, forming a zigzag ribbon-like structure along the b-axis direction.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see: Patil, Fun et al. (2007[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497-o2498.]); Patil, Ng et al. (2007[Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o59-o60.]); Sathiya Moorthi et al. (2005a[Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005a). Acta Cryst. E61, o480-o482.],b[Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005b). Acta Cryst. E61, o743-o745.]). For background to chalcones, see: Chopra et al. (2007[Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704-o710.]); DiCesare et al. (2000[DiCesare, N. & Lakowicz, J. R. (2000). Tetrahedron Lett. 43, 2615-2618.]); Gu et al. (2008a[Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008a). J. Appl. Phys. 103, 103511-1-103511-6.],b[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008b). Appl. Phys. Lett. 92, 091118-1-091118-3.]); Jiang et al. (1994[Jiang, Y. B., Wang, X. J. & Lin, L. (1994). J. Phys. Chem. 98, 12367-12372.]); Lokaj et al. (2001[Lokaj, J., Kettmann, V., Marchalin, S. & Sikoraiova, J. (2001). Acta Cryst. C57, 735-736.]); Low et al. (2002[Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42-o45.]); Nel et al. (1998[Nel, R. J. J., Van Heerden, P. S., Van Rensburg, H. & Ferreira, D. (1998). Tetrahedron Lett. 39, 5623-5626.]); Patil & Dharmaprakash (2007[Patil, P. S. & Dharmaprakash, S. M. (2007). J. Cryst. Growth, 3053, 218-221.]); Patil et al. (2006[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896-o898.]); Schmalle et al. (1990[Schmalle, H. W., Adiwidjaja, G., Jarchow, O. H., Hausen, B. M. & Wollenweber, E. (1990). Acta Cryst. C46, 1712-1715.]); Wang et al. (2004[Wang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696-o698.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrO2

  • Mr = 331.19

  • Monoclinic, P 21

  • a = 4.0516 (1) Å

  • b = 9.6501 (2) Å

  • c = 17.9120 (4) Å

  • β = 92.396 (1)°

  • V = 699.72 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.94 mm−1

  • T = 100.0 (1) K

  • 0.53 × 0.31 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.305, Tmax = 0.641 (expected range = 0.289–0.607)

  • 14837 measured reflections

  • 5989 independent reflections

  • 4682 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.04

  • 5989 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.65 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2764 Friedel pairs

  • Flack parameter: 0.021 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1 0.93 2.36 2.746 (3) 105
C16—H16B⋯O1i 0.97 2.49 3.400 (3) 157
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Extensive research in recent years suggests organic materials to be the ideal candidates for tailoring the material properties. As an interesting type of organic materials, chalcone and its derivatives have received much attention from physicists, chemists and material scientists who have been extensively investigating their optical, physical and chemical properties for fundamental understanding and technological applications (Chopra et al., 2007; Lokaj et al., 2001; Low et al., 2002; Sathiya Moorthi et al., 2005a,b; Schmalle et al., 1990; Wang et al., 2004). Earlier studies have indicated that chalcone and its derivatives are potential candidates for optical limiting applications (Gu et al., 2008a,b). Owing to their electronic structures, chalcones also find unique applications in fluorescent probes for the sensing of metal ions (DiCesare et al., 2000; Jiang et al., 1994), and in biological use (Nel et al., 1998). The chalcone derivatives with typical D-π-A mode have been reported to crystallize in a noncentrosymmetric crystal structure and possess second harmonic generation properties (Patil et al., 2006; Patil & Dharmaprakash, 2007; Patil et al., 2007b). In our previous investigation, the crystal structure of 1-(4-chlorophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one has been reported (Patil et al., 2007a). To further understand the structure-property relationship, the title chalcone derivative was synthesized with ethoxy as an electron-donor group. The title compound crystallized in the non-centrosymmetric monoclinic P21 space group and therefore it should exhibit second-order nonlinear optical properties.

The title molecule (Fig.1) is nearly planar and exists in an E configuration with respect to the C8C9 double bond [1.341 (3) Å]; the C7–C8–C9–C10 torsion angle is -177.6 (2)°. The dihedral angle between rings A and B is 10.09 (11)°. The enone unit (C7–C9/O1) is essentially planar, with a maximum deviation of 0.040 (2) Å for atom C8. The mean plane through the enone unit makes dihedral angles of 12.05 (11)° and 9.87 (11)° with the planes of rings A and B, respectively. The planar ethoxy group [C13—O2—C16—C17 = 176.3 (2)°] is almost coplanar with the ring B [C16—O2—C13—C12 of -2.1 (3)°]. The deviations of atoms O2, C16 and C17 from ring B are 0.007 (2), 0.052 (3) and -0.056 (3) Å, respectively. A weak C9–H9A···O1 interaction generates an S(5) ring motif. The bond distances and angles have normal values (Allen et al., 1987) and are comparable with those observed in related structures (Patil et al., 2007a,b).

