metal-organic compounds
Poly[[diaqua-μ4-pyrazine-2,3-dicarboxylato-κ6N,O2:O2′:O3,O3′:O3-strontium(II)] monohydrate]
aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Islamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: v_amani2002@yahoo.com
In the title compound, {[Sr(C6H2N2O4)(H2O)2]·H2O}n, the SrII ions are bridged by the pyrazine-2,3-dicarboxylate ligands with the formation of two-dimensional polymeric layers parallel to the ac plane. Each SrII ion is eight-coordinated by one N and five O atoms from the four ligands and two water molecules. The is derived from a pentagonal bipyramid with an O atom at the apex on one side of the equatorial plane and two O atoms sharing the apical site on the other side. The coordinated and uncoordinated water molecules are involved in O—H⋯O and O—H⋯N hydrogen bonds, which consolidate the crystal structure.
Related literature
For related literature, see: Takusagawa & Shimada (1973); Richard et al. (1973); Zou et al. (1999); Konar et al. (2004); Li et al. (2003); Xu et al. (2008); Ma et al. (2006); Ptasiewicz-Bak & Leciejewicz (1997a,b); Starosta & Leciejewicz (2005); Tombul et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808015316/cv2408sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808015316/cv2408Isup2.hkl
A solution of pyrazine-2,3-dicarboxlic acid (0.5 g, 2.91 mmol) in methanol (40 ml) was added to a solution of Sr(NO3)2 (0.31 g, 1.46 mmol) in water (10 ml) and the resulting colourless solution was stirred for 10 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, colourless plate crystals of the title compound were isolated (yield 0.35 g, 78.03%).
C-bound H atoms were geometrically positioned (C-H 0.95 Å), while O-bound H atoms were found in difference Fourier maps, but placed in idealized positions with O-H of 0.85 Å. All hydrogen atoms were refined in riding model approximation with Uiso(H) = 1.2Ueq of the paren atom.
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A portion of the polymeric structure of (I) with the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level [symmetry codes: (i) -x - 1/2,y - 1/2,-z + 1/2, (ii) -x - 1/2, y + 1/2,-z + 1/2, (iii) x - 1/2,-y + 1/2,z + 1/2]. | |
Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines. |
[Sr(C6H2N2O4)(H2O)2]·H2O | F(000) = 608 |
Mr = 307.76 | Dx = 2.069 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 156 reflections |
a = 10.4931 (7) Å | θ = 3–26° |
b = 6.9839 (4) Å | µ = 5.48 mm−1 |
c = 13.5208 (8) Å | T = 120 K |
β = 94.267 (1)° | Plate, colorless |
V = 988.10 (10) Å3 | 0.28 × 0.25 × 0.10 mm |
Z = 4 |