In the crystal structure, the molecules are linked by C—H···O hydrogen bonds (Table 1) to form a zigzag ribbon-like structure along the b direction (Fig.2 and Fig.3).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Patil et al. (2007a,b). Sathiya Moorthi et al. (2005a,b). For background to chalcones, see: Chopra et al. (2007); DiCesare et al. (2000); Gu et al. (2008a,b); Jiang et al. (1994); Lokaj et al. (2001); Low et al. (2002); Nel et al. (1998); Patil & Dharmaprakash (2007); Patil et al. (2006); Schmalle et al. (1990); Wang et al. (2004).

Experimental top

The title compound was synthesized by the condensation of 4-ethoxybenzaldehyde (0.01mol, 1.39 ml) with 3-bromoacetophenone (0.01 mol, 1.99 g)) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 20%). After stirring for 3 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 4 h. The resulting crude solid was filtered and dried. Single crystals were obtained by recrystallization from acetone.

Refinement top

All H atoms were placed in calculated positions, with C-H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and CH, C-H = 0.97 Å, Uiso = 1.2Ueq(C) for CH2 and C-H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.81 Å from Br1 and the deepest hole is located at 0.76 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line represent a C—H···O interaction.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing of the title compound, showing zigzag ribbon-like structure running along the b axis. Hydrogen bonds are shown as dashed lines.
1-(3-Bromophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one top
Crystal data top
C17H15BrO2F(000) = 336
Mr = 331.19Dx = 1.572 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5989 reflections
a = 4.0516 (1) Åθ = 1.1–35.0°
b = 9.6501 (2) ŵ = 2.94 mm1
c = 17.9120 (4) ÅT = 100 K
β = 92.396 (1)°Block, colourless
V = 699.72 (3) Å30.53 × 0.31 × 0.17 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5989 independent reflections
Radiation source: fine-focus sealed tube4682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.33 pixels mm-1θmax = 35.0°, θmin = 1.1°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.305, Tmax = 0.642l = 2823
14837 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0372P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
5989 reflectionsΔρmax = 0.69 e Å3
182 parametersΔρmin = 0.65 e Å3
1 restraintAbsolute structure: Flack (1983), 2764 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (8)
Crystal data top
C17H15BrO2V = 699.72 (3) Å3
Mr = 331.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.0516 (1) ŵ = 2.94 mm1
b = 9.6501 (2) ÅT = 100 K
c = 17.9120 (4) Å0.53 × 0.31 × 0.17 mm
β = 92.396 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5989 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4682 reflections with I > 2σ(I)
Tmin = 0.305, Tmax = 0.642Rint = 0.033
14837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.69 e Å3
S = 1.04Δρmin = 0.65 e Å3
5989 reflectionsAbsolute structure: Flack (1983), 2764 Friedel pairs
182 parametersAbsolute structure parameter: 0.021 (8)
1 restraint
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.44099 (5)0.22151 (3)0.509606 (11)0.02359 (7)
O10.6257 (5)0.16393 (19)0.80200 (10)0.0229 (4)
O20.0554 (4)0.29630 (17)1.23694 (9)0.0191 (3)
C10.4078 (6)0.2599 (2)0.66571 (13)0.0179 (4)
H1A0.53200.17890.66860.021*
C20.3124 (6)0.3148 (2)0.59698 (13)0.0174 (4)
C30.1291 (6)0.4369 (2)0.59085 (14)0.0194 (4)
H3A0.06680.47310.54430.023*
C40.0418 (6)0.5031 (2)0.65597 (14)0.0194 (4)
H4A0.07990.58480.65280.023*
C50.1332 (6)0.4494 (2)0.72574 (14)0.0173 (4)
H5A0.07250.49480.76890.021*
C60.3170 (6)0.3266 (2)0.73090 (13)0.0155 (4)
C70.4277 (6)0.2592 (2)0.80334 (13)0.0163 (4)
C80.2936 (6)0.3067 (2)0.87445 (13)0.0170 (4)
H8A0.14880.38140.87560.020*
C90.3862 (5)0.2391 (3)0.93731 (12)0.0162 (4)
H9A0.53800.16810.93130.019*
C100.2857 (6)0.2599 (2)1.01363 (13)0.0161 (4)
C110.0989 (6)0.3739 (2)1.03642 (13)0.0165 (4)
H11A0.02630.43891.00110.020*
C120.0207 (6)0.3914 (2)1.11050 (13)0.0171 (4)
H12A0.09900.46841.12490.020*
C130.1238 (6)0.2920 (2)1.16333 (13)0.0156 (4)
C140.3094 (6)0.1789 (2)1.14161 (13)0.0169 (4)
H14A0.37920.11311.17680.020*
C150.3906 (6)0.1639 (2)1.06790 (13)0.0166 (4)
H15A0.51730.08841.05420.020*
C160.1265 (6)0.4130 (3)1.26362 (14)0.0194 (5)
H16A0.33550.42251.23560.023*
H16B0.00100.49781.25840.023*
C170.1832 (9)0.3845 (3)1.34460 (16)0.0323 (7)
H17C0.30140.46051.36540.048*
H17A0.02560.37361.37130.048*
H17B0.31010.30101.34880.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02512 (11)0.03165 (12)0.01422 (9)0.00028 (13)0.00341 (7)0.00396 (12)
O10.0289 (10)0.0226 (8)0.0170 (8)0.0094 (7)0.0001 (7)0.0002 (7)
O20.0236 (9)0.0196 (8)0.0144 (8)0.0049 (7)0.0052 (6)0.0037 (6)
C10.0184 (10)0.0188 (10)0.0165 (10)0.0003 (7)0.0022 (8)0.0009 (7)
C20.0153 (10)0.0197 (10)0.0173 (11)0.0035 (8)0.0026 (8)0.0029 (8)
C30.0210 (11)0.0199 (10)0.0175 (11)0.0043 (9)0.0006 (8)0.0042 (9)
C40.0200 (12)0.0149 (10)0.0231 (12)0.0007 (9)0.0016 (9)0.0017 (9)
C50.0201 (11)0.0150 (10)0.0166 (11)0.0017 (8)0.0004 (8)0.0012 (8)
C60.0186 (10)0.0132 (9)0.0147 (10)0.0024 (8)0.0011 (8)0.0004 (7)
C70.0179 (10)0.0145 (9)0.0164 (10)0.0011 (7)0.0004 (8)0.0020 (7)
C80.0190 (11)0.0168 (10)0.0151 (10)0.0003 (8)0.0006 (8)0.0025 (8)
C90.0176 (9)0.0141 (12)0.0168 (9)0.0005 (8)0.0007 (7)0.0023 (8)
C100.0172 (10)0.0142 (9)0.0170 (10)0.0027 (7)0.0009 (8)0.0001 (7)
C110.0179 (10)0.0150 (9)0.0165 (10)0.0013 (8)0.0008 (8)0.0028 (8)
C120.0189 (11)0.0147 (9)0.0176 (11)0.0013 (8)0.0013 (8)0.0003 (8)
C130.0144 (10)0.0161 (10)0.0166 (10)0.0015 (8)0.0036 (8)0.0004 (8)
C140.0184 (11)0.0136 (8)0.0186 (11)0.0009 (7)0.0005 (8)0.0043 (7)
C150.0161 (10)0.0150 (9)0.0188 (11)0.0007 (8)0.0011 (8)0.0004 (8)
C160.0232 (12)0.0161 (10)0.0194 (11)0.0015 (8)0.0060 (9)0.0003 (8)
C170.0467 (19)0.0282 (13)0.0230 (14)0.0146 (13)0.0146 (12)0.0044 (11)
Geometric parameters (Å, º) top
Br1—C21.897 (2)C9—C101.457 (3)
O1—C71.221 (3)C9—H9A0.93
O2—C131.359 (3)C10—C151.397 (3)
O2—C161.439 (3)C10—C111.405 (3)
C1—C21.381 (3)C11—C121.387 (3)
C1—C61.396 (3)C11—H11A0.93
C1—H1A0.93C12—C131.399 (3)
C2—C31.394 (3)C12—H12A0.93
C3—C41.389 (3)C13—C141.390 (3)
C3—H3A0.93C14—C151.381 (3)
C4—C51.389 (4)C14—H14A0.93
C4—H4A0.93C15—H15A0.93
C5—C61.401 (3)C16—C171.504 (4)
C5—H5A0.93C16—H16A0.97
C6—C71.503 (3)C16—H16B0.97
C7—C81.478 (3)C17—H17C0.96
C8—C91.341 (3)C17—H17A0.96
C8—H8A0.93C17—H17B0.96
C13—O2—C16118.31 (18)C15—C10—C9118.2 (2)
C2—C1—C6119.7 (2)C11—C10—C9123.8 (2)
C2—C1—H1A120.2C12—C11—C10121.4 (2)
C6—C1—H1A120.2C12—C11—H11A119.3
C1—C2—C3121.5 (2)C10—C11—H11A119.3
C1—C2—Br1118.50 (18)C11—C12—C13119.3 (2)
C3—C2—Br1119.98 (18)C11—C12—H12A120.3
C4—C3—C2118.4 (2)C13—C12—H12A120.3
C4—C3—H3A120.8O2—C13—C14115.5 (2)
C2—C3—H3A120.8O2—C13—C12124.6 (2)
C3—C4—C5121.1 (2)C14—C13—C12119.9 (2)
C3—C4—H4A119.5C15—C14—C13120.2 (2)
C5—C4—H4A119.5C15—C14—H14A119.9
C4—C5—C6119.7 (2)C13—C14—H14A119.9
C4—C5—H5A120.1C14—C15—C10121.2 (2)
C6—C5—H5A120.1C14—C15—H15A119.4
C1—C6—C5119.5 (2)C10—C15—H15A119.4
C1—C6—C7116.3 (2)O2—C16—C17106.1 (2)
C5—C6—C7124.2 (2)O2—C16—H16A110.5
O1—C7—C8121.0 (2)C17—C16—H16A110.5
O1—C7—C6118.8 (2)O2—C16—H16B110.5
C8—C7—C6120.19 (19)C17—C16—H16B110.5
C9—C8—C7118.2 (2)H16A—C16—H16B108.7