Bruker SMART 1000 CCD area-detector diffractometer | 1934 independent reflections |
Radiation source: fine-focus sealed tube | 1595 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −12→12 |
Tmin = 0.240, Tmax = 0.568 | k = −8→8 |
8338 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: mixed |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.026P)2] where P = (Fo2 + 2Fc2)/3 |
1934 reflections | (Δ/σ)max = 0.002 |
145 parameters | Δρmax = 0.92 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
[Sr(C6H2N2O4)(H2O)2]·H2O | V = 988.10 (10) Å3 |
Mr = 307.76 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.4931 (7) Å | µ = 5.48 mm−1 |
b = 6.9839 (4) Å | T = 120 K |
c = 13.5208 (8) Å | 0.28 × 0.25 × 0.10 mm |
β = 94.267 (1)° |
Bruker SMART 1000 CCD area-detector diffractometer | 1934 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 1595 reflections with I > 2σ(I) |
Tmin = 0.240, Tmax = 0.568 | Rint = 0.040 |
8338 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.92 e Å−3 |
1934 reflections | Δρmin = −0.45 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sr1 | −0.44206 (2) | 0.17756 (3) | 0.375530 (17) | 0.01058 (9) | |
N1 | −0.4291 (2) | 0.1488 (3) | 0.17632 (16) | 0.0137 (5) | |
N2 | −0.3958 (2) | 0.2550 (3) | −0.01781 (16) | 0.0138 (5) | |
O1 | −0.14140 (18) | 0.1344 (3) | −0.07125 (13) | 0.0154 (4) | |
O2 | −0.09707 (18) | 0.3655 (3) | 0.03862 (13) | 0.0148 (4) | |
O3 | −0.21964 (18) | 0.1162 (3) | 0.30617 (13) | 0.0164 (4) | |
O4 | −0.10633 (16) | 0.0171 (3) | 0.18088 (13) | 0.0131 (4) | |
C1 | −0.3115 (2) | 0.1518 (4) | 0.14221 (19) | 0.0114 (6) | |
C2 | −0.2956 (3) | 0.2059 (4) | 0.04464 (19) | 0.0117 (6) | |
C3 | −0.5114 (3) | 0.2480 (4) | 0.0166 (2) | 0.0156 (6) | |
H3A | −0.5841 | 0.2794 | −0.0264 | 0.019* | |
C4 | −0.5277 (3) | 0.1963 (4) | 0.11335 (19) | 0.0150 (6) | |
H4A | −0.6115 | 0.1945 | 0.1356 | 0.018* | |
C5 | −0.2037 (3) | 0.0901 (4) | 0.21630 (19) | 0.0123 (6) | |
C6 | −0.1670 (3) | 0.2340 (4) | 0.00239 (19) | 0.0114 (6) | |
O1W | −0.64324 (17) | −0.0101 (3) | 0.30768 (13) | 0.0161 (4) | |
H1W1 | −0.6382 | −0.1106 | 0.2727 | 0.019* | |
H2W1 | −0.7174 | 0.0355 | 0.2932 | 0.019* | |
O2W | −0.31193 (17) | 0.2633 (3) | 0.53262 (13) | 0.0150 (4) | |
H1W2 | −0.3220 | 0.3802 | 0.5478 | 0.018* | |
H2W2 | −0.3246 | 0.1853 | 0.5791 | 0.018* | |
O3W | 0.11689 (17) | 0.1471 (3) | 0.28299 (13) | 0.0161 (4) | |
H1W3 | 0.0444 | 0.1203 | 0.2540 | 0.019* | |
H2W3 | 0.1011 | 0.1787 | 0.3415 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.00953 (13) | 0.01224 (14) | 0.01019 (13) | 0.00004 (11) | 0.00220 (9) | 0.00048 (11) |
N1 | 0.0110 (12) | 0.0183 (13) | 0.0119 (11) | 0.0000 (10) | 0.0026 (9) | −0.0003 (10) |
N2 | 0.0112 (12) | 0.0163 (12) | 0.0140 (11) | 0.0013 (9) | 0.0021 (9) | 0.0000 (10) |
O1 | 0.0168 (10) | 0.0174 (10) | 0.0125 (9) | −0.0015 (8) | 0.0050 (8) | −0.0024 (8) |
O2 | 0.0123 (10) | 0.0160 (11) | 0.0163 (10) | −0.0026 (8) | 0.0029 (8) | −0.0017 (8) |
O3 | 0.0142 (10) | 0.0245 (11) | 0.0106 (9) | 0.0028 (8) | 0.0022 (8) | −0.0006 (8) |
O4 | 0.0084 (9) | 0.0159 (10) | 0.0154 (9) | 0.0020 (8) | 0.0033 (8) | −0.0022 (8) |
C1 | 0.0086 (13) | 0.0133 (14) | 0.0124 (13) | −0.0008 (11) | 0.0016 (10) | −0.0041 (11) |
C2 | 0.0137 (14) | 0.0095 (13) | 0.0123 (13) | −0.0030 (11) | 0.0024 (11) | −0.0016 (11) |
C3 | 0.0119 (15) | 0.0185 (14) | 0.0161 (14) | 0.0013 (11) | −0.0009 (11) | −0.0008 (12) |
C4 | 0.0096 (14) | 0.0195 (15) | 0.0157 (14) | −0.0006 (11) | 0.0005 (11) | −0.0008 (12) |
C5 | 0.0126 (14) | 0.0099 (13) | 0.0144 (14) | −0.0027 (11) | 0.0017 (11) | 0.0027 (11) |
C6 | 0.0115 (14) | 0.0108 (13) | 0.0118 (13) | 0.0017 (11) | −0.0001 (11) | 0.0027 (11) |
O1W | 0.0123 (10) | 0.0176 (10) | 0.0184 (10) | 0.0009 (8) | 0.0016 (8) | −0.0007 (8) |
O2W | 0.0161 (10) | 0.0145 (10) | 0.0142 (10) | −0.0007 (8) | 0.0010 (8) | 0.0013 (8) |
O3W | 0.0112 (10) | 0.0257 (11) | 0.0113 (9) | −0.0009 (8) | 0.0012 (8) | −0.0013 (8) |
Sr1—O2i | 2.4887 (18) | O2—Sr1ii | 2.4887 (18) |
Sr1—O2W | 2.5106 (18) | O2—Sr1v | 2.8517 (18) |
Sr1—O4ii | 2.5533 (18) | O3—C5 | 1.252 (3) |
Sr1—O1W | 2.5937 (19) | O4—C5 | 1.267 (3) |
Sr1—O3 | 2.6145 (18) | O4—Sr1i | 2.5533 (18) |
Sr1—O1iii | 2.6155 (18) | C1—C2 | 1.394 (4) |
Sr1—N1 | 2.714 (2) | C1—C5 | 1.517 (4) |
Sr1—O2iii | 2.8517 (18) | C2—C6 | 1.516 (4) |
Sr1—C6iii | 3.082 (3) | C3—C4 | 1.381 (4) |
Sr1—Sr1iv | 4.4235 (5) | C3—H3A | 0.9500 |
Sr1—H1W2 | 2.9292 | C4—H4A | 0.9500 |
Sr1—H2W2 | 2.9320 | C6—Sr1v | 3.082 (3) |
N1—C4 | 1.332 (3) | O1W—H1W1 | 0.8500 |
N1—C1 | 1.349 (3) | O1W—H2W1 | 0.8500 |
N2—C3 | 1.331 (3) | O2W—H1W2 | 0.8500 |
N2—C2 | 1.343 (3) | O2W—H2W2 | 0.8500 |
O1—C6 | 1.260 (3) | O3W—H1W3 | 0.8501 |
O1—Sr1v | 2.6155 (18) | O3W—H2W3 | 0.8499 |
O2—C6 | 1.252 (3) | ||
O2i—Sr1—O2W | 75.75 (6) | O2iii—Sr1—H1W2 | 70.9 |
O2i—Sr1—O4ii | 157.35 (6) | C6iii—Sr1—H1W2 | 76.3 |
O2W—Sr1—O4ii | 85.61 (6) | Sr1iv—Sr1—H1W2 | 78.0 |
O2i—Sr1—O1W | 79.88 (6) | O2i—Sr1—H2W2 | 62.3 |
O2W—Sr1—O1W | 142.83 (6) | O2W—Sr1—H2W2 | 15.6 |
O4ii—Sr1—O1W | 122.57 (6) | O4ii—Sr1—H2W2 | 100.6 |
O2i—Sr1—O3 | 84.44 (6) | O1W—Sr1—H2W2 | 128.0 |
O2W—Sr1—O3 | 84.19 (6) | O3—Sr1—H2W2 | 90.9 |
O4ii—Sr1—O3 | 80.93 (6) | O1iii—Sr1—H2W2 | 91.2 |
O1W—Sr1—O3 | 121.00 (6) | N1—Sr1—H2W2 | 152.2 |
O2i—Sr1—O1iii | 114.76 (6) | O2iii—Sr1—H2W2 | 60.0 |
O2W—Sr1—O1iii | 92.48 (6) | C6iii—Sr1—H2W2 | 76.1 |
O4ii—Sr1—O1iii | 78.28 (6) | Sr1iv—Sr1—H2W2 | 54.3 |
O1W—Sr1—O1iii | 72.81 (6) | H1W2—Sr1—H2W2 | 28.2 |
O3—Sr1—O1iii | 159.14 (6) | C4—N1—C1 | 117.7 (2) |
O2i—Sr1—N1 | 112.29 (6) | C4—N1—Sr1 | 121.46 (17) |
O2W—Sr1—N1 | 142.46 (6) | C1—N1—Sr1 | 116.91 (16) |
O4ii—Sr1—N1 | 75.33 (6) | C3—N2—C2 | 117.5 (2) |
O1W—Sr1—N1 | 73.21 (6) | C6—O1—Sr1v | 99.33 (16) |
O3—Sr1—N1 | 61.32 (6) | C6—O2—Sr1ii | 153.65 (17) |
O1iii—Sr1—N1 | 114.22 (6) | C6—O2—Sr1v | 88.36 (15) |
O2i—Sr1—O2iii | 68.33 (6) | Sr1ii—O2—Sr1v | 111.67 (6) |
O2W—Sr1—O2iii | 71.13 (6) | C5—O3—Sr1 | 124.02 (17) |
O4ii—Sr1—O2iii | 117.81 (5) | C5—O4—Sr1i | 132.10 (16) |
O1W—Sr1—O2iii | 73.99 (5) | N1—C1—C2 | 120.3 (2) |
O3—Sr1—O2iii | 146.69 (6) | N1—C1—C5 | 115.2 (2) |
O1iii—Sr1—O2iii | 47.66 (5) | C2—C1—C5 | 124.4 (2) |
N1—Sr1—O2iii | 146.41 (6) | N2—C2—C1 | 121.3 (2) |
O2i—Sr1—C6iii | 91.29 (7) | N2—C2—C6 | 114.0 (2) |
O2W—Sr1—C6iii | 82.66 (6) | C1—C2—C6 | 124.4 (2) |
O4ii—Sr1—C6iii | 99.08 (6) | N2—C3—C4 | 121.4 (3) |
O1W—Sr1—C6iii | 70.19 (6) | N2—C3—H3A | 119.3 |
O3—Sr1—C6iii | 166.80 (6) | C4—C3—H3A | 119.3 |
O1iii—Sr1—C6iii | 23.79 (6) | N1—C4—C3 | 121.7 (3) |
N1—Sr1—C6iii | 131.61 (7) | N1—C4—H4A | 119.1 |
O2iii—Sr1—C6iii | 23.97 (6) | C3—C4—H4A | 119.1 |
O2i—Sr1—Sr1iv | 36.81 (4) | O3—C5—O4 | 126.5 (2) |
O2W—Sr1—Sr1iv | 69.70 (4) | O3—C5—C1 | 116.9 (2) |
O4ii—Sr1—Sr1iv | 145.08 (4) | O4—C5—C1 | 116.6 (2) |
O1W—Sr1—Sr1iv | 73.93 (4) | O2—C6—O1 | 124.1 (2) |
O3—Sr1—Sr1iv | 118.96 (4) | O2—C6—C2 | 117.4 (2) |
O1iii—Sr1—Sr1iv | 78.55 (4) | O1—C6—C2 | 118.3 (2) |
N1—Sr1—Sr1iv | 138.62 (5) | O2—C6—Sr1v | 67.67 (14) |
O2iii—Sr1—Sr1iv | 31.52 (4) | O1—C6—Sr1v | 56.88 (13) |
C6iii—Sr1—Sr1iv | 54.80 (5) | C2—C6—Sr1v | 167.25 (17) |
O2i—Sr1—H1W2 | 90.3 | Sr1—O1W—H1W1 | 122.1 |
O2W—Sr1—H1W2 | 15.7 | Sr1—O1W—H2W1 | 126.8 |
O4ii—Sr1—H1W2 | 72.9 | H1W1—O1W—H2W1 | 105.9 |
O1W—Sr1—H1W2 | 144.7 | Sr1—O2W—H1W2 | 111.4 |
O3—Sr1—H1W2 | 91.3 | Sr1—O2W—H2W2 | 111.6 |
O1iii—Sr1—H1W2 | 81.0 | H1W2—O2W—H2W2 | 114.0 |
N1—Sr1—H1W2 | 140.8 | H1W3—O3W—H2W3 | 104.9 |
O2i—Sr1—N1—C4 | 121.4 (2) | C3—N2—C2—C1 | −0.7 (4) |
O2W—Sr1—N1—C4 | −143.01 (19) | C3—N2—C2—C6 | −175.0 (2) |
O4ii—Sr1—N1—C4 | −81.1 (2) | N1—C1—C2—N2 | −0.4 (4) |
O1W—Sr1—N1—C4 | 50.2 (2) | C5—C1—C2—N2 | 178.5 (2) |
O3—Sr1—N1—C4 | −168.7 (2) | N1—C1—C2—C6 | 173.3 (2) |
O1iii—Sr1—N1—C4 | −11.5 (2) | C5—C1—C2—C6 | −7.8 (4) |
O2iii—Sr1—N1—C4 | 37.4 (3) | C2—N2—C3—C4 | 1.3 (4) |
C6iii—Sr1—N1—C4 | 8.1 (2) | C1—N1—C4—C3 | −0.3 (4) |
Sr1iv—Sr1—N1—C4 | 89.0 (2) | Sr1—N1—C4—C3 | 156.5 (2) |
O2i—Sr1—N1—C1 | −81.51 (18) | N2—C3—C4—N1 | −0.8 (4) |
O2W—Sr1—N1—C1 | 14.0 (2) | Sr1—O3—C5—O4 | −162.37 (19) |
O4ii—Sr1—N1—C1 | 75.96 (18) | Sr1—O3—C5—C1 | 17.6 (3) |
O1W—Sr1—N1—C1 | −152.72 (19) | Sr1i—O4—C5—O3 | 96.7 (3) |
O3—Sr1—N1—C1 | −11.61 (17) | Sr1i—O4—C5—C1 | −83.2 (3) |
O1iii—Sr1—N1—C1 | 145.59 (17) | N1—C1—C5—O3 | −27.8 (3) |
O2iii—Sr1—N1—C1 | −165.53 (15) | C2—C1—C5—O3 | 153.3 (3) |
C6iii—Sr1—N1—C1 | 165.13 (16) | N1—C1—C5—O4 | 152.2 (2) |
Sr1iv—Sr1—N1—C1 | −113.97 (17) | C2—C1—C5—O4 | −26.8 (4) |
O2i—Sr1—O3—C5 | 115.1 (2) | Sr1ii—O2—C6—O1 | 148.1 (3) |
O2W—Sr1—O3—C5 | −168.7 (2) | Sr1v—O2—C6—O1 | 7.3 (3) |
O4ii—Sr1—O3—C5 | −82.2 (2) | Sr1ii—O2—C6—C2 | −26.3 (5) |
O1W—Sr1—O3—C5 | 40.4 (2) | Sr1v—O2—C6—C2 | −167.1 (2) |
O1iii—Sr1—O3—C5 | −87.1 (3) | Sr1ii—O2—C6—Sr1v | 140.8 (4) |
N1—Sr1—O3—C5 | −4.08 (19) | Sr1v—O1—C6—O2 | −8.1 (3) |
O2iii—Sr1—O3—C5 | 149.62 (18) | Sr1v—O1—C6—C2 | 166.25 (19) |
C6iii—Sr1—O3—C5 | −173.4 (3) | N2—C2—C6—O2 | 110.2 (3) |
Sr1iv—Sr1—O3—C5 | 128.36 (19) | C1—C2—C6—O2 | −63.9 (4) |
C4—N1—C1—C2 | 0.9 (4) | N2—C2—C6—O1 | −64.5 (3) |
Sr1—N1—C1—C2 | −157.03 (19) | C1—C2—C6—O1 | 121.4 (3) |
C4—N1—C1—C5 | −178.1 (2) | N2—C2—C6—Sr1v | −0.2 (9) |
Sr1—N1—C1—C5 | 24.0 (3) | C1—C2—C6—Sr1v | −174.3 (7) |
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) −x−1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x−1, −y, −z+1; (v) x+1/2, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O3Wi | 0.85 | 1.87 | 2.713 (3) | 170 |
O1W—H2W1···O3Wvi | 0.85 | 1.90 | 2.744 (3) | 171 |
O2W—H1W2···O1ii | 0.85 | 1.85 | 2.696 (3) | 174 |
O2W—H2W2···O1Wiv | 0.85 | 2.01 | 2.857 (3) | 178 |
O3W—H1W3···O4 | 0.85 | 1.94 | 2.781 (3) | 170 |
O3W—H2W3···N2vii | 0.85 | 1.96 | 2.792 (3) | 168 |
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) −x−1/2, y+1/2, −z+1/2; (iv) −x−1, −y, −z+1; (vi) x−1, y, z; (vii) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Sr(C6H2N2O4)(H2O)2]·H2O |
Mr | 307.76 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 10.4931 (7), 6.9839 (4), 13.5208 (8) |
β (°) | 94.267 (1) |
V (Å3) | 988.10 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.48 |
Crystal size (mm) | 0.28 × 0.25 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.240, 0.568 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8338, 1934, 1595 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.054, 1.01 |
No. of reflections | 1934 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.92, −0.45 |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).
Sr1—O2i | 2.4887 (18) | Sr1—O3 | 2.6145 (18) |
Sr1—O2W | 2.5106 (18) | Sr1—O1iii | 2.6155 (18) |
Sr1—O4ii | 2.5533 (18) | Sr1—N1 | 2.714 (2) |
Sr1—O1W | 2.5937 (19) | Sr1—O2iii | 2.8517 (18) |
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) −x−1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O3Wi | 0.85 | 1.872 | 2.713 (3) | 170 |
O1W—H2W1···O3Wiv | 0.85 | 1.901 | 2.744 (3) | 171 |
O2W—H1W2···O1ii | 0.85 | 1.849 | 2.696 (3) | 174 |
O2W—H2W2···O1Wv | 0.85 | 2.007 | 2.857 (3) | 178 |
O3W—H1W3···O4 | 0.85 | 1.941 | 2.781 (3) | 170 |
O3W—H2W3···N2vi | 0.85 | 1.955 | 2.792 (3) | 168 |
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) −x−1/2, y+1/2, −z+1/2; (iv) x−1, y, z; (v) −x−1, −y, −z+1; (vi) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.
References
Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Konar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593–1597. Web of Science CSD CrossRef CAS Google Scholar
Li, J. M., Shi, J. M., Wu, C. J. & Xu, W. (2003). J. Coord. Chem. 56, 869–875. Web of Science CSD CrossRef CAS Google Scholar
Ma, Y., He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2528–m2529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493–500. CAS Google Scholar
Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603–1610. CAS Google Scholar
Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111–1115. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963–968. Web of Science CSD CrossRef CAS Google Scholar
Takusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121–1123. CrossRef Web of Science Google Scholar
Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xu, H., Ma, H., Xu, M., Zhao, W. & Guo, B. (2008). Acta Cryst. E64, m104. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zou, J. Z., Xu, Z., Chen, W., Lo, K. M. & You, X. Z. (1999). Polyhedron, 18, 1507–1512. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Takusagawa & Shimada (1973) first determined the structure of pyrazine-2,3-dicarboxlic acid by single-crystal X-ray analysis. Almost at the same time, the first metal-organic compound of pyrazine-2,3-dicarboxylic acid was reported (Richard et al., 1973). Among many reported compounds containing pyrazine-2,3-dicarboxylic acid, most are complexes of transition metal ions, including manganese (Zou et al., 1999), copper (Konar et al., 2004), zinc (Li et al., 2003), iron (Xu et al., 2008) and cadmium (Ma et al., 2006). Also, there are many reported compounds of pyrazine-2,3-dicarboxylic acid with main group metals such as calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b) and sodium (Tombul et al., 2006) complexes. For further investigation of pyrazine-2,3-dicarboxylic acid, we synthesized the title compound, (I).
The asymmetric unit of the title compound, (Fig. 1), contains molecular sheets in which SrII ions are bridged by the carboxylate groups of the ligand molecules. Two bridging paths are evident. In the first, an N,O-bonding moiety formed by a hetero-ring nitrogen atom and the carboxylate oxygen atom nearest to it and both oxygen atoms of the second carboxylic group are active. The second path is formed by the other oxygen atom from the carboxylic group involved in the N,O-bonding moiety and an oxygen atom from the second carboxylic group. The latter atom is bidentate. A two-dimensional molecular pattern is formed. Each SrII ion is also coordinated by two water oxygen atoms, making the number of coordinated atoms eight. The coordination polyhedron is a distorted pentagonal bipyramid with an oxygen atom at the apex on one side of the equatorial plane and two oxygen atoms forming the apices on the other side. There is also one non-coordinated water molecule in the asymmetric unit. The Sr—O and Sr—N bond lengths are collected in Table 1.
Intermolecular O—H···O and O—H···N hydrogen bonds (Table 2) help to consolidate the crystal packing (Fig. 2).