C9—C8—H8A120.9C16—C17—H17C109.5
C7—C8—H8A120.9C16—C17—H17A109.5
C8—C9—C10129.9 (2)H17C—C17—H17A109.5
C8—C9—H9A115.0C16—C17—H17B109.5
C10—C9—H9A115.0H17C—C17—H17B109.5
C15—C10—C11118.0 (2)H17A—C17—H17B109.5
C6—C1—C2—C30.7 (4)C7—C8—C9—C10177.6 (2)
C6—C1—C2—Br1179.90 (17)C8—C9—C10—C15172.5 (3)
C1—C2—C3—C40.2 (4)C8—C9—C10—C119.9 (4)
Br1—C2—C3—C4179.42 (18)C15—C10—C11—C120.2 (3)
C2—C3—C4—C50.2 (4)C9—C10—C11—C12177.5 (2)
C3—C4—C5—C60.1 (4)C10—C11—C12—C131.4 (4)
C2—C1—C6—C50.7 (3)C16—O2—C13—C14178.0 (2)
C2—C1—C6—C7179.4 (2)C16—O2—C13—C122.1 (3)
C4—C5—C6—C10.3 (3)C11—C12—C13—O2178.4 (2)
C4—C5—C6—C7179.8 (2)C11—C12—C13—C141.5 (3)
C1—C6—C7—O110.3 (3)O2—C13—C14—C15179.5 (2)
C5—C6—C7—O1169.6 (2)C12—C13—C14—C150.4 (3)
C1—C6—C7—C8168.7 (2)C13—C14—C15—C100.8 (4)
C5—C6—C7—C811.4 (3)C11—C10—C15—C141.0 (3)
O1—C7—C8—C92.3 (3)C9—C10—C15—C14178.7 (2)
C6—C7—C8—C9176.7 (2)C13—O2—C16—C17176.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.932.362.746 (3)105
C16—H16B···O1i0.972.493.400 (3)157
Symmetry code: (i) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC17H15BrO2
Mr331.19
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)4.0516 (1), 9.6501 (2), 17.9120 (4)
β (°) 92.396 (1)
V3)699.72 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.94
Crystal size (mm)0.53 × 0.31 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.305, 0.642
No. of measured, independent and
observed [I > 2σ(I)] reflections
14837, 5989, 4682
Rint0.033
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.04
No. of reflections5989
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.65
Absolute structureFlack (1983), 2764 Friedel pairs
Absolute structure parameter0.021 (8)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.932.362.746 (3)105
C16—H16B···O1i0.972.493.400 (3)157
Symmetry code: (i) x+1, y+1/2, z+2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. SC thanks Prince of Songkla University for generous support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704–o710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiCesare, N. & Lakowicz, J. R. (2000). Tetrahedron Lett. 43, 2615–2618.  Web of Science CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008a). J. Appl. Phys. 103, 103511-1–103511-6.  Google Scholar
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008b). Appl. Phys. Lett. 92, 091118-1–091118-3.  Google Scholar
First citationJiang, Y. B., Wang, X. J. & Lin, L. (1994). J. Phys. Chem. 98, 12367–12372.  CrossRef CAS Web of Science Google Scholar
First citationLokaj, J., Kettmann, V., Marchalin, S. & Sikoraiova, J. (2001). Acta Cryst. C57, 735–736.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLow, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42–o45.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNel, R. J. J., Van Heerden, P. S., Van Rensburg, H. & Ferreira, D. (1998). Tetrahedron Lett. 39, 5623–5626.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S. & Dharmaprakash, S. M. (2007). J. Cryst. Growth, 3053, 218–221.  Web of Science CrossRef Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o59–o60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005a). Acta Cryst. E61, o480–o482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005b). Acta Cryst. E61, o743–o745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchmalle, H. W., Adiwidjaja, G., Jarchow, O. H., Hausen, B. M. & Wollenweber, E. (1990). Acta Cryst. C46, 1712–1715.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696–o698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1356-o1357
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds